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ABSTRACT: In this study, an important stability problem, in the design of cantilever I-beams under 

lateral torsional buckling behavior is theoretically investigated. The elastic lateral torsional buckling 

behavior of cantilever I beam loaded from shear centers is examined for four different loading types. The 

governing differential equation is transformed into a set of first-order ordinary differential equations. The 

Complementary Functions Method (CFM), which is an effective method in solving the first-order 

differential equation set, is used. Fifth Order Runge-Kutta  (RK5) algorithm is used for numerical 

integrations in CFM, which can transform the boundary value problem into an initial value problem. The 

obtained results were compared with the existing results in the literature. It has been shown that CFM can 

be used effectively in the analysis of elastic lateral torsional buckling behavior of I beams. 

 

Keywords: Complementary functions method, Lateral torsional buckling, Stability 

1. INTRODUCTION 

The safety of structural elements in terms of lateral torsional buckling is an important issue during the 

design of structures. In design, safety is evaluated within the framework of limiting the stress values 

occurring in the structural elements to permissible stresses and the stability of the steady state. To limit 

the stresses in the sections, the profiles used in steel structures are placed in the structure in a way that the 

bending moment will be implemented around their strong principal axis. These section profiles, which 

are considered to be subjected to the bending around their strong principal axes, may twist and buckle 

around their weak axes at the point with the increased load intensity. In this context, there are many 

investigations in the literature related to the lateral torsional buckling behavior of beams. 

Gupta et al. [1] developed the finite element formulation for the lateral torsional buckling of I beams. 

They considered the influence of warping deformations and the location of the implemented load in the 

cross-section in formulations. Sapkás and Kollár [2] examined the stability of thin-walled orthotropic 

composite beams. They obtained the lateral torsional buckling loads of cantilever beams by considering 

the influence of shear deformation for several boundary conditions and various types of loadings. 

Challamel et al. [3] investigated the torsional lateral buckling analysis of cantilever beams with variable 

cross-section with analytical approaches. They used the finite element approach to verify their results of 

lateral torsional buckling values obtained for a cantilever beam subjected to a point load to its free end.  

 The elastic lateral torsional buckling response of cantilever I beams was studied by Özbaşaran [4]. 

They used the finite difference method in their research. Özbaşaran et al. [5] carried out the critical lateral 

torsional buckling load of I cantilever beams. They suggested a closed-form solution and verified their 

results by comparing with those of the ABAQUS. Yilmaz and Kirac [6] studied the lateral torsional 

buckling response of simply supported IPE and IPN beams. The governing equations were solved for 

several parameters with the aid of analytical models. They developed an equation that gives the critical 

lateral torsional buckling loads for various locations of the applied loads in the cross-section of the beam.  
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Soltani and Asgarian [7] studied the lateral torsional buckling response of axially functionally graded 

I beams. The stability of beams with various values of material gradient indices was examined. A 

differential quadrature method was implemented to carry out the lateral torsional buckling loads for 

hinged–hinged beams subjected to uniformly distributed loads. 

In this study, the critical lateral torsional buckling moments of I-section cantilever beams loaded at 

the shear center with different types of loadings are obtained via the Complementary Functions Method. 

The lateral torsional buckling behavior of cantilever beams is investigated for different section profiles 

and beam lengths. 

2. GOVERNING EQUATIONS AND PROCEDURE OF THE SOLUTION 

A cantilever I beam subjected to a transverse point load to its shear center at the free end is given in 

Figure 1. The cross-section of the beam is assumed to be symmetric. The governing equation for the lateral 

torsional buckling of cantilever I beams subjected to a point load at its free end is given by [8] and 

presented in equation (1).  

 

 
Figure 1. A cantilever I beam subjected to a point load 
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In this equation;  is the angle of twist, 
1 w

C EC=  shows the warping rigidity, 
t

C GI=  is the torsional 

rigidity, P  stands for the point load, I


 is the are moment inertia about the weak axis, 
t

I  is tortional 

moment of inertia, 
w

C  demonstrates the warping constant, E  gives the modulus of elasticity and G shows 

the shear modulus.  

By substituting s L x= − in equation (1) it can be simplified in following form: 
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The fourth-order ordinary differential equation (2) will be converted to four first-order ordinary 

differential equations. For this purpose, the new variables can be determined as in equations (3-5). 

1
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By using equation 2 and equations (3-6) the set of governing equations of lateral torsional buckling 

can be obtained as follows:  
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A cantilever I beam subjected to a transverse uniformly distributed load to its shear center is illustrated 

in Figure 2. The governing equation for the lateral torsional buckling of cantilever I beams subjected to 

uniformly distributed load is given by [9] and presented in equation (11).  

 

 
Figure 2. A cantilever I beam subjected to uniformly distributed 

transverse load 
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In this equation q  stands for the magnitude of uniformly distributed load. The variables given in 

equations (3-6) will be used to convert equation (11) to a set of ordinary canonical differential equations.  
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A cantilever I beam subjected to a transverse uniformly distributed load and a point load at its free 

end is presented in Figure 3. The governing equation for the lateral torsional buckling of this cantilever 

beam is given in [9] and presented in equation (16). The magnitude of the point is taken as P qL= . 
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Figure 3. An I cantilever beam subjected to a point load and uniformly 

distributed load 
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The variables given previously in equations (3-6) will be used to change equation (16) to a set of 

canonical differential equations. The obtained equations are written as follows:  
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A cantilever I beam subjected to a concentrated moment is shown in Figure 4. The governing equation 

of the torsional lateral buckling response of this beam is presented by [9] and given in equation (21). 

 

 
Figure 4. A cantilever I beam subjected to a point moment 
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By using the variables given in equations (3-6), equation (11) is converted to a set of ordinary canonical 

differential equations and presented below (equations (22-25).  
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The set of canonical equations obtained from equations (2), equations (11), equations (16) and 

equations (21) are two-point boundary value problems. The CFM will be implemented to carry out the 

solution of these equations. The main principle is the implemented method is that it reduces a two-point 

boundary value problem to an initial value problem. The solution of the set of the ordinary differential 

equations can be given in equation (26) which is consist of four homogenous and one nonhomogeneous 

solution [10,11]. In the solution procedure of the initial value problem the Runge – Kutta (5th order) will 

be used [12]. The CFM is an efficient, accurate and easily applicable method for the numerical solution of 

the two-point boundary value problems. This method was applied successfully to the solution of various 

structural mechanics problems [13,14].  

 

0 1 1 2 2 3 3 4 4
s s a s a s a s a s     = + + + +( ) ( ) ( ) ( ) ( ) ( )  (26) 

 

In this equations, 
0
( )s  is the nonhomogeneous solution, 

1 2 3 4
( ), ( ), ( ), ( )s s s s    are homogenous 

solutions and 
1 2 3 4
, , ,a a a a are the integrations constants which can be found with the aid of the boundary 

conditions. The boundary conditions that are required for the solution of the governing equation of the 

torsional lateral buckling response of the cantilever I beams are listed in Table 1.  

 

 

Table 1. Boundary conditions 
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The governing equation of the torsional lateral buckling of the considered beams is homogenous. 

Thus, once the integration constants matrix from the homogenous solution of the differential equation is 

obtained then its determinant can be calculated easily. The set of integrations which makes this 

determinant zero are the critical lateral torsional buckling loads ( P , q  or M ). These values can be 

obtained with the method of Secant with the desired accuracy. 

3. NUMERICAL EXAMPLES 

To validate the accuracy and applicability of the CFM, lateral torsional buckling results of the present 

paper are compared with those of the available literature. The material and geometric properties of the 

cantilever I beam are presented in Table 2.  
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Table 2. Geometric and material properties of the I beam 

( )E MPa  200000  

( )G MPa  76923  
4 410  ( )I x mm


 68 16.  

3 410  ( )
t

I x mm  28 20.  

6 610  ( )
w

C x mm  3958 9.  

 

The lateral torsional buckling moments for this cantilever I beam are calculated and compared with 

those of Özbaşaran [4] in Table 3. To solve the governing equation with the CFM,  5 10 25, ,N =

collocations points are used.  

 

Table 3. Comparison of the lateral torsional buckling moments for I sections (kN.m) 

( )L m   
P  q  1( )P q + =  M  

1 5.  

5N =  98.93 198.25 120.26 28.34 

10N =  98.92 198.20 120.25 28.34 

25N =  98.92 198.20 120.25 28.34 

Özbaşaran [4] 98.93 198.19 120.18 28.34 

2  

5N =  63.97 124.77 77.33 19.20 

10N =  63.97 124.73 77.32 19.20 

25N =  63.97 124.73 77.32 19.20 

Özbaşaran [4] 63.96 124.72 77.28 19.25 

3  

5N =  35.63 66.87 42.71 11.44 

10N =  35.62 66.84 42.70 11.44 

25N =  35.62 66.84 42.70 11.44 

Özbaşaran[4] 35.61 66.83 42.66 11.47 

4  

5N =  24.09 44.06 28.72 8.07 

10N =  24.08 44.02 28.71 8.07 

25N =  24.08 44.02 28.71 8.07 

Özbaşaran [4] 24.08 44.00 28.80 8.08 

 

When Table 3 is analyzed, it can be obviously seen that the lateral torsional buckling moments 

obtained via the CFM are in really good agreement with the existing results presented previously by 

Özbaşaran [4]. It has been perceived that the results listed in Table 3 ensure sufficient sensibility for the 

used collocation point when two digits after the decimal are taken into account. 

In the subsequent numerical applications, the lateral torsional buckling response of cantilever beams 

with IPE section will be investigated for four different loading types. The cross-sectional properties of the 

used IPE profiles are given in Table 4. 

 

Table 4. Goemetric properties of IPE sections 

Geometric properties IPE 120 IPE 180 IPE 220 IPE 270 IPE 330 
4 410  ( )I x mm


 27 67.  100 90.  204 90.  419 90.  788 10.  

3 410  ( )
t

I x mm  16 89.  47 23.  89 82.  157 10.  275 90.  

6 610  ( )
w

C x mm  872  7322  22310  69469  196090  

 

The lateral torsional buckling loads obtained for cantilever IPE beams are listed in Table 5. In the 

solution of the present problem of different lengths with the CFM, only 10 collocation points are used. 
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Table 5. Lateral torsional buckling moments obtained for cantilever IPE beams (kNm) 

( )L m  Profil Tipi P  q  1( )P q + =  M  

1 5.  

IPE 120 38.10 72.79 45.85 11.86 

IPE 180 160.06 322.15 194.76 45.51 

IPE 220 360.68 740.53 440.64 99.36 

IPE 270 823.14 1723.99 1009.54 220.20 

IPE 330 1774.78 3762.56 2181.74 466.88 

2  

IPE 120 25.41 47.25 30.40 8.28 

IPE 180 103.21 202.21 124.88 30.72 

IPE 220 229.28 459.29 278.71 65.70 

IPE 270 512.36 1052.00 625.94 141.13 

IPE 330 1082.96 2261.21 1327.42 290.98 

3  

IPE 120 14.87 26.68 17.65 5.12 

IPE 180 57.23 107.86 68.67 18.23 

IPE 220 124.64 240.24 150.28 38.18 

IPE 270 271.92 538.80 329.79 79.37 

IPE 330 561.70 1137.35 684.30 158.15 

4  

IPE 120 10.41 18.26 12.29 3.69 

IPE 180 38.55 70.77 45.99 12.83 

IPE 220 82.60 154.93 99.00 26.53 

IPE 270 177.03 341.26 213.46 54.23 

IPE 330 360.77 711.44 437.11 106.18 

 IPE 120 7.99 13.79 9.40 2.89 

 IPE 180 28.79 51.83 34.20 9.86 

5  IPE 220 60.86 111.86 72.63 20.22 

 IPE 270 128.44 242.40 154.16 40.84 

 IPE 330 258.82 499.60 312.16 79.09 

 IPE 120 6.47 11.05 7.60 2.37 

 IPE 180 22.88 40.59 27.10 8.01 

6  IPE 220 47.87 86.59 56.93 16.30 

 IPE 270 99.69 184.99 119.22 32.61 

 IPE 330 198.85 377.22 238.93 62.66 

 

For a better interruption of the parametric studies results of the presented approach, graphical forms 

of the lateral torsional moments are illustrated in Figures (5-6).  

From Table 5 and Figures (5-6) it can be understood that the loading type, section properties, and 

beam length have a significant effect on the lateral torsional buckling behavior of the problems in the hand. 

By increasing the length of the beam, the lateral torsional buckling moment of the structures decreases. 

Among the compared loading cases the concentrated bending moment at free end of the cantilever beam 

is the most critical case. Among the compared sections  IPE120 is the weakest section for lateral torsional 

buckling of cantilever beams.  
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Figure 5. Lateral torsional buckling loads of IPE330 for several types of load 

 

 
Figure 6. Lateral torsional buckling loads of for various cantilever IPE beams subjected to a point 

moment 

 

4. CONCLUSIONS 

The differential equations governing the lateral torsional buckling behavior of I and IPE section 

cantilever beams, loaded at their shear center are solved numerically with the CFM for different loading 

types. Results are obtained for various values of collocation points and the compared with those of the 

available literature and excellent agreement is observed. This validation demonstrated the applicability 

and accuracy of the suggested method for lateral torsional buckling analysis of the problem in the hand. 

The critical lateral torsional moments are carried out for four different types of loading. It has been 

observed that type of the loading, length of the beam and type of the cross-section of the cantilever beams 

have important influences on the critical lateral torsional buckling loads. By increasing the length of the 

length of beam the critical lateral torsional buckling moment decreases. The IPE330 profile has the highest 

value capacity among the compared cases. The concentrated moment is the most critical loading among 
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the compared loading cases while the uniformly distributed loading case is the safest case. 
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