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Abstract: This paper presents a mathematical model for stacks of direct methanol fuel cells (DMFCs)
using an optimised method. In order to reduce the sum of squared errors (SSE) in calculating the
polarisation profile, the suggested technique makes use of simulated experimental data. Given that
DMFC is one of the viable fuel cell choices, developing an appropriate model is essential for cost
reduction. However, resolving this issue has proven difficult due to its complex and highly nonlinear
character, particularly when adjusting the DMFC model to various operating temperatures. By
combining the algorithm and the objective function, the current work introduces a novel method
called LSHADE (ELSHADE) for determining the parameters of the DMFC model. This technique
seeks to accurately identify DMFCs’ characteristics. The ELSHADE method consists of two stages,
the first of which is controlled by a reliable mutation process and the latter by a chaotic approach.
The study also recommends an improved Newton–Raphson (INR) approach to deal with the chaotic
nature of the I-V curve equation. The findings show that, when used on actual experimental data,
the ELSHADE-INR technique outperforms existing algorithms in a variety of statistical metrics for
accurately identifying global solutions.

Keywords: parameter extraction; sustainability; modelling of DMFC; optimisation; ELSHADE-INR;
operating temperature; non-parametric test

1. Introduction
1.1. Motivation

Lately, there has been growing interest in the potential of substituting traditional
power generation systems with fuel cells. To achieve an optimal design and performance, it
is crucial to develop accurate system models. This requires a deep understanding of electro-
chemistry, materials, manufacturing, heat, and mass transfer. These elements are essential
for creating a model that aligns with the fuel cell’s goals of cost-effectiveness, high perfor-
mance, and stability. Polymer electrolyte membrane (PEM) fuel cells come in two main
types: direct methanol fuel cells (DMFCs) and hydrogen fuel cells, both utilising PEM for
proton transport. According to [1], DMFCs channel a methanol and water mixture (usually
0.5–2 M) to an anode, where an internal catalyst reforms it. DMFCs outperform hydrogen
fuel cells due to their ease of fuel distribution and storage, reduced need for humidification,
and simpler design. They are particularly well-suited for portable electronics since they
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do not require additional equipment. Despite these attractive advantages, DMFCs face
significant technological challenges, such as the weak electro activity of methanol oxidation
at the anode and the substantial volume of unwanted methanol passing through the PEM
from the anode to the cathode. In line with this description, methanol crossover occurs
when methanol permeates the membrane from the anode compartment to the cathode
compartment and reacts there.

1.2. State-of-the-Art Approaches

Extensive research, both theoretical and experimental, has been conducted on methanol
crossover in DMFCs. Table 1 shows the comparison of research performed by various
researchers to date.

Table 1. Comparison of research.

Author/
Reference Year Type of Work Results

Muhammad Aizaz Ud Din et al. [2] 2023 Theoretical

This manuscript provides a review on prospective
future developments for the selection of a suitable
methanol-tolerant catalyst for the oxygen reduction
reaction in the design of high-performance, practical
direct methanol fuel cells.

Gowthami Palanisamy et al. [3] 2023 Theoretical

This manuscript provides a review of the advances
and utilisation of cost-effective cellulose materials
(microcrystalline cellulose, nanocrystalline cellulose,
cellulose whiskers, cellulose nanofibers, and cellulose
acetate) as PEMs for DMFCs.

Tianyu Xia et al. [4] 2023 Experimental

This manuscript provides a proposed strategy to
improve the catalytic performance of Pt-based
nanocatalysts by constructing novel interfacial
relationships in mixed dimensions to alleviate the
imbalance between catalytic activity and catalytic
stability caused by size effects.

Carmelo Lo Vechio et al. [5] 2023 Experimental
This manuscript provides insight into the large-scale
application of ADMFC with commercial
PGM-free materials.

Hakan Burhan et al. [6] 2023 Experimental

This manuscript provides an observation that PtCo
nanoparticles with carbon hybrid support structures
are more advantageous than single support structures
due to the synergistic effect between carbon support
structures and providing a larger surface area.

Bin Wang et al. [7] 2023 Experimental

In this manuscript, the properties of ABMCBs with
various additive loadings were investigated as proton
exchange membranes (PEMs). The results showed that
higher water absorption and lower swelling were
obtained simultaneously with increasing additive
loading, which is very beneficial in the use of PEMs.

1.3. Contribution

Compared to PEMFC and SOFC fuel cells, there are relatively few publications on
DMFC modelling in the literature. Researchers have found it challenging to solve the
Butler–Volmer equation in most of these studies and thus have made assumptions and
approximations to simplify the complexity of the equation in their publications. The
use of underlying assumptions and approximations, however, can affect the accuracy of
models for replicating experimental data for DMFC stack current density curves and stack
voltage (J-V). Earlier works on parameter extraction primarily used the Newton–Raphson
optimisation method [8,9], which has limitations such as high sensitivity to initial values,
difficulty in distinguishing between multiple solutions, and convexity. In order to enhance
the convergence capabilities of the LSHADE algorithm and increase population diversity,
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author has improved the LSHADE algorithm using chaotic maps. The Newton–Raphson
algorithm has proven to be a great algorithm for solving complex mathematical models. As
the complexity increase, the Newton–Raphson algorithms tends to oscillate around a local
minima. To avoid this, the mentioned algorithm was improved to achieve the minimum
error outcome, hence achieving accurate values for unknown parameters.

Despite their demonstrated superiority over other optimisation strategies, metaheuris-
tic methods have not been implemented in parameter extraction from DMFC stack models.
In addition to optimising solar cells, PEMFCs [10], SOFC fuel cells, and other systems, these
approaches have also been successful in optimising other systems. The main contributions
of this paper are as follows:

• The novel hybrid algorithm is designed for the extraction of the DMFC model’s
unknown parameters.

• The DMFC model’s parameters are extracted to their maximum potential using a
unique ELSHADE method.

• In order to validate the effectiveness of the proposed strategy, real experimental data
are collected in various climatic conditions, and these data are compared with other
established strategies.

• In order to evaluate the effectiveness and consistency of the proposed algorithm, the
computation time of the fuel cell model is determined.

• Convergence curves and results at various operating temperatures are generated to
assess the proposed algorithm’s consistency and robustness.

• Non-parametric statistical tests such as the Friedman ranking test and Wilcoxon rank
sum test are used to determine the significance of the DMFC parameter estimates.

The rest of the paper has these sections: Section 2 explains the mathematical modelling
of a direct methanol fuel cell. Section 3 briefly describes the materials and methods, param-
eters extraction, and optimisation algorithms implemented in the paper. Section 4 depicts
the results and discussion of the optimisation data. The paper ends with a conclusion
presented in Section 5.

2. Mathematical Formulation of DMFCs

A fuel cell is a device that continuously converts chemical energy into electrical energy
and heat. It does not store energy like a battery but instead operates continuously by
supplying fuel and oxidants. Unlike engines, fuel cells do not emit greenhouse gases
as a result of their output. Therefore, they are considered an environmentally friendly
alternative. A schematic of the DMFC stack is presented in Figure 1, and this study focuses
on mathematically modelling the stack. A metaheuristic algorithm called ELSHADE is
used to extract unknown parameters in the model. As shown in Equation (1), DMFC cell
voltage is expressed as:

vcell = pact − pcon − prev − pohm (1)

The voltage within the cell is shown by vcell , the concentration of the voltage is
represented by pcon, the activation voltage is represented by pact, the reversible voltage is
represented by prev, and the ohmic voltage is represented by pohm.

The electrochemical equation for a direct methanol fuel cell (DMFC) can be represented
by the following Equations (2)–(4):

Anode : CH3OH + H2O→ 6H+ + 6e− + CO2 (2)

Cathode :
3
2

O2 + 6H+ + 6e− → 3H2O (3)

Overall reaction : CH3OH +
3
2

O2 → 2H2O + CO2 + Heat (4)
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Figure 1. DMFC schematic [11].

These equations represent the chemical reactions that occur at the anode and cathode
of a DMFC. At the anode, methanol and water are oxidised to form carbon dioxide, protons
(H+), and electrons (e−). At the cathode, oxygen is reduced to form water. The overall
reaction combines the anode and cathode reactions to show that the oxidation of methanol
with oxygen produces carbon dioxide, water, and energy in the form of electricity.

2.1. Activation Loss Voltage Expression

The activation voltage is determined by Equation (5), which is the required overvoltage
to activate electrodes. The Butler–Volmer equation is employed to calculate the current
density, jmax.

jmax = jeid

[
e(

αn f
rt pact) − e−(

(1−α)n f
rt pact)

]
(5)

The exchange current density is denoted as jeid, and the value of α is between 0 and
1. Analytical solutions cannot be found for Equation (5) regarding activation voltage. To
address this, the voltage pact in the first exponential of the equation is substituted with pcon,
prev, pohm, and vcell , leading to the following Equation (6):

jmax = jeid

[
e(

αn f
rt (pcon−pohm−prev−vcell)) − e−(

(1−α)n f
rt pact)

]
(6)

Equation (7) can be used to represent the expression for the updated activation voltage:

pact =
rt
[
log
(

jmax + jeide(
αn f
rt (pcon−pohm−prev−vcell))

)
− log(jeid)

]
αn f

(7)

2.2. Ohmic Loss Voltage Expression

The voltage loss attributed to resistance encountered by ions, electrons, and other sub-
stances during transport across a membrane is known as “ohmic loss voltage”. Equation (8)
below depicts the ohmic voltage [6]:

pohm = rjcd (8)

The current density jcd and internal resistance r are the variables used to express the
ohmic voltage in Equation (8).
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2.3. Concentration Loss Voltage Expression

The voltage drop caused by mass transfer is referred to as concentration over potential.
Using Fick’s law, the over potential due to concentration can be represented by Equation (9):

pcon = − rt
βn f

ln
(

1− jmax

jlimit

)
(9)

Equation (10) provides a brief representation of jmax, which is used in Equation (9).

jmax =
prev − vcell − rjcd

rcon + ract
(10)

The parameter β, an empirical coefficient, and jlimit, the limiting current density, are
denoted in Equation (10).

2.4. Reversible Loss Voltage Expression

Equation (11) depicts the reversible voltage that arises from the energetic activity
involved in the formation and breaking of bonds at the electrode level, which is represented
by the Nernst equation [12]:

prev = eo +
rt
n f

[
log
(
cCH3OH

)
+

3
2

log(po2)

]
− rt

n f

[
2 log

(
pH2O

)
+

3
2

log(pc2o)

]
(11)

The equation for the reaction between methanol and oxygen can be represented by the
potential eo. The partial pressure of methanol present at the anode is denoted by pCH3OH .
The partial pressure of water at the cathode is represented by pH2O, which equals 1 when
liquid water is produced. The partial pressure of oxygen at the cathode is denoted by pc2o.
The partial pressure of carbon dioxide is represented by pc2o. The universal gas constant is
R (8.314 J/molK), Faraday’s constant is denoted by F (94,485 c/mol), and the number of
electrons is represented by n. It is generally not possible to directly measure the pressures
of CO2 and H2O experimentally. As a result, the term − rt

n f
[
2 log

(
pH2O

)
+ 3

2 log(pc2o)
]

is
assigned a value of C1, which must be determined empirically. With this modification, the
reversible voltage equation can be expressed as shown in Equation (12):

prev = eo +
rt
n f

[
log
(
cCH3OH

)
+

3
2

log(po2)

]
+ C1 (12)

The variable “t” represents the temperature of the cell in Kelvin (K).

2.5. Fuel Cell Voltage Expression

Building on earlier theoretical work, the voltage of the fuel cell (Vcell) can be expressed
using Equation (13) below:

vcell = pact − pcon − prev − pohm (13a)

With

pact =
rt
[
log
(

jmax + jeide(
αn f
rt (pcon−pohm−prev−vcell))

)
− log(jeid)

]
αn f

(13b)

pohm = rjcd (13c)

pcon = − rt
βn f

ln
(

1− jmax

jlimit

)
(13d)

prev = eo +
rt
n f

[
log
(
cCH3OH

)
+

3
2

log(po2)

]
+ C1 (13e)
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Equations (13a)–(13e) provide a set of expressions for the seven unknown parameters
y in the form y = [eo,α,r, jeid, C1, β, req].

2.6. Problem Formulation

In this study, the ELSHADE algorithm is introduced as an enhanced approach to
parameter estimation for DMFCs. The algorithm uses optimisation techniques to predict
the output voltage for a given current density input. The predicted output voltage is
evaluated against the experimental values using SSE (sum of squared errors) as the metric.
The objective function for SSE is given by Equation (14):

SSE = MIN(F = ∑N
i=1(Vactual −Vi)

2) (14)

Equations (15)–(21) present the constraints that apply to the DMFC.

eomin ≤ en ≤ eomax (15)

βmin ≤ β ≤ βmax (16)

αmin ≤ α ≤ αmax (17)

rmin ≤ r ≤ rmax (18)

jeidmin ≤ jeid ≤ jeidmax (19)

reqmin ≤ req ≤ reqmax (20)

C1min ≤ C1 ≤ C1max (21)

The experimental output voltage is denoted by Vactual , while Vi represents the pre-
dicted output voltage obtained using different optimisation algorithms. With N repre-
senting the number of data points, the primary aim of this study is to minimise the SSE
value to achieve improved performance, accuracy, and precision when estimating the
DMFC parameters.

3. Materials and Methods

The DE approach was first proposed by Storn and Price [13]. SHADE secured third
place in the IEEE CEC2013 competition, while LSHADE emerged as the winner in the
CEC2014 competition [14]. This approach has been highly effective in tackling real-world
optimisation problems [15]. In the basic DE algorithm, the mutation factor (G), crossover
rate (DS), and population size (Q) are critical control factors that must be adjusted [16]. The
population size Q consists of individual vectors (OQ), each of which has a decision variable
(E). Therefore, j = 1, 2, . . . . . . , OQ and k = 1, 2, . . . . . . , E. The maximum number of generations
(HMax) is used as a stopping criterion. Similar to other stochastic population-based search
techniques, LSHADE utilises mutation, external archive, parameter adaption, crossover,
and selection processes to determine optimal values for the optimisation problem. The
LSHADE method can be divided into the following steps:

The first step, initialisation, involves generating an initial population by selecting
random values for the decision variables within their feasible boundaries. Equation (22)
represents the initialisation of the k-th decision variable’s j-th component [17]:

Y(0)
j,k = Ymin,k + randj,k ∗ (Ymax,k −Ymin,k) (22)
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A value of randj,k is randomly selected from the range [0, 1], where “0” represents the
population’s initial state. The next step involves mutation, which creates a random vector
for each generation.

In the second step of the process, referred to as mutation, a mutant vector, denoted
as W(H)

j , is generated from each generation of the population using the “current-to-p-
best/1” approach [14]. This mutant vector can be expressed mathematically as shown in
Equation (23).

WH
j = YH

j + GH
j

(
YH

pbest −YH
j

)
+ GH

j

(
YH

Sj
1
−YH

Sj
2

)
(23)

From the OQ, two distinct vectors, namely Sj
1 and Sj

2, are randomly selected. The
YH

pbest refers to the highest-ranking vector from the set of Np*l(l € [0, 1]), where “l” denotes
a control parameter that is expected to be small to promote more greedy behaviour. Ad-
ditionally, GH

j represents the mutation scale parameters, which may be varied between
generations.

The third step of LSHADE involves the use of an external archive to increase the
diversity of the parent vectors, YH

j . When utilising the archive, YH
j is selected from both

the population and the archive Q u B. It is worth noting that Q and B are intended to be
of the same size. If the size of the archive exceeds the limit of |B|, then certain items are
removed to make room for new entries.

In order to create the offspring vector VH
j , the adaptation of the mutation scale GH

and crossover rate DSH
j parameters is linked to the individual vector YH

j . The adaptation
of these two parameters can be achieved through the use of Equations (24) and (25). This
constitutes Step 4 of the process.

GH
j = randj (NG, 0.1) (24)

DQH
j = randj

(
NDQ, 0.1

)
(25)

The values randj (NG, 0.1) and randj
(

NDQ, 0.1
)

are obtained from the Cauchy and
normal distributions, respectively. It is important to note that the GH

j and DQH
j values must

lie within the range of [0, 1]. In cases where GH
j exceeds 1, it will be truncated, while if it is

less than 0, Equation (14) will be iterated until a valid value is obtained. At the beginning
of the analysis, NG and NDQ are both initialised to 0.5, as described in reference [15].

Assuming the offspring vector successfully competes with the parent vector at genera-
tion H, the current GH

j and DQH
j values are considered to be effective and are consequently

saved in TG and TDQ, respectively. Furthermore, at the conclusion of the generation, the
contents of NG and NDQ memories are modified utilising the weighted Lehmer mean
and weighted arithmetic mean, respectively, as exhibited in Equations (26) and (27) of
reference [15].

NH
G,l =

{
meanXM (TG) i f (TG) 6= ∅

NH
G,l , otherwise (26)

NH
DQ,l =

{
meanXB (TG) i f

(
TDQ

)
6= ∅

NH
DQ,l , otherwise (27)

The memory location to be updated is determined based on the index “l” which has a
memory capacity of (I) where (I ≥ l ≥ 1). Whenever a new element is loaded into memory,
the value of “l” is first set to 1 and then incremented. If the value of “l” exceeds the value of
I, it is reset to 1. In case the individuals in generation H fail to produce an offspring vector,
the memory update process will not take place.
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In Step 5, the offspring vector VH
j,k is created by combining the components of the

mutant vector WH
j,k with the target (parent) vector YH

j using a binomial strategy. This
process is represented in Equation (28).

VH
j,k =

{
WH

j,k i f k = krand OR randj,k[0, 1] ≤ DQH
j

YH
j , otherwise

(28)

The variable krand is a random number chosen from the range of [1, E], and DQH
j

represents a value within the range of [0, 1].
In Step 6, a selection process takes place in which the parent and offspring vectors

are compared, and the best fitting vector is selected for the subsequent generation. This
process is represented by Equation (29).

YH
j =

{
VH

j,k i f g
(

VH
j

)
≤ g

(
YH

j

)
YH

j , otherwise
(29)

Step 7 involves the implementation of linear population size reduction in LSHADE,
which improves its performance. In this process, the population size is dynamically
decreased for every generation using Equation (30) [14].

Oq = round
[(Oq,min −Oq,ini

Hmax

)
∗OGF + Oq,ini

]
(30)

The population’s minimum number, denoted by Oq,min, is assumed to be 4, while Oq,ini
represents the initial size of the population. OGF stands for the number of fitness function
evaluations, and Hmax refers to the maximum number of fitness function evaluations
allowed for the population.

3.1. Improved Newton–Raphson Method

Traditional methods such as the NR and Lambert W function techniques are capable
of handling nonlinear equations. However, these methods often converge quickly but not
globally, leading to unfavourable outcomes. Moreover, their performance in classical form
may deviate from the true and accurate root values. Therefore, it is essential to identify
global solutions in a concise manner and within a few iterations. To address these concerns,
the INR approach is proposed, which effectively improves the efficiency of identifying
good initial condition values.

3.2. The Proposed Enhanced Algorithm

To enhance the convergence capabilities of the LSHADE algorithm and increase
population diversity, it is split into two halves. The first half uses the “current-to-pbest/1”
technique, as shown in Equation (13). In contrast, the second half utilises the guided-chaotic
approach, represented by Equation (31) [18].

WH
j = YH

j,k + rand1·
(

YH
best,k −YH

j,k

)
− P·rand2·

(
YH

worst,k −YH
j,k

)
(31)

Equation (32) provides the expression for the chaotic perturbation, denoted as P.

yOGF = 4·YOGF·(1−YOGF)

where
P = yOGF+1 (32)

Chaos possesses an advantage due to the presence of pseudo-random patterns in the
cycles [19]. This chaotic distribution is employed to explore new search regions, resulting
in a shift in the direction of the search from local to global [20].
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4. Experiment and Results

To validate the proposed algorithm, a set of newly adopted metaheuristic algorithms
including grey wolf optimiser (GWO) [21], LSHADE-W [22], LSHADE-NR [22], atom
search optimisation (ASO) [23], and sine-cosine algorithm (SCA) [24] are utilised. The
technical and operational data of the tested stack’s surface area of plate A is 25 cm2. The
cathode side oxygen pressure is 1.35 bar, and the reservoir side oxygen pressure is 1.5 bar.
The flow rate of oxygen is 200 mL/min, and the flow rate of methanol is 1.94 mL/min.
The temperature during the experiment was 80 degrees Celsius [25]. Table 2 shows the
upper and lower boundaries of the control variables of the DMFC stack. The optimisation
problem is resolved to estimate the values of the control variables (eo, α, r, jeid, C1, β, req),
which will be employed to develop an accurate model of the DMFC stack.

Table 2. DMFC lower and upper boundaries.

Parameters Lower Boundaries Upper Boundaries

eo (V) 0.83 1.23
α 0 1
r 0 3

jeid 0 0.3
C1 −4.8 −0.5
β 0 2

req 0 50

4.1. Parameter Extraction

All programs were written in MATLAB 2020a and executed 30 times to evaluate the
performance and efficiency of the proposed ELSHADE algorithm for estimating DMFC
parameters in comparison to other algorithms such as GWO, LSHADE-W, LSHADE-NR,
SCA, and ASO. Table 3 shows the parameters of the algorithm. Table 4 presents the
DMFC parameter estimation results at STC (standard temperature condition) with SSE
and computation time, while Figure 2 illustrates the scatter plot of the sum of the square
error, standard deviation, and computation time at STC. Based on the scatter plot, it is
observed that the proposed algorithm outperforms the other metaheuristic algorithms. The
statistical findings of the DMFC are presented in Table 5. Additionally, Figure 3 shows
the convergence curve at STC of DMFC, which indicates that the proposed algorithm has
better performance than the other compared algorithms.

Table 3. Algorithm parameters.

Algorithm Parameters Values

SCA Search agents 50
Maximum iteration 1000

a 2
r1 a-t * ((a)/Max_iteration) (decreases linearly from a to 0)
r2 (2 * pi) * rand
r3 2 * rand
r4 rand

ASO Search agents 50
Maximum iteration 1000

Population of atoms (Atom_pop) rand(Atom_Num,Dim). * (Up-Low) + Low
Velocity of atoms (Atom_V) rand(Atom_Num,Dim). * (Up-Low) + Low

GWO Search agents 50
Maximum iteration 1000

Random Vector r1, r2 0, 1
Coefficient Vector v 0 to 2

LSHADE-W Search agents 50
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Table 3. Cont.

Algorithm Parameters Values

Maximum iteration 1000
H 6

Ninit D ∗ rNmin

Nmin 4
rNmin 18

LSHADE-NR Search agents 50
Maximum iteration 1000

H 6
Ninit D ∗ rNmin

Nmin 4
rNmin 18

NR function
LSHADE-INR Search agents 50

Maximum iteration 1000
H 6

Ninit D ∗ rNmin

Nmin 4
rNmin 18

Lambert W function
NR function
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curve at STC.
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Table 4. DMFC parameter estimation.

Parameters/
Algorithms SCA ASO GWO LSHADE-W LSHADE-NR Proposed Algorithm

(ELSHADE-INR)

eo (V) 0.8854 0.8475 1.2252 1.2292 0.8569 0.8499
α 0.4231 0.4587 0.5507 0.2598 0.3587 0.8879
r 2.7859 1.0142 1.8523 1.3245 1.8200 1.4502

jeid 0.1452 0.1847 0.2419 0.1295 0.1942 0.1076
C1 −0.8559 −0.1124 −0.8235 −0.1124 −0.9614 −0.5418
β 0.1863 0.5347 0.2785 1.2503 0.1475 2.5048

req 21.617 12.870 25.755 21.117 32.159 17.852
SSE 1.16 * 10−03 1.11 * 10−04 2.08 * 10−04 1.03 * 10−04 1.35 * 10−04 1.13 * 10−05

Computation Time (s) 2.809 1.544 1.798 1.599 1.511 1.100

Table 5. DMFC Statistical Results.

Parameters/
Algorithms SCA ASO GWO LSHADE-W LSHADE-NR Proposed Algorithm

(ELSHADE-INR)

Minimum 1.16 * 10−03 1.11 * 10−04 2.08 * 10−04 1.03 * 10−04 1.35 * 10−04 1.13 * 10−05

Maximum 2.06 * 10−03 2.20 * 10−04 3.85 * 10−04 2.00 * 10−04 2.07 * 10−04 1.55 * 10−05

Average 1.49 * 10−03 1.54 * 10−04 2.62 * 10−04 1.37 * 10−04 1.70 * 10−04 1.34 * 10−05

Standard Deviation (S.D) 3.91 * 10−04 4.15 * 10−05 7.36 * 10−05 3.70 * 10−05 2.70 * 10−05 1.74 * 10−06
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4.2. Convergence Analysis

Table 6 shows the parameter estimation of the DMFC at various operating tempera-
tures (60, 70, and 90 ◦C), where SSE and computation time are calculated and presented.
It is evident from this table that the proposed algorithm outperforms the compared algo-
rithms in terms of both SSE and computation time. Figure 3 illustrates the SSE at different
operating temperatures, confirming that the proposed algorithm is superior to the other
algorithms. Additionally, Figure 4 depicts the computation time at various operating
temperatures, which also demonstrates that the proposed algorithm is significantly more
efficient than the other algorithms.
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Table 6. Parameter estimation of DMFC at different operating temperatures.

Temperature
(◦C) Parameters/Algorithms SCA ASO GWO LSHADE-W LSHADE-NR Proposed Algorithm

(ELSHADE-INR)

60

eo (V) 0.8985 0.8785 0.8825 0.8874 0.8841 0.8501
α 0.1840 0.3623 0.2888 0.2376 0.2201 0.3103
r 1.0152 1.2214 2.2853 2.9785 2.6786 2.0726

jeid 0.1076 0.1667 0.2552 0.1795 0.1841 0.1271
C1 −0.9614 −0.9618 −0.4041 −0.9660 −0.4711 −0.8377
β 0.1063 0.0348 0.0287 0.0357 0.0287 0.0321

req 21.171 14.457 20.061 11.957 16.835 21.523
SSE 1.05 * 10−03 1.24 * 10−04 2.35 * 10−04 1.02 * 10−04 1.10 * 10−04 1.09 * 10−05

Computation Time (s) 2.847 1.199 2.012 1.192 1.187 1.120
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Table 6. Cont.

Temperature
(◦C) Parameters/Algorithms SCA ASO GWO LSHADE-W LSHADE-NR Proposed Algorithm

(ELSHADE-INR)

70

eo (V) 0.8254 0.8914 0.8795 1.18521 0.8695 0.8532
α 0.5011 0.4785 0.7991 0.5262 0.4203 0.5243
r 1.4520 2.0598 2.6330 1.7230 2.7150 1.1961

jeid 0.1295 0.2453 0.1846 0.1198 0.1147 0.1559
C1 −0.8235 −0.2398 −0.1511 −0.9261 −0.7847 −0.9892
β 0.0475 0.0125 0.3012 0.2085 0.5292 0.7713

req 25.788 13.129 26.639 28.449 21.803 29.352
SSE 1.36 * 10−03 2.21 * 10−04 2.47 * 10−04 1.12 * 10−04 1.21 * 10−04 1.50 * 10−05

Computation Time (s) 2.598 2.147 2.195 1.258 1.267 1.110

90

eo (V) 0.8789 0.8758 0.8126 0. 8452 0.8012 0.8791
α 0.4211 0.7072 0.8982 0.9823 0.3454 0.1092
r 1.8000 1.7850 1.5221 2.2335 1.5072 1.3422

jeid 0.1942 0.2853 0.1384 0.1574 0.2792 0.1564
C1 −0.1154 −0.8235 −0.1451 −0.1660 −0.1371 −0.1361
β 0.2631 0.0792 0.1652 0.1752 0.2354 0.7041

req 21.117 13.496 24.134 27.414 12.552 24.342
SSE 2.26 * 10−03 2.61 * 10−04 4.64 * 10−04 1.85 * 10−04 2.04 * 10−04 1.95 * 10−05

Computation Time (s) 2.457 1.284 1.785 1.174 1.187 1.001

4.3. Non-Parametric Test

The statistical analysis results of the DMFC parameter estimation using the Fried-
man ranking test [26–31] are presented in Table 7. Based on the Friedman ranking, the
performance of six different algorithms was evaluated to estimate the parameters of the
DMFC. The proposed algorithm (ELSHADE-INR) achieved the highest rank, followed by
LSHADE-NR and LSHADE-W at the second and third position, respectively. The GWO,
ASO, and SCA algorithms achieved the fourth, fifth, and sixth ranks, respectively. The
results clearly indicate that the proposed algorithm is more efficient, accurate, precise,
and robust, performing significantly better than various other meta-heuristic algorithms.
Additionally, the Wilcoxon rank sum test is applied to the samples, which is a secure
and reliable non-parametric method for combined statistical analysis when samples are
independent and dynamic programming is prominent. It is an easy but secure and reliable
method for combined statistical analysis when samples are independent. Table 8 lists the
calculated p-values and justifies that the performances of LSHADE-INR are significant at a
significance level of 95%.

Table 7. Friedman ranking test.

Algorithm LSHADE-INR LSHADE-NR LSHADE-W GWO ASO SCA

Proposed
Algorithm 1 2 3 4 5 6

Table 8. Wilcoxon Rank Sum Test.

Algorithm LSHADE-INR LSHADE-NR LSHADE-W GWO ASO SCA

Proposed
Algorithm 3.4015 * 10−13 3.3092 * 10−13 3.3157 * 10−13 3.5841 * 10−13 3.1240 * 10−13 2.3587 * 10−13

5. Conclusions

In this paper, a new algorithm called ELSHADE-INR was introduced to obtain the
optimal solution for the optimisation problem of DMFC parameter estimation. The key
findings based on the results were as follows:

1. A novel algorithm, ELSHADE-INR, was proposed.
2. DMFC parameter estimation was performed using the proposed ELSHADE-INR algo-

rithm at standard temperature conditions, and the obtained SSE and computational
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time values were compared with various other meta-heuristic algorithms. The results
demonstrate that the proposed hybrid algorithm performs better and is more accurate.

3. Convergence graphs and different operating temperature curves were obtained, which
clearly show that the proposed algorithm has a faster convergence rate when com-
pared to other meta-heuristic algorithms.

4. A complete statistical analysis was conducted using the Friedman ranking test and
Wilcoxon rank sum test to demonstrate the efficiency, performance, and robustness
of the proposed algorithm. The ELSHADE-INR algorithm secured the first rank,
indicating that it is the superior algorithm.

6. Future Scope

The proposed algorithm has effectively proven its competency in solving complex
mathematical problems. It can be used for effectively estimating the unknown parameters
of various renewable sources, for example, a solar three-diode model, economic load
dispatch, and thermal scheduling.
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Abbreviations

Nomenclature
DMFCs Direct Methanol Fuel Cells
SSE Sum of Squared Errors
INR Improved Newton–Raphson
PEM Polymer Electrolyte Membrane
NR Newton–Raphson
GWO Grey Wolf Optimiser
ASO Atom Search Optimisation
SCA Sine-Cosine Algorithm
STC Standard Temperature Condition
Symbols/Notations
vcell Voltage within the Cell
pcon Concentration of Voltage
pact Activation Voltage
prev Reversible Voltage
pohm Ohmic Voltage
jeid Exchange Current Density
jcd Current Density
β Empirical Coefficient
jlimit Limiting Current Density
pCH3OH Partial Pressure of Methanol
pH2O Partial Pressure of Water
pc2o Partial Pressure of Carbon Dioxide
t Temperature of the Cell
Vactual Output Voltage
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