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Abstract - Short well test data are pressure-rate-time data that are not long enough to be used to infer the reservoir boundary 

model and are very common in the oil and gas industry. Short rate well test data may occur when companies try to cut costs of 

well test jobs or mostly due to improper well test design. Nevertheless, one may wish to extract the most amount of information 

from this limited data because the de-convolve response can allow the reservoir engineer to make the best use of the available 

data in selecting a suitable interpretation model by narrowing down the possible boundary models and also providing a reliable 

estimates of model parameters. The aim of this study is to demonstrate the usefulness and significance of pressure-rate 

deconvolution in analyzing relatively short variable rate data using a hypothetical case study. The simulation was carried out 

using Sapphire’s test design module by assuming the presence of an exploratory well in an oil reservoir above bubble point 

pressure. Further assumption is that the reservoir is homogenous, therefore the possibility of a changing wellbore model was 

neglected from the analysis.  The computer codes for the simulation were inputted using python programming language. We 

observed from the study that although pressure and flow rate relationship can be nonlinear, the problem can be formulated as a 

linear problem and the nonlinearity is expressed in the features of the reservoir. The simulation results were satisfactory using 

the test case and deviations between model parameters and actual reservoir parameters used in simulation was shown to have an 

absolute value less than 8% which is within acceptable engineering limits. 
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1. Introduction 

In well test interpretation the selection of a well 

interpretation model involves the selection of flow regimes for 

each component of the interpretation model. For example, a 

reservoir interpretation model may be selected to have skin 

and wellbore storage effects as the inner boundary effects, a 

homogeneous reservoir behavior, and a constant pressure 

outer boundary [5]. 

Proper diagnostic tools are needed in order to identify the 

different flow regimes which may occur in each component of 

the interpretation model. Researchers over the years have 

proposed several techniques (diagnostic tools) for 

identification of various flow regimes in a well test; 

specialized plots, pressure-time (log-log) plot and pressure 

derivative diagnostic plot [3]. 

These diagnostic tools have some limitations when 

applying them to variable rate well test data. For example, the 

pressure in the pressure derivative diagnostic plot, due to the 

way it is computed amplifies the errors in recorded data; this 

may lead to generation of artifacts when applied to noisy data 

[1]. The straight-line plot and flow regime specific plots have 

errors in selecting the boundaries of the region of the data that 

shows straight line trend which corresponds to a specific flow 

regime [3]. All three mentioned diagnostic plots share the 

constraint that their radius of investigation (the distance the 

pressure disturbance has travelled into the reservoir) is limited 

by the longest time in the flow history [8]. 

Therefore, a technique is needed which takes 

measurement of noise into account and allows the reservoir 

engineer to see deeper into the formation in order to enable 

him select the most appropriate interpretation model that fits 
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the data. This is where pressure-rate deconvolution becomes 

useful and convenient. Deconvolution is simply the inverse of 

convolution. It involves the determination of the unit pressure 

response or the impulse pressure response from the given rate 

history and well pressure response [8]. Deconvolution is not a 

new technique that replaces conventional techniques, rather it 

was introduced to be used alongside conventional techniques.   

Nonlinear deconvolution involves fitting a nonlinear 

response to the variable rate pressure data. It was introduced 

due to the short comings of previous deconvolution 

techniques. Nonlinear deconvolution can be helpful in 

inferring the boundary model in the case of relatively short 

well test data. 

There have been several attempts in literature at 

deconvolution but all failed considerably when applied to data 

with considerable noise in rate measurement. Schroeter, 

Hollaender and Gringarten [8] were the first to account for the 

effects of large noise in rate measurement on the 

deconvolution algorithm for linear problems. They formulated 

the deconvolution problem as a non-linear total least squares 

(TLS) problem or what in statistics is referred to as an error in 

variables problem. Their method makes use of the variable 

projection algorithm to deconvolve the rate and pressure 

history. However, as pointed out by Levitan [6], the Von 

Schroeter [8] formulation can only be applied to data with 

constant wellbore model (i.e. constant skin and wellbore 

storage) and will not produce satisfactory results when applied 

to a varying wellbore model. 

Levitan [6] developed a new pressure rate deconvolution 

algorithm to analyze real test data (data which are 

characterized by changing skin, changing wellbore storage or 

both). Their implementation is quite different from that of 

Schroeter, Hollaender and Gringarten [8] in that they applied 

the algorithm for unconstrained minimization to minimize 

their objective function and their formulation also allows the 

selection of specific flow periods to be included in the model 

parameters [2]. The author suggested that in the case of 

different skin and wellbore storage for different flow periods 

the deconvolution should be performed separately on each 

buildup assuming a value of initial reservoir pressure for each 

buildup. The initial reservoir pressure is then changed 

manually until the several deconvolve build-ups have the same 

value of initial reservoir pressure. The process of manually 

changing the initial reservoir pressure can be very tedious and 

also, since their method is conducted on each build-up 

separately it may lose information about intermediate 

behaviors [4].  

Von Schroeter, Hollaender and Gringarten [9] modified 

their earlier proposed model. The modified algorithm is 

similar to that which was originally published except that 

penalization of smoothness was based on total curvature 

instead of average slope. They also provided a rigorous error 

analysis of the method. 

Houze, Tauzin and Allain [4] discussed a new technique 

of deconvolution similar to that of Von Schroeter, Hollaender 

and Gringarten [9]. Their technique is capable of carrying out 

deconvolution on a selected reference build-up and the data 

after the convergence time of other build-ups. The 

convergence time is the time beyond which the pressure 

derivative converges. Unlike the Levitan [6, 7] method their 

method does not require tedious manual iterations for initial 

reservoir pressure and can produce reservoir responses 

intermediate between two build-ups.  

2. Methodology 

The simulation was carried out using Sapphire’s test 

design module. A synthetic downhole gauge data was 

simulated for our case study, which is a vertical well with 

constant skin and wellbore storage producing at varying rate 

in a semi-infinite reservoir at some distance to a sealing fault. 

The reservoir is homogenous and is assumed to be producing 

above the bubble point pressure throughout the test in order 

for the linearity assumption for Duhamel’s equation to be 

obeyed.  

The rate history input to the model is shown in Table 1 

and consists of four build-up and eleven drawdown rates with 

each test period (period of constant rate) selected to be of equal 

duration for simplicity. Table 2 shows the fluid properties. The 

fluid properties were arbitrarily chosen to be constant, since 

the reservoir was assumed to be producing above bubble point. 

The rock properties and other input parameters for the 

simulation model were arbitrarily chosen as shown in Table 3. 

Random noise was inputted to both the flow rate history and 

the simulated pressures using the Pandas and NumPy packages 

in the python programming environment. For the rate history 

a noise of zero mean with a standard deviation of 5bbl/day was 

added to the signal, while for the simulated pressure a noise of 

zero mean with a standard deviation of 1 psi was added. 

Table 1. Rates history  

Duration Liquid Rate 

(hr) (STB/D) 

42 140 

42 0 

42 109 

42 196 

42 0 

42 99 

42 152 

42 202 

42 242 

42 0 

42 207 

42 101 

42 204 

42 292 

42 0 
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Table 2. PVT parameters 

Fluid property Value Unit 

Formation Volume Factor 1.2 bbl/STB 

Viscosity 2.3 cp 

Total compressibility 3.00E-06 psi-1 

 

Table 3. Rock properties and other model input parameters. 

Parameter Value Unit 

Skin 3.23 - 

Flow capacity (Kh) 396 md.ft 

Wellbore storage coefficient 0.00972 bbl/psi 

initial reservoir pressure 4996.9 Psi 

Well radius 0.25 Ft 

Pay zone thickness 30 Ft 

Porosity 0.20 % 

Distance to fault 409 Ft 

 

Conventional well test interpretation was first carried out 

on the noisy data, then deconvolution was then applied to all 

build-ups of the noisy data using Sapphire’s deconvolution 

module assuming all other parameters are known except initial 

reservoir pressure, skin, wellbore storage, flow capacity and 

distance to fault. 

The deconvolution was performed on all extracted build-

ups at once using the algorithm developed by Von Schroeter, 

Hollaender and Gringarten [9] because the well was said to 

have a constant skin and wellbore storage coefficient. The 

Deconvolution was performed with a smoothing coefficient of 

0.5, rate relative weight of 1 and pressure relative weight of 

10. Several plots of the build-up sections for the simulated 

data (noisy data) and the deconvolve data were generated and 

analyzed. 

3. Results and Discussions 

Figure 1 shows the plot of the simulated pressure response 

and rate history input. From this figure we can see that there 

are no negative pressures, this means that the reservoir was 

capable of producing at the rates indicated in the rate profile.  

 

Figure 1. Simulated pressure response and rate history input 
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Figure 2 shows the log-log plot of pressure change and 

pressure derivative for the four extracted build-ups. The 

difference in the plots can be attributed to the different flow 

rates before each shut-in. The rate normalized plots for the 

four buildups shown in Fig. 3 confirms this since the plots lay 

on each other. This plot also shows that the simulated data has 

a constant wellbore model (i.e. constant skin and wellbore 

storage). 

 

Figure 2. Pressure and Pressure derivative plot 

 

 

 

 

 

               

                                    

                                                        

 

Figure 3. Rate normalized pressure and Pressure derivative plot 

Similarly, the same can be seen in Fig.4 and Fig.5 which 

are non-normalized and rate normalized superposition plots 

for the four buildups. But unlike the rate normalized log-log 

plot the rate normalized superposition plot does not overlay 

one another but instead there is a shift. The shift can be 

attributed to the difference in pressures at the instant of shut-

in for the four build-ups. 

 

Figure 4. Superposition plot 
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Figure 5. Rate normalized superposition plot 

Using conventional well test interpretation techniques, a 

qualitative view of any build-up in Fig.3 shows only two flow 

regimes, infinite acting radial flow which is characterized by 

a horizontal line on the pressure derivative plot and wellbore 

dominated flow which is characterized by a unit slope on both 

log-log plots. This might lead us to believe that the reservoir 

is infinite acting, whereas history matching the data Fig.6, 

Fig.7 and Fig.8 show otherwise. Fig.6 shows that although the 

infinite acting model fits the early and middle time data, it 

does not fit the late time buildup data of the log-log diagnostic 

plot of the selected buildup.  

Figure 7 shows that the model does not match the late 

time buildup of the history plot. From the superposition plot 

shown in Fig 8 it is seen that like the diagonostic plot, the 

model only matches the early and middle time data but does 

not match the late time data on the superposition plot. In other 

words, the infinite acting radial model does not match the test 

data and the data is affected by boundary effects. However, 

selecting a model with a boundary based on the given test data 

may result in the reservoir engineer selecting several possible 

models to see which best matches the data. This is where the 

use of deconvolution may prove advantageous already as the 

system was chosen carefully to be a linear system.  

 

Figure 6. log-log diagonostic plot of noisy data showing model match 
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Figure 7.  Zoom on History plot showing model match of noisy data 

 

Figure 8. Superposition plot showing model match of noisy data 

 

Figure 9 shows the log-log diagnostic plot of the 

deconvolve response. From this plot it is seen that for about 

50 hours there exist a boundary dominated flow regime which 

is most likely due to the presence of a sealing fault effectively 

narrowing down the list of possible boundary models. Hence 

it can be said that deconvolution increases the amount of 

information that can be analyzed with pre-existing methods.  

 

Figure 9. Log-Log diagnostic plot of deconvolve noisy data. 
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The superposition plot for the deconvolve response 

shown in Fig 10 does not resemble that of a buildup, instead it 

resembles that of a drawdown this is because the 

deconvolution process produces a constant rate pressure 

response. 

 

Figure 10. Superposition plot of the deconvolve response 

 

The model match of the deconvolve data on the 

superposition and log-log diagnostic plots is shown in Fig.11 

and Fig.12 respectively while Fig.13 is the history plot 

showing the deconvolve pressure (black), the deconvolve rate 

(red) and observed pressure response model match (green). 

The model match in Fig.11 and Fig.12 are acceptable. While 

the model in Fig.13 matches all the buildups perfectly but does 

not produce a perfect match on the drawdown data. This may 

be attributed to the fact that deconvolution is carried out on 

the whole rate history using pressure data from only the four 

buildups. 

 

 

Figure 11. Superposition plot of the deconvolve data showing model match 
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Figure 12. Log-Log diagnostic plot of the deconvolve data showing model match 

 

Figure 13. History plot showing the deconvolve pressure (black), the deconvolve rate (red) and the observed pressure response 

(green) 

 

Table 4 shows the percentage deviation between 

deconvolve model match values and actual values. From the 

table it is seen that the deviations are within acceptable 

engineering limits.

 

Table 4. Comparison between model match values and actual values. 

Parameter Model match value Actual value % Deviation 

Skin 3.23 3 7.7 

Flow capacity (Kh) 396 400 -1.0 

Wellbore storage coefficient 0.00972 0.01 -2.8 

Initial reservoir pressure 4996.9 5000 -0.062 

Distance to fault 409 400 2.25 
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4. Conclusion 

A demonstration of the use of non-linear deconvolution in 

analyzing relatively short variable rate well test data has been 

carried out using sapphire’s test design module and python 

programming language. The results show as indicated by the 

log-log diagnostic plot that deconvolution avails more data for 

selecting an interpretation model. 

Deconvolution carried out on the simulated data indicated 

the presence of a sealing fault boundary model unidentifiable 

with conventional techniques. Similarly, based on the 

deconvolve data the following parameters were estimated; skin 

(3.28), wellbore storage coefficient (0.00972 bbl/psi), flow 

capacity (396 md.ft), initial reservoir pressure (4996.9 psi) and 

distance to fault boundaries (409 ft). The deviations between 

these model match parameters and actual reservoir parameters 

used in simulation was shown to have an absolute value less 

than 8%. 
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