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SUMMARY 

Accurate solar power forecasting is necessary for solar power facilities to operate 

dependably and effectively. This thesis suggests a novel approach for making long-

term forecasts regarding solar power output using Long Short-Term Memory (LSTM) 

neural networks and the Nadam optimizer. Despite the challenges brought on by the 

sun's erratic beams, the objective is to provide accurate projections for the system's 

design and operation.The research's initial phase involves using a variety of unique 

methodologies to compare and contrast the findings from numerous LSTM models 

with those from more traditional time series models like ARIMA and SARIMA. The 

suggested LSTM model using the Nadam optimizer generates more accurate 

predictions when compared to traditional methods. To increase the system's accuracy 

and dependability, the impact of climatic factors on solar power forecasting is being 

researched.The proposed approach results in a number of significant improvements. 

By taking into account the sensitivity of SPV output power to a variety of 

environmental conditions, it first presents a novel viewpoint on SPV power 

forecasting. By comparing the method to other widely used SPV power forecasting 

methodologies, it also confirms the technique's effectiveness. The recommended 

method facilitates in the prediction of mitigating factors like solar irradiance and SPV 

module efficiency in addition to increasing forecast accuracy.The limitations of the 

suggested technique are also highlighted in the research, including the need for suitable 

training data and the difficulties in managing the LSTM's forget gate's memory. Future 

research may look at different neural network topologies and integrate more input 

parameters to further boost prediction accuracy.Finally, this thesis presents a novel 

approach for long-term solar power forecasting that combines LSTM with the Nadam 

optimizer. The findings have ramifications for solar power system optimization, 

design, and operation, and they also help with the creation of solar power forecasting 

algorithms. Accurate estimates of solar power output enable improved system 

architecture, increased dependability, and increased economic viability. 

Key Words: Solar power forecasting, Long Short-Term Memory (LSTM), Nadam 

optimizer, Time series analysis, Meteorological parameters 
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ÖZET 

Güneş enerjisi santrallerinin güvenilir ve verimli bir şekilde çalışması için, doğru 

güneş enerjisi tahmini gereklidir. Uzun Kısa Süreli Bellek (LSTM) sinir ağlarını ve 

Nadam iyileştiriciyi kullanan bu tez, güneş enerjisi çıkışı hakkında uzun vadeli 

tahminler yapmak için yeni bir yöntem önermektedir. Amaç, düzensiz güneş 

ışınlarının neden olduğu zorluklara rağmen, sistemin tasarımı ve işleyişi için doğru 

tahminler vermektir. Araştırmanın ilk adımı, birçok LSTM modelinden elde edilen 

sonuçları, bir dizi farklı teknik kullanarak ARIMA ve SARIMA gibi daha geleneksel 

zaman serisi modellerinden elde edilen sonuçlarla karşılaştırmak ve karşılaştırmaktır. 

Geleneksel yaklaşımlarla karşılaştırıldığında, Nadam optimize edici kullanılarak 

önerilen LSTM modeli daha güvenilir tahminler üretir. Ek olarak, sistemin 

hassasiyetini ve güvenilirliğini artırmak için iklimsel unsurların güneş enerjisi tahmini 

üzerindeki etkisi incelenir. Önerilen yöntemle birkaç önemli ilerleme kaydedilmiştir. 

İlk adım olarak, SPV çıkış gücünün çeşitli iklimsel faktörlere duyarlılığını dikkate 

alarak SPV güç tahminine yeni bir bakış açısı sunar. İkincisi, tekniğin başarısını diğer 

popüler SPV güç tahmin stratejileriyle karşılaştırarak doğrular. Önerilen teknik 

yalnızca tahmin doğruluğunu iyileştirmekle kalmaz, aynı zamanda güneş ışınımı ve 

SPV modülü verimliliği gibi hafifletici faktörlerin tahminine de yardımcı olur. Makale 

ayrıca önerilen stratejinin, uygun eğitim verilerinin gerekliliği ve LSTM'nin unutma 

kapısının hafızasını kontrol etmenin zorluğu gibi uyarılarının altını çiziyor. Tahmin 

doğruluğunu daha da artırmak için, gelecekteki çalışmalar diğer sinir ağı topolojilerini 

incelemeyi ve daha fazla girdi parametresi eklemeyi içerebilir. Son olarak, bu tez, 

LSTM'yi Nadam optimizer ile birleştirerek uzun vadede güneş enerjisi tahmini için 

orijinal bir yöntemi açıklamaktadır. Sonuçlar, güneş enerjisi sistemlerinin tasarımı, 

işletimi ve optimizasyonu için çıkarımlara sahiptir ve güneş enerjisi tahmin 

algoritmalarının geliştirilmesine katkıda bulunur. Daha iyi sistem tasarımı, daha 

yüksek güvenilirlik ve daha ekonomik fizibilite, güneş enerjisi çıkışının kesin 

tahminleriyle mümkün kılınmıştır. 

Anahtar kelimeler: Güneş enerjisi tahmini, Uzun Kısa Süreli Bellek (LSTM), 

Nadam optimize edici, Zaman serisi analizi, Meteorolojik parametreler. 
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INTRODUCTION 

Moving away from energy sources that use fossil fuels and toward ones that are 

more sustainable and better for the earth is a challenge the world has never faced 

before. This change is being driven by the pressing need to lessen the effects of climate 

change and make sure that future generations will have a sustainable future. 

Specifically, this change is being pushed by how quickly things need to change. Solar 

photovoltaic (PV) systems are quickly becoming one of the most exciting innovations 

in the area of renewable energy. But because these systems only work sometimes and 

in different ways, adding them to the energy grid poses a number of important 

problems. 

Recent study has looked into how artificial intelligence (AI) and machine 

learning (ML) could be used to improve how renewable energy systems are run, 

controlled, monitored, maintained, and how well they work. This study was done to 

answer the questions that were brought up. ML has made a promise to predict how 

much power PV systems will make, which is important for adding them to the energy 

grid. In this area, it's important to make correct predictions. With the help of correct 

forecasts, grid operators can improve reliability, cut costs, and make the most of 

renewable energy (Dehghani, et al., 2018) (Deng , Peng;, Zhang; , & Qian, 2018) ( 

Mosavi, et al., 2019). 

The goal of this thesis study is to find out if machine learning and, in particular, 

long short-term memory (LSTM) neural networks can be used to predict how much 

power photovoltaic (PV) systems will produce. The long short-term memory (LSTM) 

design is a type of neural network that has done well in time series forecasting. The 

goal of this project is to come up with a new way to predict weather that, when applied 

to a time horizon of 24 hours, can make reliable and accurate predictions of power 

output (Anwar, El Moursi, & Xiao, 2017). 

As input data, past measurements of power output and sequences of 

meteorological data from before the prediction horizon will be used to see how well 

the proposed method works. In addition to this, a different set of data from an oracle 

weather forecaster will also be taken into account. The goal of this thesis research is 

to find the best way to predict the power output of PV systems by judging the 
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performance of an LSTM model that has been trained on different kinds of input data. 

In particular, the different kinds of data input will be examined. 

In the end, the goal of this thesis project is to make an addition to the 

development of more accurate and reliable solar PV power forecasting systems. These 

ways of doing things can help make it easier to add green energy to the power grid. 
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GENERAL OVERVİEW 

1.1. Background 

Electricity is an essential aspect of modern life, and the demand for energy is 

continually growing. However, the use of conventional fossil fuel-based energy 

sources has resulted in significant environmental degradation, such as greenhouse gas 

emissions, which contributes to global warming. Renewable energy sources, such as 

solar photovoltaic (PV) systems, offer a sustainable solution to this challenge. Solar 

PV systems are an abundant and clean energy source that can contribute to reducing 

our dependence on conventional energy sources ( Neacșa, Panait, Mureșan, Voica, & 

Manta, 2022)  . Accurate forecasting of solar PV power output is crucial for the efficient 

management and utilization of renewable energy resources. This thesis project aims to 

investigate the potential of machine learning techniques, specifically long short-term 

memory (LSTM) neural networks, for reliably predicting the power output of solar PV 

systems. By developing a novel forecasting approach using LSTM, this study seeks to 

contribute to the advancement of renewable energy systems and support the transition 

towards a more sustainable energy future. 

Solar energy is a form of energy that is clean, renewable, and good for the 

environment, and it is simple to incorporate into existing power infrastructures. An 

ideal solar photovoltaic (PV) power projection method is very necessary if one wishes 

to achieve efficient grid functioning, effective energy management, and cost-effective 

scheduling. In their time on the market, prominent prediction approaches such as 

autoregressive integrated moving average (ARIMA), numerical weather prediction 

(NWP), artificial neural network (ANN), and hybrid methods have demonstrated only 

moderate levels of success. However, they can only be used for short-term projections, 

which may be sufficient for more archaic freestanding or tiny PV systems, but long-

term forecasts are necessary for the operation of more contemporary grid-integrated 

PV systems. In light of this, a method that is both significantly improved and 

trustworthy is urgently required as the structure of the renewable power network 

continues to get more complicated. According to the findings of a comprehensive 

literature analysis that was carried out on the ways of forecasting, the majority of the 
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strategies that are now in use continue to place their emphasis on outmoded approaches 

to solar photovoltaic (SPV) power projection. These approaches do not take into 

account the influence of the most important meteorological elements, which have a 

significant impact on the accuracy of the forecasts and result in inefficient monitoring, 

maintenance, and regulation of the power generated by renewable energy sources. The 

accuracy of long-term solar power forecasting has been the subject of a number of 

research studies, including those that made use of NN, ARIMA/SARIMA, NWP, 

LSTM, and hybrid models (Basurto, et al., 2019) , (Das, et al., 2018) ( Khalid & Javaid, 

2020) ( Paliwal, Patidar, & Nema, 2020) ( Santhosh,, Venkaiah, & Kumar, 2020) 

(Seyedmahmoudian, et al., 2018) ( Sharadga, Hajimirza, & Balog, 2020) ( Sharma, 

Sharma, Irwin, & Shenoy, 2011) (VanDeventer, et al., 2019) (Vaziri, et al., 2021). 

Some of these studies have been published. (Behera, Majumder, & Nayak, 2018). 

Behera et al. (2018) employed the extreme learning machine (ELM) and its 

modifications like particle swarm optimization-extreme learning machine (PSO-

ELM), craziness particle swarm optimization-extreme learning machine (CRPSO-

ELM) and accelerate particle swarm optimization-extreme learning machine (APSO-

ELM)  (Behera, Majumder, & Nayak, 2018). The study that conducted used the best-

first search algorithm with forwarding selection for the variable selection algorithm ( 

Rana, Koprinska, & Agelidis). Using NN modeling and error metrics analysis, Sonia 

Leva et al. (2019) developed a persistence model to estimate the output power of a 

BIPVS. This model was generated by ( de Paiva, Pimentel, Marra, de Alvarenga, & 

Muss, 2019) (Sonia Leva et al). Recurrent neural networks (RNN) linked with multi-

time-horizon predictions were used to provide short-time-horizon SPV power 

forecasts by ( Mishra & Palanisamy, 2018). Mishra et al. (2020) (Mishra & 

Palanisamy, 2018). These forecasts had a time horizon of between one and four hours. 

Kardakos et al. (2020) developed an NWP model for the power prediction of a grid-

connected photovoltaic plant by applying the SARIMA model to the ANN in order to 

forecast the solar insolation as a consequence of numerous inputs ( Chen, Duan, Cai, 

& Liu, 2021) (Kardakos, et al., 2013). Developed a 24-hour forward forecasting model 

that made use of a self-organized map (SOM) for the purpose of weather data 

categorization  ( Chen, Duan, Cai, & Liu, 2021). On the other hand, Lee et al. (2021) 

created two long-short-term memory (LSTM) models that had three hidden layers in 

each of the models (Lee & Kim, 2019). Nasser et al. (2021) developed, trained, and 
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evaluated five LSTM models for hour ahead SPV forecasting of a system located 

between Aswan and Cairo, Egypt (Nasser & K, 2019). These models included varying 

inputs, different types of LSTM, and a number of layers. 

1.2. Problem Statement 

Especially in the context of current plants with bigger capacity and their 

integration into the grid, solar photovoltaic (SPV) power forecasting plays an essential 

part in the effective integration and operation of SPV plants. This is especially true 

when it comes to newer plants. However, the majority of the research that has been 

done on SPV power forecasting has been on methodologies with a limited time 

horizon. These methods are not sufficient to meet the requirements of current SPV 

plants. As a consequence of this, there is an urgent requirement to move the focus 

towards methodologies that provide a power prediction over a long-term horizon for 

SPV systems. 

In order to fill this vacuum in research, it is vital to conduct an in-depth 

comparison of the methodologies of predicting short and long time horizons. The 

literature that is currently available on such comparisons is, unfortunately, quite 

limited, which further impedes the development and deployment of effective SPV 

power forecasting systems. 

In addition, traditional techniques of forecasting have a tendency to become less 

accurate as the number of steps rises, which limits the usefulness of these approaches 

for future power projection. This constraint presents a substantial problem for 

dependable and accurate long-term power forecasting, in particular when taking into 

consideration the dynamic nature of SPV systems. 

In addition, the vast bulk of research done in this area has mostly focused on 

SPV plants that have limited capacities, omitting to take into account the unique issues 

that are presented by plants with bigger capacities. Existing methods of forecasting, 

when applied to bigger plants, result in a considerable rise in the root mean square 

error (RMSE), which indicates the inadequacy of present approaches for handling the 

complexity of higher-capacity SPV systems. RMSE stands for root meaning square 

error. 
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In addition, the short period of meteorological and power data records, as well 

as the possibility of errors in these records, presents a barrier to their application in 

forecasting. Because the data gathering only lasts for a short period of time, it is 

impossible to accurately capture the whole spectrum of weather conditions and 

fluctuations in power output. As a result, the accuracy and reliability of forecasting 

models are negatively impacted. 

In light of these research deficiencies, there is an immediate need to create SPV 

power forecasting approaches that are competent, efficient, and capable of meeting the 

long-term horizon forecasting needs of current SPV plants. These methods are crucial 

for the efficient installation and operation of real-world SPV plants, and they make 

possible both an improvement in system design and an efficient incorporation into the 

larger-scale grid. 

1.3. Aim   

 This research project's objective is to create an enhanced method for long-term 

solar photovoltaic (PV) power forecasting by employing a long short-term memory 

(LSTM) model, and then to assess that method's effectiveness in comparison to a 

number of alternative time-series and neural network models utilizing a variety of 

optimizers. In the context of integrating renewable energy sources into the power grid, 

the goal is to improve the accuracy of solar photovoltaic (PV) power forecasts and 

offer a reliable approach that can be used for better system planning and management. 

These goals are intended to be accomplished simultaneously. 

1.4. Importance Of The Study  

This project's relevance rests in the significance of accurate solar PV power 

forecasting for the effective integration and operation of renewable energy sources, 

notably solar power, inside the power grid. This is where the project's significance 

resides. The following is a list of the most crucial reasons why this project should be 

done: 

1. Improvements to Existing Grid Integration Accurate solar photovoltaic power 

forecasting methods are an absolute necessity for the successful incorporation of solar 

energy into the existing electrical grid. The capacity of grid operators and energy 
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planners to more effectively control the unpredictability and intermittency of solar 

power output is made possible by accurate predictions. This helps to provide a steady 

and predictable supply of electricity. 

2. Enhancement of System Planning: Accurate long-term solar PV power 

forecasting contributes to improvements in system planning for the deployment of 

renewable energy sources. It gives vital insights into future patterns of power 

generation, which enables stakeholders to make educated decisions regarding capacity 

growth, infrastructure expenditures, and energy management techniques. 

3. Accurate Prediction of Solar PV Power output: This project helps improve 

resource allocation since it makes accurate predictions of solar PV power output. 

Participants in the energy market, legislators, and investors may all make use of the 

projections to more effectively manage resources, strike a balance between supply and 

demand in the energy market, and maximize income streams. 

4. Cost Reduction: There are various different ways in which accurate solar PV 

power forecasting leads to cost reduction. It makes it possible to make efficient use of 

solar electricity, which in turn lessens the need for traditional sources of backup power 

and helps keep energy imbalances to a minimum. As a consequence of this, operating 

costs are reduced, improvements are made to energy trading, and overall grid 

efficiency is improved. 

5. The Penetration of Renewable Energy Sources Accurate solar PV power 

forecasting is an essential component in the process of increasing the percentage of 

renewable energy sources in use. This initiative fosters confidence among grid 

operators, investors, and consumers by giving accurate projections. This confidence 

helps to facilitate the greater deployment of solar power and supports the transition to 

an energy system that is more environmentally friendly. 

6. Benefits to the Environment: The successful application of dependable solar 

PV power forecasting techniques makes it possible to include a greater percentage of 

clean and renewable energy into the overall energy mix. This helps to reduce 

greenhouse gas emissions, lessen our reliance on fossil fuels, and provides support for 

global efforts to address climate change and work toward a more sustainable future. 
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In conclusion, the significance of this study rests in the possibility that it will 

raise the precision of solar photovoltaic power forecasting, which will ultimately result 

in greater grid integration, improved system planning, optimum resource allocation, 

cost reduction, increasing penetration of renewable energy sources, and environmental 

advantages. 

1.5. Objectives  

The following list illustrates all of this project's goals: 

1. Construct a model based on long-term and short-term memory (LSTM) The 

project's primary objective is to build and implement an LSTM model that is especially 

customized for long-term solar PV power forecasting. The LSTM model was selected 

because of its capacity to properly manage time-series data and to capture long-term 

dependencies, which led to an improvement in the accuracy of forecasting. 

2. Assess the performance of several optimizers for LSTM The purpose of this 

project is to evaluate the effectiveness of various optimizers in combination with the 

LSTM model. These optimizers include Nadam, RMSprop, Adam, Adamax, SGD, 

Adagrad, Adadelta, and Ftrl. The goal of the project is to improve the accuracy of solar 

PV power forecasts by identifying the optimizer that is the most effective, and this will 

be done by evaluating the effects of several optimizers. 

3. Evaluate the suggested LSTM model in relation to other time-series models 

and other neural network models the purpose of this project is to evaluate the proposed 

LSTM model in relation to other time-series models and different neural network 

models. This comparison will give insights into the relative performance of the LSTM-

based technique, as well as its superiority, for long-term solar PV power forecasting. 

4. Evaluate the increase in forecasting accuracy the purpose of this project is to 

measure the improvement in forecasting accuracy achieved by the LSTM model with 

the Nadam optimizer in comparison to other models. The purpose of the study is to 

demonstrate that the technique that has been presented is superior by carrying out an 

exhaustive assessment, which will include comparisons against models such as the 

autoregressive integrated moving average (ARIMA), the seasonal autoregressive 

integrated moving average (SARIMA), and other neural network models. 
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5. Evaluate the suggested approach the purpose of this research is to evaluate the 

proposed LSTM model with Nadam optimizer using real-world data from a solar PV 

power system that has a 250.25 kW installed capacity and is situated at MANIT Bhopal 

in the Indian state of Madhya Pradesh. During the validation step, the performance of 

the model will be evaluated in a real-world environment to see whether or not it is 

successful for solar PV power forecasting. 

6. Showcase the practical application of the suggested methodology for 

improved system planning and management: The project's goal is to demonstrate the 

practical applicability of the methodology being offered. The project aims to show the 

relevance and utility of the created model in assisting decision-making processes 

linked to the integration of renewable energy sources and grid management by giving 

accurate long-term solar PV power estimates. 

The development of an LSTM-based forecasting model is one of the overarching 

goals of this project, as are the evaluation of various optimizers, comparison with 

previously developed models, quantification of forecasting accuracy improvement, 

validation with real-world data, and demonstration of practical applicability for system 

planning and management. 

1.6. Contributions  

It is necessary for the design and management of solar power facilities to have 

accurate forecasts of solar electricity. In the present investigation, a unique method for 

long-term solar power forecasting was developed. This method is based on LSTM and 

makes use of the Nadam optimizer. Several alternative methods were used to conduct 

an analysis of the LSTM models, ARIMA models, and SARIMA models to see which 

one produced the best results. The accuracy of the forecasts produced by the suggested 

method was significantly better than those produced by current techniques. The 

accuracy and dependability of the system were both improved as a result of this study's 

investigation of the influence of climatic elements on solar power forecasting. The 

following is a condensed summary of the most important contributions made by this 

study: 
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• The presentation of a unique approach for SPV power forecasting that is based 

on LSTM and uses the Nadam optimizer. This technique takes into consideration the 

fluctuations in SPV output power with regard to meteorological data. 

• Solar power forecasts using eight different LSTM models, in addition to 

ARIMA and SARIMA models; evaluation and comparison of these models. 

• A comparison of the proposed method with other SPV power forecasting 

methods that are commonly used to determine whether or not the suggested method is 

effective. 

• The prediction of mitigating factors such as solar irradiance, solar photovoltaic 

module efficiency, and other meteorological characteristics, which improves the 

system's accuracy and dependability. 

1.7. Outline  

The thesis will be organized in a systematic manner, beginning with an 

introduction that provides background information and defines the goals of the study. 

The literature review aims to offer an in-depth summary of the pertinent literature and 

identify any gaps in the previous study. The deep learning strategy utilizing the LSTM 

model will be described in the methods chapter, along with data collection, 

preprocessing, feature engineering, and performance measures. In the section titled 

"Results and Analysis," the collected findings will be presented and discussed, 

focusing on areas of excellence, shortcomings, and opportunities for growth. Lastly, 

the conclusion will include a summary of the research findings, an evaluation of the 

difficulties associated with project management, and recommendations for further 

research. The thesis will also include a list of references, documenting the sources 

utilized throughout the study. 
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LITERETURE REVIEW 

The purpose of this literature review is to give background information and an 

in-depth study of the current state-of-the-art methods in machine learning and time-

series analysis for solar PV power forecasting, which is covered in Chapter 2. The 

purpose of this chapter is to analyze the advantages and disadvantages of current 

methods, as well as to spot research gaps. To this end, a literature assessment will be 

done, with an emphasis on studies that use machine learning methods to solar PV 

power forecasting. The important performance indicators used to evaluate the accuracy 

of forecasting models will also be discussed in this chapter, along with an introduction 

to the core principles of machine learning and time-series analysis. The information 

presented in this chapter will provide the groundwork for the next several chapters, 

which will focus on the creation of a revolutionary deep learning technique for solar 

PV power forecasting. 

2.1. Photovoltaic Solar Power  

A photovoltaic (PV) system is a collection of solar modules, each of which is 

made up of solar cells units that are able to convert the energy contained within solar 

radiation into electricity that can be used. When compared to the non-renewable 

energy sources that have been routinely utilized in the past, these systems are 

distinguished by their absence of greenhouse gas emissions and pollution, which earns 

them the reputation of being ecologically beneficial ( Fraas, 2010). However, the 

performance of photovoltaic (PV) systems that are linked to the grid is affected by a 

variety of variables. To arrive at an accurate estimate of the amount of power that may 

be generated by a PV system, it is necessary to take into consideration a number of 

elements, including the state of the surface, the amount of solar irradiance, the level of 

radiation intensity, and the amount of cloud cover. In addition, solar cells are affected 

by the temperature of the surrounding air since the conversion efficiency of solar cells 

diminishes as the temperature increases. Because of this, the power output of a 

photovoltaic (PV) system is not a straightforward linear function of the amount of solar 

irradiation; rather, it is impacted by the random nature of a number of other climatic 

conditions (Cîrstea, Martiş, Cîrstea, Constantinescu-Dobra, & Fülöp, 2018). It is 
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essential to have a thorough understanding of these complexities and to factor them in 

if one wants to effectively evaluate and anticipate the performance of PV systems. 

Researchers are able to construct accurate forecasting models by taking into account 

the aforementioned parameters. These models reflect the complexities of PV system 

functioning, which in turn improves the dependability and efficiency of solar energy 

output. 

2.1.1. Technology review  

Around the year 1839, when Edmond Becquerel discovered the photovoltaic 

effect (jobim & junior, 2014). There was a rise in the number of people interested in 

photovoltaic solar energy. The first solar cell was manufactured in 1876, but for a 

considerable amount of time, advancements in technology were limited to research 

carried out outdoors. It wasn't until perhaps around the year 1960 that this sort of 

technology first began to be manufactured on an industrial basis  (jobim & junior, 

2014)  ( J, 2021). 

The advancement of photovoltaic technology was catalyzed by two important 

milestones that played an essential part in the process. The necessity for alternative 

power sources to provide electricity to remote areas was the impetus behind the first 

major accomplishment. The second significant event was the so-called "space race," 

which made use of solar technology to supply energy to the many pieces of equipment 

that were housed in space  (jobim & junior, 2014). 

The price of oil skyrocketed in the 1970s, which further pushed the development 

of photovoltaics forward. Countries such as the United States made investments in the 

subject as a result of their desire to find new sources of energy. The Asian market, and 

China in particular, started making significant investments in the manufacturing of 

solar modules in the early 2000s and eventually took the lead in this industry in 2009  

(jobim & junior, 2014). 

The expansion of the solar sector between 2003 and 2014 reached an annual rate 

of 54.2%, as reported by CRESESB (Manual de Engenharia Para Sistemas 

Fotovoltaicos – 2014 – Solenerg Energia Solar Fotovoltaica, n.d.). This expansion was 

largely fueled by incentives to promote the utilization of renewable energy sources as 

an alternative to fossil fuels. China leads the globe in terms of installed capacity for 
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solar electricity, followed by the United States and Japan ( Ponprathom & Teekasap, 

2022). As of 2016, the total amount of photovoltaic power that was installed globally 

reached 294GW. The price of solar modules continues to be a barrier to broad 

deployment  (jobim & junior, 2014). Despite the fact that production levels have 

grown. To find a solution to this problem, a number of nations have instituted financial 

incentives for research and technical development, and the governments of these 

nations are providing financial assistance as well. 

The manufacture of solar cells and modules has not been a primary emphasis of 

technological advancement in photovoltaics in Brazil, as opposed to the more 

theoretical studies that have taken place at research institutions. However, Brazil has 

made large expenditures in the construction of solar systems, primarily for the purpose 

of delivering electricity to regions that are separated from the national grid, which is 

referred to as the National Interconnected System (SIN). The Brazilian regulatory 

organization known as Aneel issued Normative Resolution number 482/2012 in the 

year 2012, which prescribed standards for the development of solar systems that were 

linked to the distribution network. The installation of tiny and micro producers was 

given a significant boost as a result of this resolution. 

By the year 2017, Brazil had a total of 438.3 megawatts (MW) of solar electricity 

installed, which was spread throughout 15.7 thousand projects associated to these 

systems  ( J, 2021). Tax breaks, assistance programs from government agencies and 

institutions like the Brazilian Development Bank (Banco Nacional do 

Desenvolvimento, BNDES), and incentives for micro and distributed mini-generation 

systems are some of the ways the country hopes to further encourage the expansion of 

solar installations. Solar power is expected to account for 9 percent of Brazil's entire 

national energy supply by the year 2050  ( J, 2021), according to recent projections. 

The rise in interest in photovoltaic generating may be attributed to the 

improvements in system efficiency that have been made, in addition to the incentives 

for research and development. In the 1950s, the efficiency of solar panels was around 

5%, and the cost of producing one watt peak of electricity was $1.785. However, the 

efficiency of modules available today has grown to around 15%, and their costs are at 

around $1.20 per watt peak  ( J, 2021). Silicon is by far the most common material 

employed in the production of photovoltaic cells, accounting for about 95% of all cells 
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manufactured on a global scale  (jobim & junior, 2014)  ( J, 2021).This is because it is 

readily available, has a low price, and has production techniques that are already well-

established. Monocrystalline silicon, polycrystalline silicon, and thin silicon film are 

the three primary varieties of photovoltaic cells that are available for purchase on the 

commercial market  (jobim & junior, 2014). 

2.1.2. Operation Of Photovoltaic System  

It is necessary to have an understanding of both solar radiation and irradiance 

(Hersch & Zweibel, 1982). In order to comprehend the operation of a photovoltaic 

(PV) cell as well as the functioning of a PV panel. Solar radiation is the term used to 

describe the solar energy that is sent to Earth in the form of electromagnetic radiation. 

This solar energy can either be directly or diffusely received by the Earth. Diffuse 

radiation is the light that indirectly impacts a surface after being reflected and 

diffracted  (Hersch & Zweibel, 1982). Direct radiation relates to the light that strikes a 

horizontal surface in a direct manner in a straight line of progression. 

Irradiance, which is a quantification of solar radiation and shows the power of 

solar radiation in relation to the area, is expressed as watts per square meter. When 

evaluating the efficiency of PV panels, it is usual practice to use a reference value of 

one thousand W/m2  (jobim & junior, 2014). 

As can be seen in Figure 1, the fundamental structure of a photovoltaic cell 

consists of two distinct types of semiconductor materials known as N-type and P-type, 

as well as electrical contacts that serve to complete the circuit and allow current to 

flow  (Hersch & Zweibel, 1982). The generation of electricity by a photovoltaic cell is 

accomplished by applying the photovoltaic principle, which states that the cell should 

convert the solar energy that it receives into electric current. 
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Figure 1. Photovoltaic cell model 

 

When light reaches the surface of crystalline silicon, it has the potential to be 

absorbed, which then causes changes in the material's electrical characteristics. If there 

is enough energy, the electrons in the valence layer of the crystal will get excited, and 

they will be able to flow freely throughout the crystal. The excitation of electrons 

results in the creation of holes, and due to the attraction and mobility of valence 

electrons, it is possible for both electrons and holes to travel through the crystal. The 

electrons and holes in a system become more unsettled as the radiation's energy level 

rises  (Hersch & Zweibel, 1982). 

A potential barrier is required in order to complete the transformation of this 

excitement into an electric current. Due to the fact that the barrier is responsible for 

separating free electrons from holes, the photovoltaic cell will have an excess of 

electrons on one side of the cell, while the other side will have an excess of holes. This 

difference in potential generates an electric field, which may be used to generate 

current provided the right conditions are met. The potential barrier is produced at the 

intersection of a positively doped silicon shell (P-type) and a negatively doped silicon 

shell (N-type), both of which are doped with boron. The process of negatively doping 

the material results in the introduction of atoms that have five valence electrons, 

whereas the process of positively doping the material results in the introduction of 

atoms that have one fewer electron in their valence shell. It is the N-type material that 
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ends up carrying the majority of electrons, while the P-type material ends up carrying 

the majority of holes  (Hersch & Zweibel, 1982). 

When N-type and P-type materials are brought into contact with one another, 

electrons from the N-type material fill the holes in the P-type material. This results in 

clusters of positive charges being created on the N side of the junction, and clusters of 

negative charges being created on the P side. An electrical barrier will build as the 

movement of charges continues; this barrier will prohibit any more charges from 

moving in. The potential barrier that was discussed before  (Hersch & Zweibel, 1982). 

is created when this equilibrium is reached. 

When light strikes a material with an N-type atomic structure, electrons get 

separated from their associated holes, and holes speed toward the barrier, where they 

attempt to recombine with the negative charges found on the P-type side. In a similar 

fashion, extra electrons are generated in the N-type material whenever light strikes the 

P-type material. When the cell is connected to an electric circuit, an electric current is 

produced when the electrons leave the N-type material, travel through the circuit, and 

then recombine with the holes on the P-type side of the material. This process takes 

place when the cell is in operation. The quantity of light energy that is absorbed by the 

cell as well as the energy of the electrons that are created is proportional to the amount 

of current that is produced  (Hersch & Zweibel, 1982). 

2.2.  AI & The Deep Learning Model  

Neurons are the processing units that are a part of a neural network's typical 

architecture. Neurons are coupled with one another. These neurons, when given input, 

create an output value depending on an activation threshold according to the value of 

the input. Neural networks are able to approximate a broad variety of functions, 

frequently including nonlinear ones, because to the intricate networks of linked 

neurons that they are built from. The number of stages of computation that are chained 

together to create a neural network determines the depth of the network. Each step of 

computation consists of one or more neurons operating in parallel. Deep learning may 

be thought of as an introduction to the notion of chaining together many levels of 

computation (Hao, Zhang, & Ma, 2016). 
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An approach to artificial intelligence that makes use of deep learning, which is 

a subset of neural networks, is described here. The study conducted in the field of 

neuroscience provides the basis for the ideas and fundamental concepts that underpin 

it. It is essential to keep in mind that the objective of deep learning is not to imitate the 

precise operations of the human brain. Instead, it takes its cues from a limited number 

of abstract and high-level ideas that are connected to the fundamental operation of the 

human brain. These ideas are used as the foundation for the construction of effective 

deep learning models, which makes it possible to automate difficult activities and 

derive meaningful patterns from enormous datasets (Deep Learning, n.d.). 

2.3. Classification Of Forecasting Methods  

Utilizing previous patterns included within the data that is now accessible, 

forecasting is an extremely important part of predicting what will happen in the future. 

It is a helpful statistical tool that may be used to estimate a variety of characteristics 

and can vary from short-term forecasts for the next few minutes to long-term estimates 

spanning many years. In the context of solar photovoltaic (SPV) power forecasting, 

the selection of a suitable forecasting approach is contingent on a number of 

parameters including the size of the PV plant, the required forecasting horizon, the 

geographical location, and the existence of other climatic fluctuations. 

It is essential to decide which technique of forecasting is best appropriate for any 

given set of conditions in order to successfully manage the risks that are connected 

with predicting. In the next sections, an in-depth investigation into the various 

categorizations of SPV forecasting methodologies is provided. These categories offer 

insights into the many methodologies that are accessible for SPV power forecasting. 

As a result, they enable researchers and practitioners to make educated judgments 

based on the specific requirements of their individual situations. 

By going deeper into the complexities of various forecasting systems, it is 

possible to evaluate their benefits and drawbacks, which paves the way for the 

selection of the method that is the most suitable for producing accurate and trustworthy 

SPV power forecasts. This thorough grasp of various forecasting approaches ensures 

that the inherent uncertainties and problems connected with SPV power forecasting 

are successfully handled, which ultimately leads to enhanced decision-making and 
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optimum performance in the renewable energy industry. Moreover, this understanding 

ensures that the inherent uncertainties and challenges associated with SPV power 

forecasting are properly controlled. 

2.3.1. Horizon forecasting  

The forecasting horizon, which refers to the time period for which the SPV 

power production is forecasted, is one of the most important factors to consider when 

selecting the most suitable approach for forecasting. A visual depiction of the many 

types of solar PV forecasting methodologies based on their individual time horizons is 

shown in Figure 2. This picture is based on the information that is mentioned in Table 

1, which can be found here. 

These ways of forecasting can be generically characterized as short-term, 

medium-term, or long-term approaches, with each one catering to certain timelines and 

goals. Short-term forecasting approaches concentrate on making forecasts for the 

immediate or very near future, often spanning from a few minutes to a few hours into 

the future. The prediction horizon is extended to days or weeks with medium-term 

forecasting, providing insights into slightly longer-term power generation trends than 

short-term forecasting does. Lastly, long-term forecasting approaches enhance 

strategic planning and policymaking in the SPV sector by providing estimations for 

the months, years, or even decades into the future. 

The characteristics, methodology, and applications of each forecasting approach 

are broken down in further detail within Table 1, which provides an overview of the 

various time ranges. Stakeholders are able to make educated judgments on the most 

appropriate forecasting technique based on their particular needs and goals provided 

they have a solid grasp of the distinctive characteristics of each methodology and the 

way in which they compare to one another. 

The evolution of precise and efficient power projections is facilitated by this 

exhaustive categorization and explanation of solar PV forecasting systems based on 

time horizons. Improved resource allocation, grid management, and overall 

performance optimization of solar photovoltaic systems are all made possible as a 

result of this feature's ability to simplify the process of selecting the forecasting 

approach that is most suited for the various operating circumstances. 
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Figure 2. Time-horizon categorization of solar PV predictions 

 

Table 1. Analyzing the time-horizon forecasting of solar PV generation. 

Type of solar PV power 

forecasting 

Time-

horizon 

Applications 

Long-term 1 month–1 

year 

Helps authorities in planning the 

generation, transmission, and 

distribution of electricity along 

with the structuring and operation 

of electricity markets. 

Medium-term 1 week–1 

month 

Unit commitment decisions, 

planning, and maintenance 

scheduling of the power system. 

Short-term 1–24 h Grid security, power reserve 

management. 
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Very short-term 1 s–1 h Power and voltage regulation, real-

time electricity dispatch, and grid 

stability. 

 

2.3.2. Historical data-based   

As can be seen in Figure 3, the subject of solar photovoltaic power forecasting 

has witnessed the emergence of a great deal of different ways of forecasting. Table 2 

presents a comprehensive description of various strategies based on their features, 

which may be utilized for the purpose of navigating the varied terrain that is presented. 

The selection of the proper approach, taking into consideration the data that is 

available and the time horizon that is wanted, is essential to the production of accurate 

forecasting results. Because every technique of forecasting has its own advantages and 

disadvantages, it is essential to match the compatibility of the approach to the 

particular criteria that are being asked of it in the process of predicting. 

It is possible for practitioners to align the forecasting approach with the features 

of the data if they give careful consideration to the available data sources, such as 

historical data on solar PV power, data on climatic conditions, and other relevant 

elements. When choosing a technique for forecasting, it is important to take into 

account the desired time horizon, which can be short-term, medium-term, or long-

term. 

Table 2 serves as a helpful reference for decision-makers, researchers, and 

practitioners, allowing them to analyze and select the forecasting approach that is best 

suited to meet their individual requirements. It helps in the search of precise and 

dependable solar PV power forecasts by providing insights into the methodology, 

algorithms, and application of each method. 

This exhaustive categorization of forecasting methodologies makes a 

contribution to the development of the discipline by presenting a methodical overview 

of the many possibilities that are now accessible. It gives stakeholders the ability to 

make educated decisions, which in turn leads to improved energy management, greater 

forecasting accuracy, and optimal exploitation of solar photovoltaic resources. 



 

21 

 

Figure 3. Solar photovoltaic projections are categorized using past data 

 

Table 2. Methods for predicting the output of solar photovoltaic (PV) panels are 

surveyed. 

Forecasting 

approach 

Advantages Disadvantages 

Machine 

Learning  

models 

- The suggested forecasting system 

can account for many variables that 

affect PV power output, which is a 

major plus. 

-   Alarge training dataset and 

optimal training process are 

needed to ensure the model can 
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- The approach can improve its 

predictive abilities over time by 

learning from data through the 

training phase and applying a 

knowledge-based system. 

- The method's ability to represent 

complicated linkages and 

fluctuations, as captured by its ability 

to capture significant non-linearities 

in PV power ge It may also be used in 

large-scale systems to improve PV 

power production estimates. 

learn from many data patterns and 

generalize well to new inputs. 

- A complex architecture and 

many modeling challenges must 

be considered to reflect the data's 

underlying patterns and linkages.  

- The technique requires more 

computer power and longer 

training cycles to properly 

maintain and use prior data to 

make accurate forecasts, which 

increases forecasting 

performance. 

Physical 

models 

-  Optimal for cases where there is a 

scarcity of data and no access to past 

records. 

- Allows for the development of 

forecasting variables to be used in 

statistical models. 

- Especially helpful for making long-

term predictions, especially when 

contrasted to satellite-based systems. 

- Extremely sensitive to rapid 

changes in the values of climatic 

variables;  

- Requires detailed solar PV 

models and precise local 

observations. 

- Constant recalibration is required 

due to difficulties in gathering 

accurate physical input data. 

Statistical 

models 

-  For accurate short-term forecasting, 

it makes use of publicly available 

meteorological data and, in most 

cases, outperforms physical models. 

- Its ease of use makes it a realistic 

option for use in forecasting. 

- Accuracy is dependent on a large 

amount of input data from the past. 

- Less accurate in the long run 

when making predictions. 

- Cannot reliably capture sporadic 

patterns in input variables. 
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Hybrid 

models 

-  Created with the express goal of 

improving the efficacy of physical 

and statistical methods. 

-  Outperforms any other technique 

for physical modeling. 

- Increases the precision and 

dependability of future projections. 

-  The temporal dynamics of 

historical PV data are often 

ignored, and more computing 

resources and effort are required to 

integrate several approaches. 

- To effectively manage various 

data sets, more RAM is required. 

2.4. State-Of-Art Of Forecast Methods  

As was noted before, a number of research have been carried out to investigate 

various strategies for predicting the output of solar electricity  (Antonanzas, et al., 

2016). These investigations included in-depth literature evaluations, in which every 

prediction approach was broken down and illustrated with examples. In addition, 

fundamental ideas such as the prediction horizon and methods for conducting analyses 

of the methodologies were established. An intriguing idea that was presented in 

(Antonanzas, et al., 2016). was the skill score (ss), which was used to measure the 

performance of the model in comparison to more straightforward reference models. 

There are research papers that focus on a single method or compare many ways 

to discover which one is the best fit for a certain assignment. In addition to studies that 

examine a variety of forecasting strategies, there are also research papers that analyze 

various forecasting methodologies. For example ( Brano, Ciulla, & Falco, 2014). 

Investigated a single approach, whereas (Almonacid, Rus, Higueras, & Hontoria, 

2011). carried out research that compared an artificial neural network (ANN) to three 

different physical methods: the Osterwald, Araujo-Green, and Single Diode Models. 

The researchers used irradiance and temperature data as inputs when applying these 

approaches to various photovoltaic systems. As a result, they were able to derive 

typical V-I curves as outputs for varying input values measured over the course of a 

year. 

The comparative analysis that was done in  (Almonacid, Rus, Higueras, & 

Hontoria, 2011).  Revealed that the ANN technique had lower prediction errors 

(ranging from 6% to 8%) in comparison to the other methods (which ranged from 6% 
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to 30%). The capacity of artificial neural networks (ANNs) to take into account a wider 

variety of losses inherent in solar systems, such as temperature, irradiance, and panel 

inclination angle, is what the researchers believe is responsible for the superior 

performance of ANNs. On the other hand, traditional approaches merely took into 

account temperature losses, which made them far less accurate. 

It was also stated in ( Dumitru, Gligor, & Enachescu, 2016). That ANN 

algorithms were used in order to anticipate the amount of electricity generated by solar 

panels. In this comparison research, the performance of two neural networks, namely 

the Multilayer Perceptron and the Elman Neural Network, was tested for this specific 

job. Both of these networks used a method called Backpropagation for their training. 

The values of the photovoltaic system's historical output power were used as the basis 

for the input data, which was modeled as a time series. A strategy known as a moving 

window was utilized, in which the input was a window containing t samples and the 

output was determined to be the sample that was t samples plus one. The researchers 

were pleased with their findings, which showed an error rate of around 0.5 percent, 

and they proposed adding climatic parameters to the variables used in the analysis as 

a way to further increase accuracy. 

The accuracy of two different types of dynamic neural networks, the Focused 

Time Delay Neural Network and the Distributed Time Delay Neural Network, was 

compared in another study that was published under the reference number ( Al-

Messabi, Li, El-Amin, & Goh, 2012). In a manner analogous to that described in  ( 

Dumitru, Gligor, & Enachescu, 2016), the input data consisted entirely of historical 

readings of power output taken from the system's time series and were analyzed with 

a moving window. Surprisingly, this study did not require historical meteorological 

data from the installation location, such as irradiance and temperature. This finding 

suggests that this technique was more relevant in real-world settings since it did not 

rely on hypothetical conditions. On the other hand, this runs counter to the claim that 

was made in  ( Dumitru, Gligor, & Enachescu, 2016), which said that the addition of 

climatic data improves the effectiveness of forecasting systems. 

( Ding, Wang, & Bi, 2011). Utilized a feed-forward neural network (MLP) in 

order to anticipate the generation of a solar system with a 24-hour window. This 

research was published in ( Ding, Wang, & Bi, 2011). They were able to directly 
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estimate the power production by making use of the system's past data on the 

generation of power. Both the use of the improved backpropagation algorithm, which 

addresses limitations of the standard backpropagation algorithm, and the use of the 

Similar Day Selection Algorithm, which finds historical data from days with similar 

climatic conditions to enhance forecasting accuracy, particularly on non-sunny days, 

are two noteworthy aspects of this research. The improved backpropagation algorithm 

addresses the limitations of the standard backpropagation algorithm. 

The research that was carried out by  ( Brano, Ciulla, & Falco, 2014). Consisted 

of a comparative study between three distinct artificial network topologies that were 

applied to the prediction of the generation produced by photovoltaic systems. These 

topologies were as follows: a multilayer perceptron with one hidden layer; a recurrent 

neural network multilayer perceptron; and a gamma memory artificial neural network. 

The findings provided convincing evidence that these networks can be useful for 

forecasting solar generation, with prediction errors of less than 1% of the total. The 

maximum power level that was recorded by the actual PV system. In addition, 

correlation analysis was utilized as a preprocessing technique for the input data. This 

allowed for the identification of the factors that had the largest influence on the output 

variable (the amount of solar power generated). 

Carried out an intriguing study that was published in , which went beyond only 

forecasting the output power of PV systems. They came up with a solution to the 

problem of maximizing the functioning of a microgrid that consisted of a reversible 

hydropower plant and a solar system. The forecasting system was put to use in order 

to plan the utilization of the hydroelectric plant, which served as a mechanism for the 

storage of energy and absorbed power fluctuations caused by the output of 

photovoltaics. The reliability of the distribution network was preserved by utilizing the 

hydroelectric plant either to store extra energy or to deliver electricity in the event that 

the PV system had a malfunction. 

( Dolara, Grimaccia, Leva, Mussetta, & Ogliari, 2015). Offered a hybrid strategy 

that combined a parametric methodology and a statistical method. This hybrid 

approach was called a hybrid approach. The parametric method included the use of the 

Clear Sky Solar Radiation Model (CSRM), which represented the irradiance that was 

incident on the location where the PV system was being installed when there was no 
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cloud cover. After that, a neural network was applied to the problem of predicting the 

amount of energy generated. According to the findings of the research, when the 

performance of the hybrid approach was compared to that of employing an ANN 

(MLP) by itself, the hybrid method produced superior results. It underlined how 

important it is to accurately predict weather conditions in order to make forecasting 

more efficient. 

( Ogliari, Grimaccia, Leva, & Mussetta, 2013). Created yet another hybrid 

prediction technique by integrating Dynamic Genetic Swarm Optimization (GSO) 

with artificial neural networks (ANNs) that were trained using the Backpropagation 

algorithm. This hybrid technique was devised with the intention of improving forecast 

accuracy by overcoming the constraints imposed by the Backpropagation algorithm. 

When compared with just employing ANNs, the findings indicated much better 

performance. 

In a nutshell, the following are some of the most important takeaways from the 

findings that were presented: 

• The manner in which input data in forecasting systems are processed has a 

substantial impact on the accuracy of the results. 

• Similar Day Selection Algorithm, such as that which is provided by the Similar 

Day Selection Algorithm, helps to increase the accuracy of weather forecasts. 

• In predicting problems, hybrid systems that integrate several methodologies 

perform exceptionally well. 

• The relevance of doing correlation analysis between variables cannot be 

overstated since the selection of suitable input variables for the forecasting model is of 

the utmost importance. 

2.5. Time series  

Time series analysis involves the examination and interpretation of statistical 

data collected at regular intervals. In this type of data, each row is arranged in 

chronological order, establishing a clear relationship between the data and the time of 

collection. 
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Measurements in a time series can be captured at various regular intervals, such 

as hourly, daily, monthly, or yearly. When dealing with future values that are unknown 

until a specific date, it becomes necessary to estimate new data points at the 

corresponding time in the time series ( Box, Jenkins, & Reinsel, 2008). This estimation 

ensures the continuity of the data and enables the application of prediction techniques. 

Understanding the pattern exhibited by the data is crucial in comprehending the 

nature of the time series in the past and anticipating its behavior in the future. The data 

pattern serves as a valuable guide for selecting an appropriate prediction method. 

Time series analysis offers a robust framework for examining historical patterns 

and making predictions about future trends. By discerning recurring patterns, trends, 

seasonality, and other relevant characteristics within the data, one can make informed 

decisions and forecasts in diverse fields, including finance, economics, and weather 

forecasting, among others. 

2.5.1. Time Series Data Structure  

A time series is a collection of one or more data points that have a distinct 

structure that is defined by trend, seasonality, and noise. A time series can include as 

little as one data point or as many as millions of data points. A continuous observation 

of data demonstrating an overall increase or decline might be characterized as a trend. 

It is not always present in every dataset, but it is typical to detect a declining trend in 

one portion of the data and a rising trend in another section of the data. Although this 

phenomenon does not always occur, it is common to observe it when it does. For 

example, due to the broad use of technology, there has been a discernible rise in the 

amount of daily mobile shopping. A similar pattern can be seen with the overall 

quantity of energy produced, which has been exhibiting an upward trend due to the 

expanding number of solar panels that have been placed. During the warmer months, 

when there is less need for heating, energy consumption goes down, but during the 

colder months, it exhibits an upward tendency. 

A pattern that is repeated over a certain amount of time is said to having 

seasonality. Similar to trend, it is not an essential quality, but it is something that may 

be seen in certain datasets. An illustration of a yearly pattern is the rise in the amount 

of power consumed during the winter months, followed by a fall in that amount during 
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the summer months. This cycle repeats again each year. Another illustration of this 

phenomenon is the rise and fall, on a daily basis, of the number of times users log on 

to a certain website, with the peak occurring in the morning and the lowest point being 

in the evening. Depending on how frequently data is collected, seasonality can 

manifest itself over a wide range of time periods, from seconds to minutes to even 

years. When trying to anticipate future values in a time series, having an understanding 

of seasonality is absolutely necessary. 

The term "noise" refers to irregularities in the data that cannot be explained by 

either a trend or seasonal patterns. It is a result of circumstances that cannot be 

predicted and persists even after trend and seasonal factors have been taken into 

account. For example, despite the fact that the price of gold tends to go up over the 

summer months, there may be some circumstances, such as an economic crisis, in 

which the price of gold goes down at that time. This variation that is not consistent 

with the pattern that was anticipated is an example of noise. 

Data from time series can be organized into univariate or multivariate categories. 

Only the information gathered at the specified times is taken into consideration in a 

univariate dataset. On the other hand, a multivariate dataset contains supplementary 

information that was gathered concurrently with the observed data. For instance, solar 

energy generation numbers by themselves are an example of univariate data since they 

incorporate both time and the data that was seen. On the other hand, a multivariate 

dataset includes additional pertinent data that either directly or indirectly contributes 

to the data that was seen at the same time. In the context of the generation of solar 

energy, a multivariate dataset would contain not only the solar generating values but 

also meteorological information, the cloud rate, the rain rate, and the locations of the 

various power producing facilities. Visualizing univariate datasets is often simpler 

compared to multivariate ones. 

Understanding the features of time series, such as trend, seasonality, and noise, 

as well as the difference between univariate and multivariate datasets, is essential for 

properly assessing and forecasting future values in a variety of industries, including 

finance, economics, energy, and other related areas. 
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2.5.2. Time series terminologies  

Trend refers to a long-term change in the mean level of a time series. However, 

defining what constitutes "long-term" can be challenging. In certain cases, climatic 

variables exhibit cyclic variations over extended periods, such as 50 years. If one only 

has access to 20 years of data, this long-term oscillation would appear as a trend. 

However, with several hundred years of data, the long-term oscillation would become 

more evident. 

A stationary time series is characterized by the absence of systematic changes in 

its mean (first moment), variance (second moment), and strictly periodic variations. 

Most of the probability theory of time series focuses on stationary time series. 

Consequently, time series analysis often involves transforming non-stationary series 

into stationary ones to leverage this theory. For instance, removing trends and seasonal 

variations from a dataset allows modeling the remaining variation using a stationary 

stochastic process. 

A different filter is a specific type of filter that is particularly useful for removing 

trends. The first-order difference is commonly employed and often sufficient to 

achieve apparent stationarity. In some cases, a second-order difference may be 

necessary for specific datasets. However, over-differencing should be avoided as it 

amplifies the variance. 

Autocorrelation is a vital indicator of time series properties. Sample 

autocorrelation coefficients (rk) measure the correlation between observations at 

different lags. These coefficients provide insights into the underlying probability 

model that generated the data. 

A correlogram, which plots the autocorrelation coefficients against the 

corresponding lags, is a valuable tool for interpreting a set of autocorrelation 

coefficients. Correlograms aid in model identification and are particularly useful for 

selecting the most appropriate type of Autoregressive Integrated Moving Average 

(ARIMA) model to represent the observed time series. When dealing with stationary 

series, the correlogram is compared to the theoretical autocorrelation functions of 

different ARMA processes to determine the most suitable one. For instance, the 
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correlogram of a Moving Average (MA) process of order q exhibits a distinctive cutoff 

at lag q. 

Stationary series often display short-term correlations, which are characterized 

by a relatively large initial autocorrelation coefficient (rt) followed by a few 

subsequent coefficients that gradually decrease. Autocorrelation coefficients for 

longer lags tend to be approximately zero. 

In the case of a completely random time series, autocorrelation coefficients at 

non-zero lags are approximately zero for large sample sizes (n). For a random time 

series, the autocorrelation coefficients (rk) approximately follow a normal distribution 

with a mean of zero and a variance of 1/n. Consequently, if a time series is random, 

around 95% of the autocorrelation coefficients are expected to fall within the range of 

±2/√n, which is within two standard deviations of the true value of zero. 

Outliers can significantly impact the correlogram of a time series. It is advisable 

to address outliers before commencing formal analysis to mitigate their effects. 

2.6. Sequence Modeling  

In this part, the idea of sequence modeling is broken down, and several 

architectural approaches that have been established to solve sequence modeling issues 

are investigated. The recurrent neural network, often known as an RNN, is an example 

of a popular type of architecture (Deep Learning, n.d.). Even though recurrent neural 

networks (RNNs) are not the major focus of this paper, it is vital to appreciate the 

underlying ideas behind RNNs in order to understand the reason behind the deep 

learning model that was chosen for this study: long short-term memory neural 

networks (LSTM). A concise summary of RNNs and their limitations is provided in 

sections 2.3.2 and 2.3.3, respectively, of this thesis in order to offer correct context for 

LSTM within the framework of this thesis. This is done so in order to provide adequate 

context for LSTM within the framework of this thesis. In the following sections, a 

more extensive description of LSTM neural networks will be provided, illuminating 

their design and operation in the process. 
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2.6.1. Optimization  

It is essential to have a solid understanding of optimization and loss functions 

(Deep Learning, n.d.) before getting into the complexities of RNNs and LSTMs. 

Standard procedures for assessing and evaluating deep learning models focus on the 

models' overall performance in respect to an error function, which is also referred to 

as a loss function. The objective of a loss function is to supply a quantifiable 

measurement of the degree to which a particular deep learning algorithm accomplishes 

a given job, which will be represented by the letter T. In the case of regression tasks, 

the output of a high value by the loss function implies that the deep learning model is 

not well optimized and struggles to represent the given dataset in an appropriate 

manner. On the other hand, a low value output indicates that the deep learning model 

is highly optimized and successfully captures the patterns and relationships included 

within the dataset. This is indicated by the fact that the model has a low value. The 

selection of an appropriate loss function is essential because it directs the learning 

process of the deep learning model. This gives the model the ability to alter its 

parameters and minimize the loss while it is being trained, thus it is essential that this 

function be chosen carefully. The goal of the deep learning algorithm is to enhance its 

performance and produce better outcomes for the task that has been presented to it by 

iteratively improving the model with the loss function that has been chosen. 

2.6.2. Recurrent Neural Networks  

Recurrent neural networks (RNNs), a prominent form of neural network that is 

particularly intended for processing sequential input, are frequently used in sequence 

modeling. This is because RNNs are one of the few types of neural networks. RNNs 

are capable of capturing sequential relationships within the data, which is something 

that typical feed-forward neural networks are unable to do since they regard each input 

as independent. RNNs are advantageously suited for applications such as natural 

language processing, speech recognition, and time series analysis as a result of this 

feature. 

The incorporation of recurrent connections among hidden units is the basic idea 

that underpins RNNs. These connections make it possible for information to be 

maintained and passed on from one time step to the next. Because of this, the network 
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is able to keep a recollection of previous inputs and incorporate them into the 

prediction or output it is producing at the moment. A fundamental RNN design is 

depicted in Figure 4. In this architecture, each hidden unit is connected to both the 

previous hidden state and the current input. These connections are shown to be 

bidirectional. The RNN performs processing on the input at each time step and 

provides an output as a result. This output may then be utilized for further prediction 

or may be sent back into the network for later time steps. 

 

Figure 4. A representation of a basic RNN 

 

RNNs are excellent at modeling sequential data that displays temporal 

dependencies, such as predicting the next word in a phrase or projecting future values 

in a time series. This is made possible by the use of recurrent connections, which are 

utilized by RNNs. However, classic RNNs have an issue known as "vanishing 

gradient," which occurs when the gradient signal weakens with time and makes it 

difficult to capture long-term dependencies. This makes it difficult to train RNNs. 

In order to circumvent this constraint, more sophisticated RNN topologies have 

been created, such as the Long Short-Term Memory (LSTM) network. LSTMs are 

equipped with memory cells and several other gating mechanisms, which enable them 

to selectively store and retrieve information. As a result, they are able to seize and 

remember significant data across longer sequences. These architectural innovations 
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provide a solution to the problem of vanishing gradients and make it possible to 

describe complicated sequences in a more accurate manner. 

In conclusion, recurrent neural networks (RNNs) are an effective method for sequence 

modeling because of their capacity to deal with sequential dependencies. However, 

recent developments such as LSTM have further increased their capacities. These 

developments have resulted in greater long-term memory as well as improved 

performance across a wide range of sequence-based activities. 

2.6.3. LSTM Neural Networks  

The application of recurrent neural networks (RNNs), which show promise in 

principle but are generally prevented from being used in practice owing to inherent 

constraints, has potential. To be more specific, problems with bursting and 

disappearing gradients reduce their usefulness in long-term sequence modeling. Long-

Short-Term Memory (LSTM) neural networks are a specific architecture that was built 

to solve these difficulties. LSTM stands for "long short-term memory." The LSTM 

algorithm, which was developed in 1997 (Hochreiter & Schmidhuber, 1997). By 

Hochreiter and Schmidhuber, was the first to introduce the idea of a memory block 

that might include one or more memory cells. 

Alongside the memory cell, the LSTM memory block's first iteration of design 

called for the inclusion of a pair of gating devices known as an input gate and an output 

gate. The LSTM architecture was improved by ( Gers, Schmidhuber, & Cummins, 

1999). In the year 2000 by the addition of a gate that is now often referred to as the 

forget gate. Figure 5 presents a graphical depiction of a single LSTM memory block, 

highlighting the fundamental elements that make up this type of memory. Three vector 

inputs, namely s(t1)i, h(t1)i, and x(t)i, are subjected to changes within the context of 

this composition. These transformations are made possible via a combination of 

sigmoid units, vector addition units, and vector multiplication units. 

Figure 6 is an illustration of the recurrent nature of a single LSTM unit. It 

highlights how the internal state vector s, and the hidden unit vector h are converted 

or conserved. The purpose of this illustration is to convey the temporal dependencies 

that occur across time. This part goes more into the underlying structure of the LSTM 

memory block, illuminating its separate components and demonstrating how LSTM 
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efficiently handles the problem of disappearing and bursting gradients in the process 

of doing so. 

To gain a grasp of how the LSTM system overcomes the obstacles presented by 

long-term sequence modeling, it is essential to comprehend the complexities of the 

LSTM architecture, including its gating mechanisms and memory cells. In the 

following sections, an in-depth investigation will be conducted into the inner workings 

of the LSTM, aiming to provide a greater understanding of its capacity to acquire and 

remember essential information for lengthy periods of time. 

 

Figure 5. A standard LSTM memory block 
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Figure 6. temporal recurrence of a LSTM memory block 

 

2.6.4. Cell state  

The capacity of the LSTM memory block to sustain and transmit a modified or 

maintained state, which is more frequently referred to as memory, over time steps is 

one of the most important elements of this type of memory. This is accomplished by 

including a cell state within the memory block, which may be altered by a variety of 

components including the input gate, output gate, and forget gate. This allows the 

memory block to function as intended. Figure 7 provides a graphical representation of 

the cell state in the form of the horizontal connection. 

The cell state goes through a series of operations that are carried out within the 

LSTM memory block i. These operations include pointwise vector multiplications and 

vector additions. An operation known as pointwise vector multiplication is performed 

on the prior cell state using the output from the forget gate as the input. An additional 

step of pointwise vector multiplication is performed on the resultant vectors produced 

after applying a standard logistic sigmoid unit and hyperbolic tangent function S to the 

data. As seen in equation (1), the updated state of the cell is obtained by adding 

together these two pointwise vector products. This new state is designated as s(t) i. 

𝑆𝑖
(𝑡)

=  𝑓𝑖
(𝑡)

𝑆𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡)

𝑆̂𝑖
𝑡   ... 1 

Figure 7 shows a graphical illustration of the relevant components working 

together to update the cell state within the LSTM memory block. These components 

are shown in unison throughout the figure. A better understanding of how the LSTM 
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memory block maintains and updates vital information over time can be achieved by 

appreciating the interactions between the input gate, the output gate, the forget gate, 

and the cell state. These interactions play a crucial role in efficient learning and the 

modeling of long-term dependencies 

 

Figure 7.  update the cell state within an LSTM memory 

 

2.6.5. Tackling The Vanishing/Exploding Gradients Problem  

The well-designed connections between the multiplicative gated units and the 

memory cell are the secret to the LSTM memory block's success in minimizing the 

obstacles provided by disappearing and exploding gradients. This success may be 

attributed to the LSTM memory block. These connections allow for the constant error 

carousel (CEC)  ( Gers, Schmidhuber, & Cummins, 1999) (Gers et al., 1999b; 

(Hochreiter & Schmidhuber, 1997). to be maintained, which is characterized by the 

fact that error signals do not disappear nor burst. 

Both the input gate and the output gate are extremely important components of 

the LSTM design, since they are responsible for monitoring and responding to changes 

in the CEC's state. They monitor the flow of information and make sure that the state 

is kept secure until the forget gate chooses to change the settings (Hochreiter & 

Schmidhuber, 1997). The LSTM memory block is able to successfully handle the 
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preservation and updating of information as a result of the dynamic interaction that 

occurs between the input gate, the output gate, and the forget gate. This allows the 

LSTM memory block to sidestep the issues that are connected with gradient instability. 

The LSTM design maintains a steady and constant flow of error signals 

throughout the entirety of the learning process by meticulously managing the 

interactions that take place between the various components. Because of this one-of-

a-kind process, the LSTM memory block is able to detect and remember long-term 

relationships, which paves the way for more accurate and robust modeling of 

sequential data. 

2.7. Improvement Algorithms For Training Neural Networks  

The following piece will go through a number of the most important 

optimization strategies, including stochastic gradient descent, Adam, and rmsprop, 

among others. The development of a learning network makes use of a wide array of 

instructional methods. (Kingma & Ba, 2014). And ( Ruder, 2016). All recommend 

including dropouts and batch normalization into your overall strategy  (Kingma & Ba, 

2014)  ( Ruder, 2016). Reduce the amount of space taken up by the loss function while 

simultaneously improving the accuracy of the model. When optimizing over several 

data instances, the goal is to reduce the overall loss as much as possible. 

2.7.1. Root Mean Square Prop (RMSPROP)  

This variation was introduced in the ground-breaking work conducted by the 

esteemed team of Tieleman and Hinton, who were the original developers of the 

ADMA optimization technique. To rescale the gradient and generate unique updates 

for the system, initial updates are made using the momentum ( Krogh & Vedelsby, 

1994). By rescaling the gradient based on momentum, original updates can be created. 

RMSPROP analyzes the data and determines the appropriate individualized learning 

rate for the model. The rate at which new information is absorbed can be adjusted as 

needed, whether to accelerate or decelerate the process. Since each parameter requires 

an individual update, the approach is initiated with the following equations: 

(𝑣𝑡) =  𝑝 𝑣𝑡1
+ (1 − 𝑝2) ∗ 𝑔𝑡

2                                                          …  2 
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Δω𝑡 =  −
𝜂

√𝑣𝑡+∈ 
                                                                              …  3 

ω𝑡+1
= ω𝑡  + Δω𝑡                                                                               …  4 

2.7.2. Stochastic Gradient Descent (SGD    

 To be more specific, it uses something called a stochastic gradient descent, 

which is also known as SGD, to minimize loss while simultaneously updating the 

weights of a convolutional neural network, also known as CNN, in order to accurately 

classify pictures. In order to do this, we implement a modification to the weights that 

is the linear product of the most recent weight update Vt and the negative gradient L. 

(W). The entire amount of learning, denoted by an, is used to compute the weight W a  

( Ruder, 2016). This is accomplished by minimizing the negative gradient L (W). 

Displays the rate at which things are changing in comparison to the amount of time 

that has passed since the last revision (VT). SGD determines the new value for the 

weight, which is denoted by VT+1, by making use of the current weight Wt and the 

most recent update of the weight VT After some tinkering, the weights have been 

brought up to their proper levels, which are now represented by this fresh figure. 

Vt+1
=  μVt − a∇ℒ(Wt)                                          …  5 

And  

Vt+1
=  Wt +  Vt+1

                                                  …  6 

2.7.3. ADAM  

It is a method of optimization that is based on gradients and includes an adaptive 

moment estimate (m t, V t). The second set of equations is modified to include the 

revised parameters that were determined by the update. 

(𝑚𝑡)𝑖 = (𝑚𝑡−1
)

𝑖
+ (1− β1) (∇ℒ(𝑤𝑡))

𝑖
                            …  7 

And 

(𝑣𝑡)𝑖 =  β2(𝑣𝑡−1
)

𝑖
+ (1 −  β2)(∇ℒ(𝑤𝑡))

𝑖

2
                     …  8 
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METHODOLOGY 

3.1. Introduction 

In the section of this study devoted to methodology, the approaches and methods 

that were utilized for time series forecasting are discussed. The chapter begins with a 

review of the previously developed models, such as ARIMA and SARIMA, and then 

moves on to present the new model, which is LSTM combined with the NADAM 

optimizer. The objective of the approach is to offer a full knowledge of the stages 

involved in the implementation of the models used for time series forecasting as well 

as the models themselves. 

3.2. Description of Existing Models  

3.2.1. Auto Regressive Integrated Moving Average (ARIMA)   

ARIMA modeling is one of the most common ways to make predictions about 

time series, especially for data that doesn't change with the seasons and is stable. It has 

three parts: an autoregressive component (AR), an integrated component (I), and a 

moving average component (MA). The AR part measures the linear relationship 

between the current observation and a fixed amount of previous observations. The MA 

part measures the linear relationship between the current observation and the errors of 

previous observations. The I component is what is used in the process of differencing 

to make the time series stable. The ARIMA model takes all of these things into account 

to make accurate predictions about the future based on the trends that are already 

present in the data. 

In this study, we use the ARIMA model to find and describe the temporal 

relationships and patterns in the time series data. The decisions made for the AR, I, 

and MA parameters (p, d, q) directly affect how accurate the model is. The auto_arima 

method in the pmdarima package is used to find the best possible values, and the AIC 

criteria is used to choose the best possible model (Figure 8). 
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Figure 8. ARIMA Model flowchart 

3.2.2. Seasonal Auto Regressive Integrated Moving Average (SARIMA)  

The SARIMA modeling method is an extension of the ARIMA modeling 

method that handles time series data with seasonal trends. It has parts that aren't 

affected by the season and parts that are. In the SARIMA (p, d, q) (P, D, Q) m model, 

the nonseasonal (p, d, q) part is joined with the seasonal (P, D, Q) m part, where m is 

the number of observations made in a given year. 

The SARIMA model is used to look at the seasonal changes in the time series 

data for the goal of this investigation. By taking both nonseasonal and seasonal factors 

into account in its calculations, the SARIMA model gives a more accurate picture of 

the data and makes forecasts more accurate (Figure 9). Using the auto_arima function 

and the AIC model selection criterion, the SARIMA parameters (p, d, q, P, D, and Q) 

are chosen after the auto_arima function has chosen them. 
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Figure 9. ARIMA/SARIMA model flowchart 

 

3.3. Proposed Model: LSTM with NADAM Optimizer 

3.3.1. Long Short-Term Memory (LSTM)  

 In this study, the Long Short-Term Memory (LSTM) model was used. It is an 

example of a recurrent neural network (RNN), which has been shown to be able to 

record temporal relationships in time series data. Figure 10 shows that MATLAB has 

a set of tools for deep learning that can be used to build and train LSTM networks. 

This toolbox has the functions and classes you need to make and train these networks. 
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The LSTM design is made up of memory cells, input gates, output gates, and 

forget gates. These gates help the network remember what's important, forget what's 

not, and make accurate predictions. Inside MATLAB, you can find tools that make it 

easy to build the LSTM model's design. With these features, the user can choose how 

many hidden layers there are, how many LSTM units are in each layer, and how the 

layers are activated. 

 

Figure 10. Shared circuitry of long- and short-term memory cells 

 

3.3.2. NADAM Optimizer   

In this study, the NADAM optimizer, which is a type of the Adam optimizer, is 

used. The Adam optimizer is a method that uses both momentum algorithms and 

adjustable learning rates. The NADAM optimizer uses the Nesterov Accelerated 

Gradient (NAG) method to speed up convergence and improve efficiency when 

working with data that is noisy or has a lot of curves. 

To use the NADAM optimizer in MATLAB, we use the optimization toolbox, 

which has a number of different optimization methods that can be used to train neural 

networks. The NADAM optimizer is used to change the LSTM model's weights and 
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biases during the training process. These changes are made based on how steep the 

slopes of the loss function are. 

3.3.3. Comparison with Other Optimizers  

MATLAB provides users with a variety of different optimization methods in 

addition to NADAM, all of which may be utilized in the process of training LSTM 

models. The Stochastic Gradient Descent (SGD) algorithm, RMSprop, Adagrad, and 

Adam are all examples of optimizers that are often employed. These optimizers have 

different update rules and adaptive learning rate methodologies, both of which can 

have an effect on the pace at which the LSTM model converges as well as its overall 

performance. 

Experiments may be run with the same Long Short-Term Memory (LSTM) 

architecture and dataset so that the performance of various optimizers can be 

compared. We are able to evaluate the efficiency of each optimizer in training the 

LSTM model by assessing parameters such as the values of the loss function, the 

accuracy of the predictions, and the amount of time spent training. This research sheds 

light on the benefits and drawbacks of various optimization techniques, as well as their 

applicability to time series forecasting activities. 

In addition, we may analyze the benefits and drawbacks of each optimizer, 

taking into account aspects such as convergence speed, stability, noise resistance, and 

the capacity to deal with high-curvature data. This debate has the potential to assist 

academics and practitioners in selecting the optimizer that is the best suitable for their 

time series forecasting issue based on the features of their dataset and the particular 

needs of their problem. 

We are able to give a detailed study of the proposed model and its performance 

in time series forecasting tasks by expanding on the implementation details of the 

LSTM model with the NADAM optimizer in MATLAB and includes a comprehensive 

comparison with different optimization techniques. This allows us to provide a more 

in-depth look at the suggested model. This in-depth debate will help to a deeper 

knowledge of the approach and give significant insights for the research that will be 

conducted in the future in this sector. 

The general flowchart of the suggested technique may be found in Figure 11. 
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Figure 11. The suggested model's data flowchart 

 

3.4. Experimental Setup and Evaluation  

3.4.1. Dataset Preparation   

The "Pasion et al. dataset" was used for this study. Data about time is in the first 

column of this set of data. The data set is put out in the form of a table, where each 

row represents a certain point in time and each column represents a different variable 

or characteristic. Before the models are used, the dataset is first cleaned up and made 

ready for study. This means that you have to account for any missing values, scale the 

data, and split it into a training set and a testing set.  

3.4.2. Implementation of ARIMA and SARIMA Models  

The "Pasion et al. dataset" is used to test the ARIMA and SARIMA models by 

using the right methods from Python tools like statsmodels or pmdarima. The 

auto_arima method is used to figure out the values for the parameters (p, d, q, P, D, 

Q), and then the models are "fitted" to the training data. Metrics like root-mean-square 

error (RMSE), accuracy, and speed of computing are used to judge how well the 

models can predict the future. 

3.4.3. Implementation of LSTM with NADAM Optimizer   

Before the LSTM model can be used with the NADAM optimizer, the "Pasion 

et al. dataset" has to be preprocessed and changed into the right format for LSTM 

input. The dataset is then split into a training set and a testing set, and the LSTM 

network's design is explained. The training data are used to teach the model, and then 
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the NADAM optimizer is used to make the model as good as it can be. The LSTM 

model's accuracy is judged by comparing the model's predicted values with the real 

values from the testing set. 

3.5.  Comparison and Analysis of Results  

3.5.1. Comparison of ARIMA, SARIMA, and LSTM Models  

 The data from ARIMA, SARIMA, and LSTM models are compared and studied 

to see how well they can predict time series. The evaluation measures, which include 

root mean square error (RMSE), accuracy, and computational speed, are used to figure 

out how accurate the models are and how much it costs to run them. The pros and cons 

of each model are looked at, and it is pointed out how well they work with different 

kinds of time series data and predicting projects. 

3.5.2. Comparison of Optimization Algorithms   

When contrasted with the performance of various optimization techniques, such 

as SGD, Adam, RMSprop, and others, the LSTM model's performance with the 

NADAM optimizer is evaluated. The evaluation measures are utilized to determine 

how well each optimizer is in enhancing the precision and convergence of the LSTM 

model. The findings shed light on how the performance of the LSTM model is affected 

by a variety of optimization strategies used in time series forecasting and give some 

insights as a result. 

3.6. Chapter Summary  

Within this chapter, the approach for time series forecasting that was used 

throughout this study was described. Both the ARIMA and SARIMA models that are 

now in use have been outlined, including their respective mathematical formulations 

and assumptions. The LSTM model that was suggested along with the NADAM 

optimizer was presented, with an emphasis placed on the model's capacity to handle 

nonlinear interactions in time series data as well as to capture long-term dependencies. 

In this section, we will describe the comparison and analysis of the data, as well as the 

experimental setup and assessment techniques for each model. This chapter lays a 

strong groundwork for the next chapters, which describe the experimental findings and 

debates in greater depth. 
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RESULTS AND ANALYSIS 

4.1. Model Descriptions  

This chapter includes the implementation details and outcomes of the proposed 

approaches, such as ARIMA and SARIMA models, as well as LSTM with a variety of 

optimizers (Adam, SGD, RMSPROP, and NADAM). Comparison and analysis of the 

performance of these different approaches will take place. 

4.2. Results using ARIMA  

The ARIMA model, which is a time-series approach, was trained on a variable 

dataset that included 13 months of data. (Graphic 1) The model produced the best 

output while also having the lowest Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE). Graphic 1 shows that the RMSE values for the various days 

included in the dataset are comparable. Table 3 contains the ARIMA error values that 

were calculated. 

 

Graphic 1. ARIMA model data set featuring a forecast graph and Root mean squared 

error values over a range of days 
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4.3. Results using SARIMA  

SARIMA, which is quite similar to ARIMA, also makes use of time-series 

techniques and was trained using data that covers a period of thirteen months. Figure 

13 shows that the model had the best performance in terms of RMSE and MSE when 

it was evaluated during a training period. Graphic 2 shows that the RMSE values for 

the different days included in the test dataset were comparable to one another. The 

SARIMA error values are presented in Table 3, below. 

 

Graphic 2. SARIMA model data set featuring a forecast graph and Root mean squared 

error values over a range of days 

4.4. Results using LSTM with NADAM  

The suggested approach was used to successfully implement the LSTM model, 

which is constructed using neural networks. Throughout the training, the NADAM 

optimizer was utilized. The combination of the LSTM model with the NADAM 

optimizer led to an increase in the accuracy of the predictions, which in turn resulted 

in lower RMSE and MSE values. The forecast that was generated with LSTM models 

can be seen in Graphic 3, and Graphic 4 shows the RMSE values that were calculated 
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for each day of the dataset. The RMSE curve for each of the test datasets stayed within 

the same general range the whole time. Table 3 displays the LSTM error values that 

were generated. 

 

Graphic 3. NADAM LSTM 

 

Graphic 4. NADAM LSTM RMSE 
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4.5. Performance Comparison  

The data from ARIMA, SARIMA, and LSTM models are compared and studied 

to see how well they can predict time series. The evaluation measures, which include 

root mean square error (RMSE), accuracy, and computational speed, are used to figure 

out how accurate the models are and how much it costs to run them. The pros and cons 

of each model are looked at, and it is pointed out how well they work with different 

kinds of time series data and predicting projects. 

 

Table 3. Results Comparision 

Method RMSE Epoch Time 

NADAM LSTM 0.00756 500 26 second 

ADAM LSTM 1.2279 500 72 min 

SGD LSTM 0.75 500 70 min 

RMSprop LSTM 0.8 500 75 min 

ARIMA 6.3396 - 1 min 

SARIMA 7.3102 - 1 min 

 

4.6. Discussion and Implications  

After looking at the results of different models, it is clear that the optimization 

done with the NADAM optimizer was definitely necessary to get the forecast to the 

level of accuracy that was wanted. When the suggested LSTM model was used with 

the NADAM optimizer, it did much better than the ARIMA and SARIMA models, as 

well as models that used other optimization methods. The thorough comparison and 

analysis showed how good the suggested LSTM model is at predicting time series data 

when used with the NADAM optimizer. 
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LIMITATIONS AND FUTURE WORK 

In spite of the fact that the suggested strategy produces encouraging results, it 

does suffer from a few drawbacks. These include insufficient control over the memory 

of the forget gate of the LSTM, an extended training period necessitated by the 

requirement of an adequate dataset, and the possibility of difficulties arising during the 

hardware implementation of the model. 

The suggested model may be improved in further work by increasing the total 

number of layers or the amount of data used for training. It is also possible to take into 

consideration the investigation of more recent methods such as GRU, DNN, and hybrid 

models that integrate statistical methods with neural networks. Incorporating 

additional input parameters based on correlation factors can further improve the 

accuracy of the forecasting process. Some examples of such parameters are the aerosol 

index, barometric pressure, and wind direction. 
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