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ABSTRACT
In this work, we investigate the asymptotic behaviour and examine
boundedness of the solutions for the following difference equation

xn+1 = αλ−(nxn+(n−k)xn−k)

β + nxn + (n − k)xn−k
, n = 0, 1, 2, . . . (1)

where λ ≥ 1 and α,β ≥ 0 and x−k , x−(k−1), . . . , x−1, x0 are arbitrary
numbers.
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1. Introduction

Difference equations are the discrete form of differential equations and they are very
important in many applications. For example, the differential equations involved with
exponential terms have applications in biology and have interesting properties. The
equation

Bt+1 = cN
ea−bLt

1 + ea−bLt
, Lt+1 = L2t

Lt + d
+ ckN

ea−bLt

1 + ea−bLt
(2)

has oscillatory and chaotic nature and was discussed in [12] where B represents the living
biomass, L the litter mass,N the total soil nitrogen, t the time and constants a,b,c,d>0 and
0< k<1.

In [5], El-Metwally et al. studied the global stability, boundedness and periodicity of the
positive solution of the difference equation

xn+1 = α + βxn−1e−xn , n = 0, 1, 2, . . .

where α > 0 and β > 0 are the immigration rate and population growth, respectively, x−1
and x0 are arbitrary nonnegative numbers.
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Similarly, the boundedness and global asymptotic behaviour of the solution for

xn+1 = α + βe−xn

γ + xn−1
, n = 0, 1, 2, . . .

and

xn+1 = αe−(nxn+(n−k)xn−k)

β + xn + (n − k)xn−k
, n = 0, 1, 2, . . . (3)

were studied by Ozturk et al. [9,10], where α and β are positive numbers k ∈ {1, 2, 3, . . . }
and the x−k, x−(k−1), . . . , x−1, x0 are arbitrary numbers.

Similar properties concerning the biological model

xn+1 = ax2n
xn + b

+ c
ek−dxn

1 + ek−dxn

was established in [11], where 0<a<1,b,c,d,k are positive constants and x0 is a real
number. The stability analysis of a nonlinear difference equation

yn+1 = αe−yn + βe−yn−1

γ + αyn + βyn−1
, n = 0, 1, 2, . . .

was established in [6], where α, β and initial conditions are arbitrary positive numbers.
Properties of solutions of various types of second and third order several types

of difference equations were discussed in [2,7], such as the stability properties and
conditions for boundedness of nonlinear difference equation xn+1 = f (xn)g(xn−k) was
studied in [8] and asymptotic properties of solutions of the difference equation
yn = (f (yn−1, . . . , yn−k))/(g(yn−1, . . . , yn−k)), n = 0, 1, 2, . . . was studied in [1].

Motivated by above studies, we generalize (3) by consideringλ ≥ 1 and investigatemany
properties including the asymptotic stability and boundedness of the solutions.

2. Preliminaries

Definition 2.1: [2] Let

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, . . . (4)

where I is an interval and f : Ik+1 → I is a map. Then a solution of (4) is a sequence
{xn}∞n=−k and satisfies (4) for all n ≥ 0. A solution of (4) if constant for all n ≥ −k then
it is called an equilibrium solution of (4). Further if xn = x̄, for all n ≥ −k is an equilib-
rium solution then x̄ is called an equilibrium point of (4). Note that for discrete case I can
also be the subset of integers Z = {. . . ,−1, 0, 1, . . . }. Further

(1) An equilibrium point x̄ of (4) is locally stable if given any ε > 0, there exists a δ > 0
such that if

(
∣∣x−k − x̄

∣∣+ ∣∣x−(k−1) − x̄
∣∣+ · · · + |x0 − x̄|) < δ

then |xn − x̄| < ε for all n ≥ −k.
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(2) The equilibrium x̄ of (4) is called locally asymptotically stable if it is locally stable and
if there exists γ > 0 such that x−k, x−(k−1), . . . , x0 ∈ I with (|x−k − x̄| + |x−(k−1) −
x̄| + · · · + |x0 − x̄|) < γ then limn→∞ xn = x̄.

(3) The equilibrium x̄ of (4) is called a global attractor if for every x−k, x−(k−1), . . . , x0 ∈ I
we have limn→∞ xn = x̄.

(4) The equilibrium x̄ of (4) is called globally asymptotically stable if it is locally stable
and a global attractor.

(5) The equilibrium x̄ of (4) is called unstable if it is not stable.

see [4].

Definition 2.2 ([4]): Consider (4). Then the corresponding linearized equation about x̄ is
given by

yn+1 = P0yn + P1yn−1 + P2yn−2 + · · · + Pkyn−k (5)

where Pi = ∂f /∂xi(x̄, x̄, . . . , x̄). The characteristic equation of (5) is given by

λk+1 − P0λk − P1λk−1 − · · · − Pk−1λ − Pk = 0. (6)

Theorem 2.3 ([3]): Let a, b ∈ R and k ∈ {1, 2, 3, . . . }. Then,
|a| + |b| < 1 (7)

is a sufficient condition for the asymptotic stability for (8)

yn+1 − ayn + byn−k = 0, n = 0, 1, 2, . . . (8)

The condition is still valid if k odd and b < 0, or k even and ab<0.

Theorem 2.4 ([3]): Consider the difference equation

xn+1 = f (xn, xn−k), n = 0, 1, 2, . . . (9)

where k ∈ {1, 2, 3, . . .}. Now assume f : [a, b] × [a, b] → [a, b] is a continuous map and
having the following properties,

(a) f (u, v) is non-increasing in each argument.
(b) If (c1, c2) ∈ [a, b] is a solution of the system satisfy c1 = f (c2, c2) and c2 = f (c1, c1) then

implies that c1 = c2,

then (9) has a unique positive equilibrium which converges to x̄.

3. Main results

In this section, we discuss the stability and boundedness of the solutions for Equation (1).
The equilibrium points of Equation (1) are the solutions of the equation

x̄ = αλ−(2n−k)x̄

β + (2n − k)x̄
. (10)

Set g(x) = (αλ−(2n−k)x)/(β + (2n − k)x) − x. Thenwe get g(0) = α/β > 0, limx→∞ g(x)
= −∞ and
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g′(x) = −α(2n − k)λ−(2n−k)x{ln λ[β + (2n − k)x] + 1}
[β + (2n − k)x]2

−1.

This gives us the equilibrium solution for (1).
The associated linearized equation in x̄ is given by

yn+1 + nx̄
[
ln λ + 1

β + (2n − k)x̄

]
yn + (n − k)x̄

[
ln λ + 1

β + (2n − k)x̄

]
yn−k = 0.

(11)
The characteristic equation of (1) is,

λ2 + nx̄
[
ln λ + 1

β + (2n − k)x̄

]
λ + (n − k)x̄

[
ln λ + 1

β + (2n − k)x̄

]
λ−k+1 = 0.

(12)

Theorem 3.1: (1) Let n> k. The positive equilibrium point of (1) is locally asymptotically
stable if,

x̄ ∈
(
0,

−β ln λ +
√

β2(ln λ)2 + 4β ln λ

2(2n − k) ln λ

)
. (13)

(2) Let k>2n and β − (k − 2n)x̄ > 0. The positive equilibrium point x̄ is locally asymptot-
ically stable if

x̄ ∈
(
0,
[2(k − n) + kβ ln λ] −

√
[2(k − n) + kβ ln λ]2 − 4βk ln λ(k − 2n)
2k(k − 2n) ln λ

)
.

(14)

Proof: (1) Using Theorem 2.3, we have∣∣∣∣−nx̄
[
ln λ + 1

β + (2n − k)x̄

]∣∣∣∣+
∣∣∣∣(n − k)x̄

[
ln λ + 1

β + (2n − k)x̄

]∣∣∣∣ < 1. (15)

⇒ (2n − k)2(ln λ)(x̄)2 + [(2n − k)β ln λ]x̄ − β < 0. (16)

Since x̄ is positive, x̄ satisfies the equation (16) if,

x̄ ∈
(
0,

−β ln λ +
√

β2(ln λ)2 + 4β ln λ

2(2n − k) ln λ

)
.

If k is odd, the asymptotic stability condition does not hold.
Now let k be even. By Theorem 2.3 and since

[
−nx

(
ln λ + 1

β − (k − 2n)x̄

)][
(n − k)x̄

(
ln λ + 1

β − (k − 2n)x̄

)]
< 0

(15) is a necessary condition for the asymptotic stability of (11).
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(2) Since k>2n, using Theorem 2.3 and equation (11) we get,
∣∣∣∣−nx̄

(
ln λ + 1

β − (k − 2n)x̄

)∣∣∣∣+
∣∣∣∣−(k − n)x̄

(
ln λ + 1

β − (k − 2n)x̄

)∣∣∣∣ < 1.

(17)
Using the hypothesis β − (k − 2n)x̄ > 0, the inequality (17) gives us,

(k − 2n)k(ln λ)(x̄)2 − [2(k − n) + kβ ln λ] x̄ + β > 0. (18)

Since x̄ > 0 and β − (k − 2n)x̄ > 0, (18) holds if

x̄ ∈
(
0,
[2(k − n) + kβ ln λ] −

√
[2(k − n) + kβ ln λ]2 − 4βk(k − 2n) ln λ

2k(k − 2n) ln λ

)
.

By Theorem 2.3, we get the following results.
(a) If k is odd, since

−(k − n)x̄
(
ln λ + 1

β − (k − 2n)x̄

)
< 0

then (17) holds as the necessary condition for the asymptotic stability.
(b) Now if k is even and since

(
−nx̄

(
ln λ + 1

β − (k − 2n)x̄

))(
−(k − n)x̄

(
1 + 1

β − (k − 2n)x̄

))
> 0

then (17) does not hold as the necessary condition for asymptotic stability.
�

Example 3.2: (a) Taking n=2, k=1 and for α = 3,β = 5, λ = 2, the equilibrium point
of (1) is 0.284008. By (13), x̄ ∈ (0, 0.38975) and by computation we see that it is locally
asymptotically stable.

(b) Suppose letβ = 1 andn, k,α, λ as said in (a), then x̄ = 0.46939which does not belongs
to (0, 0.26701). Then by computation we see that the equilibrium point is unstable.

Example 3.3: Taking n = 1, k = 3,α = 300,β = 20, 000 and λ = 25, we get two equi-
librium points 0.0157817 and 1.41184. By (14), we see that 0.0157817 is in (0, 0.10355)
and it is locally asymptotically stable but 0.141184 does not belongs to (0, 0.10355) and by
computation we see that it is unstable.

Theorem 3.4: Let n= k and β + kx̄ > 0. The equilibrium point of (1) is locally asymptoti-
cally stable if and only if

x̄ ∈
(

−β

k
,
−[2 + β ln λ] +

√
β2(ln λ2) + 4

2k ln λ

)
. (19)
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Proof: Using Theorem 2.3, we can write (11) in the form

yn+1 −
(

−kx̄
[
ln λ + 1

β + kx̄

])
yn = 0, n = 0, 1, 2, . . . (20)

and from Theorem 2.3 we get∣∣∣∣−kx̄
[
ln λ + 1

β + kx̄

]∣∣∣∣ < 1

⇒ −1 < −kx̄
(
ln λ + 1

β + kx̄

)
< 1

⇒ k2(ln λ)(x̄)2 + kβ(ln λ)x̄ − β < 0

and k2(ln λ)(x̄)2 + (2 + β ln λ)kx̄ + β > 0.

Both the inequalitiesmust hold for x̄. Furthermore, fromβ + kx̄ > 0, we get x̄ >
−β

k
. This

gives us the interval

x̄ ∈
(

−β

k
,
−[2 + β ln λ] +

√
β2(ln λ)2 + 4

2k ln λ

)
.

Here k has no important role for proving asymptotic stability since the characteristic roots
of (20) lie in the unit disk |δ| < 1 with the condition (19). �

Example 3.5: When n= k=2 and α = 30,β = 10, λ = 20, we see that the equilibrium
point 0.348204 does not satisfy (19) and by computation we see that the equilibrium point
is unstable.

Theorem 3.6: Let n ≥ k and {xn}∞n=1 be a positive solution of (1).

(i) Then every solution of (1) is bounded.
(ii) Then the equilibrium point of (1) is bounded if x̄ > 0.

Proof: (i) Since xn > 0 for all n and λ ≥ 1 we have

0 < xn+1 = αλ−(nxn+(n−k)xn−k)

β + nxn + (n − k)xn−k
<

α

β
.

Therefore, every positive solution is bounded.
(ii) Assume that x̄ > 0 and λ ≥ 1. Then

0 < x̄ = αλ−(2n−k)x̄

β + (2n − k)x̄
<

α

β
.

Therefore, the equilibrium point is bounded. �

Example 3.7: Let α,β , λ be as in Example 3.2 (a) and let k=n−1. When x−1 = 0.3 and
x0 = 0.5, we see that every solution of (1) is less than 0.6.
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Lemma 3.8: Let n ≥ k and f (u, v) = (αλ−(nu+(n−k)v))/(β + nu + (n − k)v), n = 1, 2,
. . . . The following conditions holds.

(i) In [0,∞) the function f (x, x) is decreasing.
(ii) f (u, v) is decreasing for each u, v ∈ [0,∞).

Proof: (i) We have,

f (x, x) = αλ−(2n−k)x

β + (2n − k)x

f ′(x, x) = −(2n − k)αλ−(2n−k)x[β ln λ + (2n − k)x ln λ + 1]
[β + (2n − k)x]2

.

So (i) is trivial.
(ii) The proof is obvious.

�

Theorem 3.9: Let n> k and β > α. If positive equilibrium point is locally asymptotically
stable then it is globally asymptotically stable.

Proof: Let us have μ = limn→∞ inf xn, M = limn→∞ sup xn and ε > 0 such that ε <

min{α
β

− M,μ}. There exists n0 ∈ N such that μ − ε ≤ xn ≤ M + ε. Using part (i) of
Lemma 3.8, we have

αλ−(2n−k)(M+ε)

β + (2n − k)(M + ε)
≤ xn ≤ αλ−(2n−k)(μ−ε)

β + (2n − k)(μ + ε)
, n ≥ n0 + 1

⇒ αλ−(2n−k)(M+ε)

β + (2n − k)(M + ε)
≤ μ ≤ M ≤ αλ−(2n−k)(μ−ε)

β + (2n − k)(μ + ε)
.

Since ε > 0 is arbitrary, this inequality yields

αλ−(2n−k)M

β + (2n − k)M
≤ μ ≤ M ≤ αλ−(2n−k)μ

β + (2n − k)μ

⇒ αλ−(2n−k)M − βμ ≤ αλ−(2n−k)μ − βM

⇒ β(M − μ) ≤ α(λ−(2n−k)μ − λ−(2n−k)M).

From our assumptionM,μ > 0 and from the hypothesis we arrive atM ≤ μ.
Hence M = μ = x̄. From Theorem 2.4, (1) has a unique equilibrium point and every

positive solution of (1) converges to x̄. The proof of the theorem is complete. �

Example 3.10: It is clear from Example 3.2 that the equilibrium solution is also globally
asymptotically stable but in Example 3.3 the equilibrium point 0.0157817. This exam-
ple shows us that the locally asymptotically stability need not necessarily be globally
asymptotically stable.
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