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Abstract
This paper presents an interactive fuzzy goal programming (FGP) approach for solving Multiobjective Nonlinear Program-
ming Problems (MONLPP) with interval type 2 fuzzy numbers (IT2 FNs). The cost and time of the objective functions, and 
the requirements of each kind of resources are taken to be trapezoidal IT2 FNs. Here, the considered fuzzy problem is first 
transformed into an equivalent crisp MONLPP, and then the MONLPP is converted into an equivalent multiobjective linear 
programming problem (MOLPP). By using an algorithm based on Taylor series, this problem is also reduced into a single 
objective linear programming problem (LPP) which can be easily solved by Maple 2017 optimization toolbox. Finally, the 
proposed solution procedure is illustrated by a numerical example.

Keywords Fuzzy goals · Taylor series · Interval type 2 fuzzy sets · Multiobjective nonlinear programming · Interactive 
mechanism

1 Introduction

Most of the real-life problems are frequently represented 
by multiple and conflicting criteria. Such conditions are 
usually defined by optimizing multiple objective functions. 
Furthermore, the parameters are often included imprecise 
quantities due to various uncontrollable factors when form-
ing real-world problems. In practical mathematical program-
ming problems, a decision maker generally faces a state of 
uncertainty as well as complexity, due to various unknown 
factors. In general, it is required to optimize several non-
linear and conflicting objectives simultaneously. But these 
problems cannot be expressed and solved by conventional 
techniques due to uncertain information. Since fuzzy quanti-
ties are very convenient for modeling these type conditions, 
different fuzzy numbers are employed in the literature.

Fuzzy programming approach to linear programming 
with many objectives was investigated by Zimmermann [49]. 
He developed a fuzzy programming approach to solve the 
crisp multi-objective linear programming problem.

In many practical optimization models such as in indus-
trial planning, financial and corporate planning, market-
ing and media selection, etc., there exist many fuzzy and 
nonlinear production, planning and scheduling problems. 
Although intuitionistic fuzzy systems can be considered as 
an extension of classical fuzzy systems, there are shortages 
in the mapping. Because the classical fuzzy systems cannot 
fully describe the uncertainty, intuitionistic fuzzy systems 
are not equal to the fuzzy systems and have some deficien-
cies [36]. type-2 fuzzy sets are introduced by Zadeh et al. 
[47] as the extension of type-1 fuzzy sets. Moreover, type-2 
fuzzy sets are designated by two memberships to illustrate 
more degrees. Since type-2 fuzzy sets have the advantage 
of modeling uncertain systems more accurately compared 
with type-1 fuzzy sets, the computational procedures are 
very difficult when the type-2 fuzzy sets are employed to 
solve the problems [5, 6]. Mendel et al. presented some 
definitions and concepts of IT2 fuzzy sets in [31]. Because 
the use of Interval type 2 (IT2) set instead of type 2 fuzzy 
sets reduce computational complexity, IT2 fuzzy sets are 
globally employed to decrease dimensions with remark-
able relative illustrations, which are profoundly useful for 
computation and theoretical studies [32]. Thus, Interval 
type 2 Fuzzy Numbers (IT2 FNs) are very suitable for mod-
eling real-world problems. However, IT2 fuzzy sets can be 
observed as a particular illustration of common type-2 fuzzy 
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sets that all the values of secondary membership are equal to 
1. So it not only expresses the uncertainty better than type-1 
fuzzy sets but also diminishes the complexity. Moreover, 
IT2 FNs were used by many authors for decision-making 
problems [4, 6, 22, 38, 40], and many others.

Goal programming (GP) introduced by Charnes et al. 
[7] in 1955. As an extension of GP, the Fuzzy Goal Pro-
gramming (FGP) approach first presented by Narasimhan 
[35]. Tiwari et al. [43] introduced the weighted additive 
FGP model that incorporates each goal’s weight into the 
objective function, where the weights reveal the relative 
importance of the fuzzy goals. Mohamed [33] discussed the 
relationship between GP and fuzzy programming where the 
highest degree of each of the membership goals is achieved 
by minimizing over deviation variables. Recently, several 
researchers presented some novel methods in the field of 
FGP [21, 26, 39, 45]. Moreover, the FGP approach has been 
widely applied in many fields with diverse fuzzy numbers 
such as, bi-level programming [3], structural optimization 
problem [13], transportation [14], job evaluation [17], linear 
regression [19], project selection [23], game theory [24, 34], 
portfolio optimization [28], multi- level programming [25] 
and so on.

Since the Decision Maker (DM) plays an active role in the 
decision making process, the use of interactive approaches 
provides more options to select the best decision for DMs. It 
is possible that the most appropriate decision will be chosen 
with his/her common sense judgment [15]. Thus the interac-
tive FGP mechanism ensures integration-oriented, adoption 
and learning characteristics by analyzing each possibility 
of a particular field of problems which are joined in logical 
order adopting an if- then rule [16].

The investigation on modeling and optimization of the 
MONLPPs with (IT2 FNs) are not only significant in the 
fuzzy programming theory but also have a great advantage 
in the application of the real-world practical problems of 
conflicting nature. Due to the computational complexity 
of MONLPPs with linear or nonlinear constraints, existing 
interactive and classical FGP approaches are also insuffi-
cient. There are many interesting approaches for solving 
different nonlinear optimization problems [1, 10–12, 29]. 
In order to deal with such types of problems, a lineariza-
tion procedures based on Taylor series in this paper are 
presented. Thus, efficient solutions for the MONLPPs are 
obtained by reducing the computational complexity with the 
help of the linearization procedures.

Briefly, there are several gaps in the literature on 
MONLPPs.

1. To the best of our experiences, no work has been con-
sidered on MONLPPs with trapezoidal IT2 FNs under 
the linear and/ or nonlinear constraints.

2. There is no investigation involving MONLPPs with IT2 
FNs by interactive approaches based on linearization 
procedures in the literature.

3. Conventional fuzzy goal programming approaches for 
the MONLPPs may not generate feasible solutions and/
or efficient solutions in all situations. Sometimes it is 
difficult for the DM to reach the desired levels using 
conventional approaches.

Therefore an interactive fuzzy goal programming (FGP) 
approach based on Taylor series is presented to addresses 
these shortcomings by achieving the highest degree of mem-
bership functions for MONLPPs. After the MONLPP with 
trapezoidal IT2 FNs is modeled, then the expected value 
function of trapezoidal IT2 FNs is applied to convert the IT2 
fuzzy model into its crisp equivalent. Then aspiration level 
and the tolerance interval of each of objective function is 
determined by getting individual optimal solutions. Thereby 
the feasible region for the given problem is redefined by tak-
ing the upper and lower limits of decision variables. After 
these procedures, nonlinear membership function associ-
ated with each nonlinear objective is defined. Thus nonlin-
ear membership functions are transformed into linear func-
tions by using Taylor series around its own solution which is 
obtained by maximizing membership functions under rede-
fined linear constraints. In this way, the problem is reduced 
to a single objective Linear Programming Problem (LPP) by 
using a FGP model, and then interactive solution procedures 
of a FGP model are proposed to obtain optimal solutions. 
Finally, numerical examples are given to demonstrate the 
feasibility of the presented solution procedures.

The paper is constructed as follows: Sect. 2 deals with 
some definitions and arithmetic operations on IT2 FNs. Sec-
tion 3 deals with problem formulation and its solution proce-
dures. In Sect. 4, numerical examples are given to illustrate 
the methodology. Finally, we concluded in Sect. 5.

2  Preliminaries

2.1  Interval type‑2 fuzzy set

Definition 1 (Mendel et. al. [31]) Let Ã be a type-2 fuzzy 
set, then Ã is defined as

where Jx is the primary membership function of x in [0, 1]and 
uare the primary membership values. X is the universe of 
discourse and 𝜇Ã(x,𝜇)denotes the membership function of 
Ã. Ã can be defined as Ã = ∫

x∈X
∫
𝜇∈J

x

𝜇
Ã
(x,𝜇)∕(x,𝜇) ,

Ã =
{
(x,𝜇),𝜇Ã(x,𝜇)

||∀x ∈ X,∀𝜇 ∈ Jx ⊆ [0, 1], 0 ≤ 𝜇Ã(x,𝜇) ≤ 1
}
,
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𝜇 ∈ J
x
⊆ [0, 1],where ∬  denotes the union over all admis-

sible x and u.

Definition 2 (Mendel et. al. [31]) If all 𝜇Ã(x,𝜇) = 1, then 
Ãcalled an IT2 fuzzy set i.e. Ã = ∫

x∈X
∫
𝜇∈J

x

1∕(x,𝜇),

𝜇 ∈ J
x
⊆ [0, 1].

Uncertainty in the first memberships of a type-2 fuzzy set 
Ãconsists of a bounded region that we call the footprint of 
uncertainty. It is the union of all first memberships.

The footprint of uncertainty is characterized by the upper 
membership function and the lower membership function, 
and are denoted by �̄�Ãand 𝜇

−
Ã

 (Mendel et. al. [31]).

Definition 3 An IT2 FN is called a trapezoidal IT2 FN 
where the upper membership function and the lower mem-
bership function are both trapezoidal fuzzy numbers, i.e.,

where Hj

(
A
−

)
 and Hj

(
Ā
)
 denote membership values of the 

corresponding elements a
−
j+1

 and ā
j+1

respectively. Further, Li 

et. al [27] defined the arithmetic operations of interval type-2 
Fuzzy Set (See for detail, Li et. al [27]).

2.2  Defuzzification of trapezoidal interval type‑2 
fuzzy numbers

Let us consider a trapezoidal IT2 FNAcharacterized by 
Eq. (1). The expected value of A is determined as follows 
(Hu et. al [20]):

Assuming that A1 and A2 are two trapezoidal IT2 FNs, 
then we get A1 > A2 if and only if f

(
A1

)
> f

(
A2

)
.

When ā
i
= a

−
i
,(i = 1, 2, 3, 4) and H

1

(
A
−

)
= H

2

(
A
−

)
=

H
1

(
Ā
)
= H

2

(
Ā
)
= 1, the trapezoidal IT2 FN reduces to trap-

ezoidal fuzzy number, just as Ã =
(
a
−
1
, a

−
2
, a

−
3
, a

−
4

)
 Then, 

the expected value of Ãis

(1)
A =

(
Ā,A

−

)
=
(
ā
1
, ā

2
, ā

3
, ā

4
;H1

(
Ā
)
,H2

(
Ā
))
,

(
a
−
1
, a
−
2
, a
−
3
, a
−
4
;H1

(
A
−

)
,H2

(
A
−

))

(2)

f (A) =
1

2

(
1

4

4∑
i=1

(
a
−
i
+ āi

))
×
1

4

(
2∑
i=1

(
Hi

(
A
−

)
+ Hi

(
Ā
)))

f (Ã) =
(
a
−
1
+ a

−
2
+ a

−
3
+ a

−
4
∕4

)

3  Problem formulation

In real-world decision-making problems such as in pro-
duction, planning, scheduling, etc. the existing quantity of 
resources as well as the production quantity or the demand 
quantity or the target over a period might be imprecise and 
possess various types of fuzziness due to many factors such 
as market price, existence of men power, perception with 
the operators, weather, rain, transportation, traffic, etc. Such 
types of models can be illustrated more practical by human 
decision process if its parameters are estimated to be impre-
cise in nature [41, 42]. Because type 1 and intuitionistic 
fuzzy systems cannot fully describe the uncertainty and use 
of IT2 fuzzy sets instead of type 2 fuzzy sets reduce compu-
tational complexity, IT2 FNs are very suitable for modeling 
real-world problems.

A traditional multiobjective nonlinear programming 
problem (MONLPP) can be modeled as:

where fk(x), 1 ≤ k ≤ l and gj(x), 1 ≤ j ≤ m are the real val-
ued linear and/or nonlinear functions and x is n-dimensional 
decision variable vector.

Assuming that the objective functions f̃k(x) and the 
resource constraint g̃j(x) are nonlinear with estimated coef-
ficient parameters which are in terms of trapezoidal IT2 FNs. 
Then a MONLPP with IT2 FNs can be formulated as:

where f̃
k
(x) =

∑li
i=1

c̃
ki

∏n

l=1
x
𝛼l
l
, 1 ≤ k ≤ l  and g̃

j
(x) =

∑rj

r=1
ã
jr

∏n

l=1
x
𝛽l
l
,1 ≤ j ≤ m. ã

jr
 and c̃

ki
are estimated coeffi-

cient parameters with IT2 FNs. x is n - dimensional decision 
variable vector x =

(
x1, x2, ...xn

)
.b̃
j
, 1 ≤ j ≤ m is IT2 fuzzy 

available resource vector.

(3)

Max fk(x), 1 ≤ k ≤ l�

Min fk(x), l
� + 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎨⎪⎪⎩

gj(x) ≤ bj, 1 ≤ j ≤ m�

gj(x) ≥ bj, m
� + 1 ≤ j ≤ m��

gj(x) = bj, m
�� + 1 ≤ j ≤ m

x ≥ 0

(4)

Max f̃
k
(x), 1 ≤ k ≤ l�

Min f̃
k
(x), l� + 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎨⎪⎪⎩

g̃
j
(x) ≤ b̃

j
, 1 ≤ j ≤ m�

g̃
j
(x) ≥ b̃

j
, m� + 1 ≤ j ≤ m��

g̃
j
(x) = b̃

j
, m�� + 1 ≤ j ≤ m

x ≥ 0
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Further assuming that ã
jr
, 1 ≤ j ≤ m is the required fuzzy 

requirements to produce each product; c̃
ki
are estimated coef-

ficient parameters of each unit cost, x is the planned produc-
tion quantity for each product; � and � are real numbers, 
respectively; b̃

j (1≤j≤m�) is the estimated maximum amount of 

available resources with some enhancement which is accept-
able by the DM; b̃

j (m�+1≤j≤m��) is the estimated minimum 

planned amount of production with some tolerances which 
is acceptable by the DM; b̃

j (m��+1≤j≤m) is the estimated 

amount of different resources with some errors which is 
allowable by the DM.

Thus, model (4) can be rewritten as follows:

Employing the expected value function (2), problem (5) 
is further transformed into an equivalent crisp MONLPP as:

where ⌢c
ki
, ⌢a

jr
 and 

⌢

bj are the expected functional values, i.e. 
⌢

c
ki
= f

(
c̃
I

ki

)
, 1 ≤ k ≤ l,

⌢

a
jr
= f

(
ãI
jr

)
, 1 ≤ j ≤ m,respectively.

(5)

Max f̃
k
(x) =

li�
i=1

c̃
ki

n�
l=1

x
𝛼l
l
, 1 ≤ k ≤ l�

Min f̃
k
(x) =

li�
i=1

c̃
ki

n�
l=1

x
𝛼l
l
, l� + 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rj�
r=1

ã
jr

n�
l=1

x
𝛽l
l
≤ b̃

j
, 1 ≤ j ≤ m�

rj�
r=1

ã
jr

n�
l=1

x
𝛽l
l
≥ b̃

j
, m� + 1 ≤ j ≤ m��

rj�
r=1

ã
jr

n�
l=1

x
𝛽l
l
= b̃

j
, m�� + 1 ≤ j ≤ m

xl ≥ 0, 1 ≤ l ≤ n

(6)

Max fk(x) ≅

li�
i=1

⌢

c
ki

n�
l=1

x
𝛼l
l
, 1 ≤ k ≤ l�

Min fk(x) ≅

li�
i=1

⌢

c
ki

n�
l=1

x
𝛼l
l
, l� + 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≤

⌢

bj, 1 ≤ j ≤ m�

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≥

⌢

bj, m� + 1 ≤ j ≤ m��

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
=

⌢

bj, m�� + 1 ≤ j ≤ m

xl ≥ 0, 1 ≤ l ≤ n

Theorem 1 An efficient solution for problem (6) is efficient 
for problem (5).

Proof Let x =
(
x1, x2, ...xn

)
 be an efficient solution for the 

crisp problem (6). Therefore x is feasible for problem (6), 
i.e., the following hold.

Since the expected value function f  is linear,

which indicate that

Consequently, x is a feasible solution for problem (5).
On the other hand; since x is a feasible solution for prob-

lem (6), there does not exist any x̃ =
(
x̃1, x̃2, ...x̃n

)
 such that 

fk(x̃) ≥ fk(x), 1 ≤ k ≤ l� and fk(x̃) > fk(x) for at least one 
index k and fk(x̃) ≤ fk(x), 1 ≤ k ≤ l and fk(x̃) < fk(x) at 
least one index k. So we have no x̃ =

(
x̃1, x̃2, ...x̃n

)
 such that 

Max
∑li

i=1

⌢

c
ki

∏n

l=1
x
𝛼l
l
≥ Max

∑li
i=1

⌢

c
ki

∏n

l=1
x̃
𝛼l
l
, 1 ≤ k ≤ l� 

and Max
∑li

i=1

⌢

c
ki

∏n

l=1
x
𝛼l
l
> Max

∑li
i=1

⌢

c
ki

∏n

l=1
x̃
𝛼l
l

 for at 
least one index k . Additionally, Min

∑l
i

i=1

⌢

c
ki

∏n

l=1
x
𝛼
l

l
≤

Min
∑l

i

i=1

⌢

c
ki

∏n

l=1
x̃
𝛼
l

l
, l

� + 1 ≤ k ≤ l and Min
∑l

i

i=1

⌢

c
ki

∏n

l=1

x
𝛼
l

l
< Min

∑l
i

i=1

⌢

c
ki

∏n

l=1
x̃
𝛼
l

l
 for at least one index k.

∑rj

r=1

⌢

a
jr

n∏
l=1

x
𝛽l
l
≤

⌢

bj, 1 ≤ j ≤ m�

rj∑
r=1

⌢

a
jr

n∏
l=1

x
𝛽l
l
≥

⌢

bj, m
� + 1 ≤ j ≤ m��

rj∑
r=1

⌢

a
jr

n∏
l=1

x
𝛽l
l
=

⌢

bj, m
�� + 1 ≤ j ≤ m

xl ≥ 0, 1 ≤ l ≤ n

rj∑
r=1

f
(
ã
jr

) n∏
l=1

x
𝛽l
l
≤ f

(
b̃
j

)
, 1 ≤ j ≤ m�

rj∑
r=1

f
(
ã
jr

) n∏
l=1

x
𝛽l
l
≥ f

(
b̃
j

)
, m� + 1 ≤ j ≤ m��

rj∑
r=1

f
(
ã
jr

) n∏
l=1

x
𝛽l
l
= f

(
b̃
j

)
, m�� + 1 ≤ j ≤ m

xl ≥ 0, 1 ≤ l ≤ n

rj∑
r=1

ãI
jr

n∏
l=1

x
𝛽l
l
≤ b̃I

j
, 1 ≤ j ≤ m�

rj∑
r=1

ãI
jr

n∏
l=1

x
𝛽l
l
≥ b̃I

j
, m� + 1 ≤ j ≤ m��

rj∑
r=1

ãI
jr

n∏
l=1

x
𝛽l
l
= b̃I

j
, m�� + 1 ≤ j ≤ m
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Since the expected value function f  is linear, we have  
no x̃  such that Max

∑l
i

i=1
c̃
ki

∏n

l=1
x
𝛼
l

l
≥ Max

∑l
i

i=1
c̃
ki∏n

l=1
x̃
𝛼
l

l
, 1 ≤ k ≤ l

� and Max
∑l

i

i=1
c̃
ki

∏n

l=1
x
𝛼
l

l
> Max

∑l
i

i=1

c̃
ki

∏n

l=1
x̃
𝛼
l

l
 for at least one index k  . Additionally, 

Min
∑l

i

i=1
c̃
ki

∏n

l=1
x
𝛼
l

l
≤ Min

∑l
i

i=1
c̃
ki

∏n

l=1
x̃
𝛼
l

l
, l

� + 1 ≤ k ≤ l 
and Min

∑li
i=1

c̃
ki

∏n

l=1
x
𝛼l
l
< Min

∑li
i=1

c̃
ki

∏n

l=1
x̃
𝛼l
l

 for at 
least one index k.

Therefore x is efficient solution of problem (5).

3.1  Goal programming

This method was first presented by Charnes and Cooper 
[8]. The goal programming is to minimize the distance 
between objectives ( fk =

(
f1, f2, ...fl

)
 ) and aspiration levels 

( f̄k =
(
f̄1, f̄2, ...f̄l

)
 ), which are defined by the decision maker. 

Thus, positive and negative deviational variables can be 
defined as follows:

Then, minimizing the distance between fkand f̄k give 
rise to minimizing d+

k
 when fk ≤ f̄k is needed in a minimiza-

tion problem. On the other hand, minimizing the distance 
between fkand f̄k give rise to minimizing d−

k
 when fk ≥ f̄k is 

needed in a maximization problem [33]. In this condition, by 
utilizing the min–max form of goal programming, problem 
(6) turns into the following model:

where g
{
d−
k
, d+

k

}
= d−

k
 in the event of maximizing fk, 

g
{
d−
k
, d+

k

}
= d+

k
 in the event of minimizing fk. f̄k, 1 ≤ k ≤ l is 

the aspiration level of each objective. d−
k
, d+

k
≥ 0 are the 

negative and positive deviations from the aspired levels, 
respectively.

d+
k
= Max

(
0, f̄k − fk

)
=

1

2

[
f̄k − fk +

||f̄k − fk
||
]
, 1 ≤ k ≤ l,

d−
k
= Max

(
0, fk − f̄k

)
=

1

2

[
fk − f̄k +

||fk − f̄k
||
]
, 1 ≤ k ≤ l.

(7)

Min g
�
d−
k
, d+

k

�

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk(x) + d−
k
− d+

k
= f̄k, 1 ≤ k ≤ l�

fk(x) + d−
k
− d+

k
= f̄k, l� + 1 ≤ k ≤ l

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≤

⌢

bj, 1 ≤ j ≤ m�

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≥

⌢

bj, m� + 1 ≤ j ≤ m��

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
=

⌢

bj, m�� + 1 ≤ j ≤ m

d−
k
, d+

k
≥ 0 d−

k
× d+

k
= 0, 1 ≤ k ≤ l

xl ≥ 0, 1 ≤ l ≤ n

The model (7) is further transformed to the following 
programming problem.

where f̄k, 1 ≤ k ≤ lrepresents the aspiration level for each 
objective function.

3.2  Construction of fuzzy multiobjective nonlinear 
programming model

In a multiobjective programming, if an imprecise aspira-
tion level is injected to each of the objectives, then these 
fuzzy objectives are expressed as fuzzy goals. Let sk be 
the aspiration level assigned to the kth objective fk(x). Then 
the fuzzy goals are fk(x) ≻∼ sk for the maximization type 
of objective and fk(x) ≺∼ sk for the minimization type of 
objective where ≻

∼

 and ≺
∼

 represent the fuzzified inequali-
ties. Therefore, the fuzzy multiobjective nonlinear goal 
programming problem for MNOLPP (6) can be formulated 
as follows:

(8)

Min 𝜙

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙 ≥ g
�
d−
k
, d+

k

�
fk(x) + d−

k
− d+

k
= f̄k, 1 ≤ k ≤ l�

fk(x) + d−
k
− d+

k
= f̄k, l� + 1 ≤ k ≤ l

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≤

⌢

bj, 1 ≤ j ≤ m�

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≥

⌢

bj, m
� + 1 ≤ j ≤ m��

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
=

⌢

bj, m
�� + 1 ≤ j ≤ m

d−
k
, d+

k
≥ 0 d−

k
× d+

k
= 0, 1 ≤ k ≤ l

xl ≥ 0, 1 ≤ l ≤ n

(9)

fk(x) =

li�
i=1

⌢

c
ki

n�
l=1

x
𝛼l
l
≻
∼

sk, 1 ≤ k ≤ l�

fk(x) =

li�
i=1

⌢

c
ki

n�
l=1

x
𝛼l
l
≺
∼

sk, l
� + 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≤

⌢

bj, 1 ≤ j ≤ m�

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
≥

⌢

bj, m
� + 1 ≤ j ≤ m��

gj(x) ≅

rj�
r=1

⌢

a
jr

n�
l=1

x
𝛽l
l
=

⌢

bj, m
�� + 1 ≤ j ≤ m

xl ≥ 0, 1 ≤ l ≤ n
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Now, consider the kth fuzzy goal fk(x) ≻∼ sk, 1 ≤ k ≤ l� 
for problem (9). Its membership function can be defined as 
follows:

where lk is the lower tolerance limit for the kthfuzzy goal 
and 

(
lk, sk

)
 is the tolerant interval which is subjectively 

selected, respectively. Furthermore, the tolerant interval for 
fk(x) ≻∼ sk, 1 ≤ k ≤ l� are determined as follows:

Similarly, consider the kth fuzzy goal of f
k
(x) ≺

∼

s
k
,

l
� + 1 ≤ k ≤ l. Its membership function can be defined as 
follows:

where sk is the upper tolerance limit for the kth fuzzy 
goal and 

(
lk, sk

)
 the tolerant interval which is subjec-

tively selected, respectively. The tolerant interval for 
fk(x) ≺∼ sk, l� + 1 ≤ k ≤ l. are determined as follows:

3.3  Linearization nonlinear membership 
and constraint functions using the Taylor series

Taylor series is an expansion of a function into an infinite 
series of a variable x or into a finite series with a remainder 
(error) term [2]. The coefficients of the expansion include 
the consecutive derivatives of the function and also this 
function has a nth derivative in the interval of expansion.

Let a ≤ � ≤ b be the interval of expansion. Then the 
remainder (error) term in Lagrangian form is given as: 
pn =

(
x−a

n!

)n

f (n)(�) where a is the reference point.

f (n)(�) represents nthderivative around a . When 
limn→∞ pn = 0, the expanding function is obtained as 

f (x) =
∞∑
n=0

�
x−a

n!

�n

f (n)(a).

For n = 1, the expanding function becomes 
f (x) = f (a) + f � (a) (x − a) This is called the first degree 
Taylor Polynomial of f (x).

(10)�k

�
fk(x)

�
1≤k≤l�.

≅

⎧
⎪⎪⎨⎪⎪⎩

1 fk(x) ≥ sk

fk(x) − lk�
sk − lk

� , lk ≤ fk(x) ≤ sk

0 lk ≥ fk(x)

(11)
sk = Max

{
fk(x), x ∈ X

}
and lk = Min

{
fk(x), x ∈ X

}
, 1 ≤ k ≤ l�.

(12)�k

�
fk(x)

�
l�+1≤k≤l.

=

⎧
⎪⎪⎨⎪⎪⎩

1 fk(x) ≤ lk

sk − fk(x)

sk − lk
, lk ≤ fk(x) ≤ sk

0 lk ≤ fk(x)

(13)
sk = Max

{
fk(x), x ∈ X

}
and lk = Min

{
fk(x), x ∈ X

}
, l� + 1 ≤ k ≤ l.

Therefore MONLPP (6) will transform into an equiva-
lent multiobjective linear programming problem (MOLPP) 
using Taylor series approach. Taylor series approach has been 
applied to nonlinear programming problems in literatures [9, 
17, 37, 44]. Because it is very difficult to solve nonlinear prob-
lems, this approximation reduces the computational burden in 
the problem. But these methods may not always be enough to 
obtain efficient solutions alone. Moreover, these methods are 
not applicable to nonlinear constrained problems. In order to 
solve these types of problems and obtain effective results, the 
nonlinear constraints of problems are first reduced to linear 
inequalities with the help of decision variables.

Note that the feasible region for a programming problem 
is the whole set of alternatives for the decision variables over 
which the objective function is to be optimized.

These linear inequalities are used to optimize the nonlin-
ear membership and constraint functions, and provide the 
best starting points for using a Taylor series approach.

The suggested solution procedure can be continued as 
follows:

• (Assuming that the feasible region is nonempty) solve 
MONLPP (6) as a single objective programming prob-
lem, considering each time only one objective as the 
objective function and ignoring all others.

• Let the solutions obtained be xl =
(
x1, x2, ..., xn

)
. Com-

pute the best and worst values of each objective function 
at each solution xl =

(
x1, x2, ..., xn

)
.

• By employing solutions xl =
(
x1, x2, ..., xn

)
, reconstruct 

the feasible region as the limit of each of decision vari-
ables, i.e., find x

−
l
≤ x

l
≤ x̄

l
 for each decision variable 

using x
−
l
= Min

{
x
l

}
∈ x

1
 and x̄

l
= Max

{
x
l

}
∈ x

l
.

• Determine tolerant intervals, and then construct the 
membership functions corresponding to each objective 
function as defined in (10) and (12).

• Since �k

(
fk(x)

)
, 1 ≤ k ≤ l means the satisfaction of 

the decision makers with the result, this means that 
the degree of satisfaction obtained aims to achieve the 
best value of function fk(x), 1 ≤ k ≤ l. Therefore, find 
x̃∗
l
=
(
x̃
1
, x̃

2
, ..., x̃

n

)
, which is the solution that is employed 

to maximize the kth nonlinear membership function 
�k

(
fk(x)

)
 associated with kth nonlinear objective under 

the linear inequalities, i.e.,

Max 𝜇k

�
fk(x)

�
, 1 ≤ k ≤ l

s.t.

⎧⎪⎪⎨⎪⎪⎩

x
−
l
≤ x

l
≤ x̄

l
, 1 ≤ l ≤ n

𝜇k

�
fk(x)

�
, 1 ≤ k ≤ l

𝜆 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n
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where �k

(
fk(x)

)
 is the kth nonlinear membership function 

associated with kth nonlinear objective.

• Because Taylor series approach generally provides a rela-
tively good approximation to a differentiable function 
but only around a given point, and not over the entire 
domain. Then, transform nonlinear membership and con-
straint functions by using the first degree Taylor polyno-
mial approach around the solution x̃∗

l
=
(
x̃
1
, x̃

2
, ..., x̃

n

)
, as 

follows:

In (14), �̃�k

(
fk(x)

)
1≤k≤l

 are linear membership functions 
which are equivalent to nonlinear membership functions 
associated with each objective. Also, g̃j(x)1≤j≤m are linear 
constraints associated with each objective.

Thus linear membership �̃�k

(
fk(x)

)
1≤k≤l

 and constraint 
functions g̃j(x)1≤j≤m approximate the nonlinear functions 
�k

(
fk(x)

)
and gj(x) around the solution x̃∗

l
=
(
x̃
1
, x̃

2
, ..., x̃

n

)
.

It should be noted that if there are more than one non-
linear membership functions, the constraint functions 
can be expanded around the solution of any membership 
function.

Hence, applying the Max–Min form presented by Zadeh 
with the membership functions represented in (10) and (12), 
the fuzzy programming problem corresponding to problem 
(6) is formulated as follows:

where � is control parameter.�̃�k

(
fk(x)

)
 for each 1 ≤ k ≤ l is 

linear membership function. g̃j(x) for each 1 ≤ j ≤ m is the 
linear constraint functions.

(14)

�̃�k

(
fk(x)

)
1≤k≤l

≅

[
𝜇k

(
fk
(
x̃∗
l

))
𝜕x1

|||||x̃∗
l

(
x1 − x̃

1

)
+

𝜇k

(
fk
(
x̃∗
l

))
𝜕x2

|||||x̃∗
l

(
x2 − x̃

2

)
+... +

𝜇k

(
fk
(
x̃∗
l

))
𝜕xn

|||||x̃∗
l

(
xn − x̃

n

)]

g̃j(x)1≤j≤m ≅

[
gj
(
x̃∗
l

)
𝜕x1

|||||x̃∗
l

(
x1 − x̃

1

)
+

gj
(
x̃∗
l

)
𝜕x2

|||||x̃∗
l

(
x2 − x̃

2

)
+... +

gj
(
x̃∗
l

)
𝜕xn

|||||x̃∗
l

(
xn − x̃

n

)]

(15)

Max 𝜆

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜆 ≤ �̃�k

�
fk(x)

�
, 1 ≤ k ≤ l�

𝜆 ≤ �̃�k

�
fk(x)

�
, l� + 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

𝜆 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n

3.4  A fuzzy goal programming model 
to multiobjective linear programming problem

The FGP approach was originally introduced by Zimmer-
mann [49] in 1978. He employed the concept of mem-
bership functions. Tiwari et al. [43] proposed a weighted 
additive model that associates each goal’s weight with the 
objective function, where weights show the relative impor-
tance of the fuzzy goals. Mohamed [33] suggested a FGP 
approach, which is introduced in the general form of FGP 
model. In [48], Mohamed’s approach used to present a FGP 

approach for solving multiobjective programming problems 
and then Gupta and Bhattacharjee [18] formulated two FGP 
approaches for solving multiobjective programming prob-
lems. But these approaches generally do not yield effective 
results. They do not offer alternative solutions to make effec-
tive decisions. In this section, an approach is proposed to 
overcome these deficiencies.

According to paper [33], the highest degree of member-
ship function is always 1 and therefore the nonlinear mem-
bership functions in (10) and (12) can be constructed as the 
following nonlinear membership goals;

Where d−
k
× d+

k
= 0 and d−

k
≥ 0 and d+

k
≥ 0 stand for the 

negative and positive deviations from aspired levels, respec-
tively. 

(
lk, sk

)
 is the tolerant interval.

After membership functions (10) and (12) are linearized 
using the first degree Taylor polynomial (14), the above non-
linear membership goal functions can be reconstructed as 
the following linear membership goals.

By applying model (8) of goal programming model to 
the fuzzy model (9), we obtain the following fuzzy goal 
programming model.

fk(x) − lk(
sk − lk

) + d−
k
− d+

k
= 1, 1 ≤ k ≤ l� (for maximizing objective),

sk − fk(x)(
sk − lk

) + d−
k
− d+

k
= 1, l� + 1 ≤ k ≤ l (for minimizing objective),

(16)�̃�k

(
fk(x)

)
+ d−

k
− d+

k
= 1, 1 ≤ k ≤ l�

(17)�̃�k

(
fk(x)

)
+ d−

k
− d+

k
= 1, l� + 1 ≤ k ≤ l
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where d−
k
 and d+

k
 represent the negative and positive devia-

tions from the aspired levels, respectively.

Theorem 2 The fuzzy model (18) is equivalent to model 
(15).

Proof We rewrite the model (15) as:

Since � ∈ [0, 1] is a control variables of the membership 
functions, � ≤ 1 which shows that 1 − � ≥ 0. Let � = 1 − �, 
and then model (19) can be converted to the following fuzzy 
programming model.

To formulate the above fuzzy problem as a FGP model, 
let us define the negative and positive deviational variables;

(18)

Min 𝛽

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛽 ≥ d−
k
, 1 ≤ k ≤ l

�̃�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, 1 ≤ k ≤ l�

�̃�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, l� + 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

d−
k
, d+

k
≥ 0, d−

k
× d+

k
≥ 0, 1 ≤ k ≤ l,

x
l
≥ 0, 𝛽 ∈ [0, 1]

(19)

Min 1 − 𝜆

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − 𝜆 ≥ 1 − �̃�k

�
fk(x)

�
, 1 ≤ k ≤ l�

1 − 𝜆 ≥ 1 − �̃�k

�
fk(x)

�
, l� + 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

𝜆 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n

(20)

Min 𝛽

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛽 ≥ 1 − �̃�k

�
fk(x)

�
, 1 ≤ k ≤ l�

𝛽 ≥ 1 − �̃�k

�
fk(x)

�
, l� + 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

𝛽 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n

d
−
k
= Max

{
0, 1 − �̃�

k

(
f
k
(x)

)}
for 1 ≤ k ≤ l

� and l
� + 1 ≤

k ≤ l.

d
+
k
= Max

{
0, �̃�

k

(
f
k
(x)

)
− 1

}
for 1 ≤ k ≤ l

� and l
� + 1 ≤

k ≤ l.

Thus from model (20), we obtain � ≥ d−
k

 where 
�̃�k

(
fk(x)

)
+ d−

k
− d+

k
= 1for each 1 ≤ k ≤ l.

In this case, model (20) can be reconstructed as:

Thus the proof is completed.
Since any positive deviation from 1 shows the full 

achievement of the membership value, it is sufficient to 
minimize the negative deviation variable from 1. Therefore 
the positive deviational variables in the linear membership 
goals are unnecessary [18]. Thus membership goals (16) and 
(17) are reconstructed as:

Where d−
k
(≥ 0) for each 1 ≤ k ≤ l represents the negative 

deviations from aspired levels.
Consequently, the linear FGP model (21) can be recon-

structed as:

where d−
k
≥ 0, 1 ≤ k ≤ l represents the negative devia-

tions from aspired levels. g̃j(x) for each 1 ≤ j ≤ m is the 

(21)

Min 𝛽

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̃�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, 1 ≤ k ≤ l�

�̃�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, l� + 1 ≤ k ≤ l

𝛽 ≥ d−
k
, 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

d−
k
, d+

k
≥ 0, d−

k
× d+

k
≥ 0, 1 ≤ k ≤ l

𝛽 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n

(22)�̃�k

(
fk(x)

)
+ d−

k
= 1, 1 ≤ k ≤ l�

(23)�̃�k

(
fk(x)

)
+ d−

k
= 1, l� + 1 ≤ k ≤ l

(24)

Min 𝛽

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̃�k

�
fk(x)

�
+ d−

k
= 1, 1 ≤ k ≤ l�

�̃�k

�
fk(x)

�
+ d−

k
= 1, l� + 1 ≤ k ≤ l

𝛽 ≥ d−
k
, 1 ≤ k ≤ l

g̃j(x) ≤ 0, 1 ≤ j ≤ m�

g̃j(x) ≥ 0, m� + 1 ≤ j ≤ m��

g̃j(x) = 0, m�� + 1 ≤ j ≤ m

d−
k
≥ 0, 1 ≤ k ≤ l

𝛽 ∈ [0, 1]

x
l
≥ 0, 1 ≤ l ≤ n
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linear constraints. �̃�k

(
fk(x)

)
, 1 ≤ k ≤ l are linear member-

ship functions.

Theorem 3 If x̃ ∈ X is an optimal solution of FGP problem 
(24), then x̃ is an efficient solution to MONLPP (6).

Proof Assume that x̃ is not an efficient solution of 
problem (6). So, there exist another solution x ∈ X

such that �̃�k

(
fk(x)

)
≥ 𝜇k

(
fk(x̃)

)
 for all 1 ≤ k ≤ l and 

�̃�l

(
fl(x)

)
> �̃�l

(
fl(x̃)

)
 with at least one index l.Finally, ∑l

k=1
�̃�k

�
fk(x)

�
≥
∑l

k=1
�̃�k

�
fk(x̃)

�
 and x̃ is not an optimal solu-

tion to the problem, a contradiction that complete the proof.

Theorem 4 Let x̃ ∈ X be A fuzzy efficient solution of prob-
lem (6). Then x̃ ∈ X is a Pareto optimal solution to MON-
LPP (5).

Proof From proof of theorem 3, fuzzy efficiency of x̃ to 
MONLPP (6) indicates that there does not exist a solution 
x ∈ X such that �̃�k

(
fk(x)

)
≥ 𝜇k

(
fk(x̃)

)
 for all 1 ≤ k ≤ l′ and 

�̃�l

(
fl(x)

)
> �̃�l

(
fl(x̃)

)
 with at least one index l. Actually, it must 

be �̃�k

(
fk(x̃)

)
≥ 𝜇k

(
fk(x)

)
 is equivalent to say that f

k
(x) ≤ f

k
(x̃) 

for all 1 ≤ k ≤ l′ and f
k
(x) ≥ f

k
(x̃) for all l� + 1 ≤ k ≤ l which 

is seems from the illustration of membership functions in 
Eqs. (10) and (12). Since there is not a solution that conflicts 
the fuzzy efficiency of x̃ to problem (6) and then there is not 
a solution that conflicts the fuzzy efficiency of x̃ to problem 
(5). So the theorem proved.

Hence, solving the FGP problem (24), the Pareto optimal 
solution of the MNLOPP with IT2 FNs is found.

3.5  Interactive fuzzy goal programming 
approaches based on Taylor series for MNLOPP 
with IT2 FNs

By the aid of the interactive algorithm, interactive fuzzy 
decision making approaches have been widely studied to 
develop the flexibility and robustness of multiobjective deci-
sion making techniques. They give learning scheme con-
cerning the system, while the DM can learn to identify best 
solutions and the corresponding importance of component 
in the system [30, 46].

The principal interest of interactive procedures is that the 
DM controls the search way through the solution procedure. 
Hereby the efficient solution is obtained with his/her prefer-
ences. Thus, interactive fuzzy goal programming approaches 
in this paper is presented to achieve the highest degree for 
the membership functions.

The complete suggested solution procedures can be sum-
marized as follows.

Step 1 Construct the mathematical model of MONLPP 
with IT2 FNs (5).

Step 2 By using expected value function (2), obtain the 
corresponding crisp MONPP (6).

Step 3 Solve MONLPP (6) as a single objective problem, 
considering each time only one objective as the objec-
tive function and ignoring all others. Find the solutions.

Step 4 Compute the best and worst bounds of each of 
objective function

Step 5 Reduce the nonlinear constrained region to the lin-
ear inequalities using the limit of each of decision vari-
able.

Step 6 Determine tolerant intervals for each objective.
Step 7 Then construct the nonlinear membership functions 

as defined in (10) and (12), respectively.
Step 8 Determine x̃∗

l
=
(
x̃
1
, x̃

2
, ..., x̃

n

)
, which is the solution 

that is employed to maximize the kth nonlinear mem-
bership function associated with kth nonlinear objective 
under the obtained feasible region. Then linearize each 
nonlinear membership and constraint functions using 
Taylor polynomial approach (14) at x̃∗

l
=
(
x̃
1
, x̃

2
, ..., x̃

n

)
.

Step 9 Define the linear membership goals (22) and (23), 
respectively.

Step 10 Construct the linear FGP model (24), then solve it 
to obtain the candidate optimal solution of MONLPP 
with IT2 FNs (5).

Step 11 If the decision-maker is satisfied by the current 
solution in Step 10, go to Step 12, else go to Step 13.

Step 12 The current solution is the optimal solution for the 
MONPP with IT2 FNs.

Step 13 Hold the candidate solution to linearize the non-
linear membership functions, and compare the lower 
(upper) tolerance limit of each objective with the new 
value of the objective function. If the new value is higher 
(lower) than the lower tolerance limit, take this as a new 
lower (upper) tolerance limit. If else, hold the old one as 
is and then go to step (7).

It has pointed out that the algorithm finishes (at Step 
11) if the decision maker admits the obtained solution as 
the optimal solution; or if there is no notable change in the 
objective and membership function values after further 
changes; or if the modification of the tolerant intervals pro-
duce an infeasible solution.

4  Numerical examples

Example 1 A manufacturing factory is going to produce 
three kinds of products A, B and C in a specified period 
(say one month). The production of each of product require 
three kinds raw materials R1,R2 and R3 . Thus, to produce 
each unit of A, the requirements of R1,R2 and R3 are around 
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3, 4 and 3 units, respectively. To produce each unit B, the 
respective requirements of R1,R2 and R3 are around 4, 3 and 
3 units and that for that of product C are around 3, 4 and 3 
units, respectively. The required existing resource R1 and R2 
are around 80 and 70 units, respectively. But there are about 
20 and 10 units additional safety store for emergency use 
which are administrated by the manager. For better quality 
of the products, at least 60 units of resource R3 has to be 
employed with tolerance about 10 units can be allowed by 
governance. In addition, the conjectural time requirements 
in producing each unit of products t̃1,̃t2 and t̃3 are 3, 3 and 
4 h, respectively. Let the planned production quantities of 
A, B and C be 

(
x1x2, x

2
1
, x1

)
,
(
x
2
, x1x2 , x2

)
 and 

(
x2
3
, x3 , x3

)
, 

respectively. Moreover, assume that the unit cost and sale’s 
price of A, B and C are UC1 = c̃1, UC2 = c̃2,UC3 = c̃3,

US1 = s̃1∕x

1∕a1
1

, US2 = s̃2∕x

1∕a2
2

 and US3 = s̃3∕x

1∕a3
1

 where 

a1 = 2; a2 = 2; a
3
= 3 are real numbers. The decision maker 

expects to maximize whole profit and minimize the integral 
time requirement.

respectively. Also, let ̃s
1

= ((20,22,24,27;0.95,0.98),(21,23,25, 
26;0.97,0.99)), s̃

2

= ((21,23,24,28; 0.94,0.99), (22,23,25,26; 
0.95,0.97)), s̃

3

= ((22,23,24,26;0.94, 0.97) , (22,24,25,26;

0.95,0.97)); c̃1 = ((1,3,3,4;0.90,0.91), (1,2,4,5;0.92,0.93)),

c̃2 = ((2,3,5,5;0.91,0.94), ((2,3,6,8;0.93, 0.95)), c̃
3

= ((2,4,4,

5;0.90,0.91),(3,4,5,5;0.92,0.93)).

(Step 1): Then the mathematical model of MONLPP with 
IT2 FNs can be formulated as follows, based on model (5):

(Step 2): By applying the expected value function (2) to 
problem (25), the equivalent deterministic model based on 
model (6) can be formulated as follows:

(Step 3): then, solving f1(x) and f2(x) as a single objective 
nonlinear programming problem under the given constraints 
using Maple 2017 nonlinear optimization toolbox, the solu-
tion of each of objective is shown in Table 1.

(Step 4): The objective function values obtained are 
as  fo l lows:  Max f1(x) = 76.168, Min f1(x) = 29.785,

Max f2(x) = 77.653, Min f2(x) = 54.699.

Based on (11)–(13), the best and worst bounds for each 
objective are determined as follows:29.785 ≤ f1 ≤ 76.168and 
54.699 ≤ f2 ≤ 77.653, respectively.

(Step 5): Since the feasible set is the set of all points 
that are possible solutions, the nonlinear constrained region 
of (26) is reduced to the following linear inequalities by 
employing the individual optimal solutions.

x
−
1
= Min

{
x
1

}
= 0 and x̄

1
= Max

{
x
1

}
= 0.457⇒ 0 ≤ x

1

≤ 0.457,

x
−
2
= Min

{
x
2

}
= 12.541 and x̄

2
= Max

{
x
2

}
= 20.862

⇒ 12.344 ≤ x2 ≤ 20.862,

(25)

Max f2(x) = s̃1x
1−1∕a1
1

− c̃1x1 + s̃2x
1−1∕a2
2

− c̃2x2 + s̃3x
1−1∕a3
3

− c̃3x3

Min f2(x) = 3̃x1 + 3̃x2 + 4̃x3,

s.t.

⎧
⎪⎪⎨⎪⎪⎩

3̃x1x2 + 4̃x2 + 3̃13x
2
3
≤ b̃1,

4̃x2
1
+ 3̃x

1
x2 + 4̃x3 ≤ b̃2,

3̃x1 + 3̃x2 + 3̃x3 ≥ b̃3

x1, x2, x3 ≥ 0

(26)

Max f1(x) = 22.854x1
(1∕2)-2.631x1 + 23.100x2

(1∕2) − 3.963x2 + 22.980x3
(2∕3)-3.660x3

Min f2(x) = 2.753x1 + 3.609x2 + 3.889x3,

s.t.

⎧⎪⎪⎨⎪⎪⎩

g1(x) = 3.889x1x2 + 4.123x2 + 3.660x2
3
≤ 87.364,

g2(x) = 4.123x2
1
+ 3.889x1x2 + 3.889x3 ≤ 75.369,

g3(x) = 3.660x1 + 3.889x2 + 3.660x3 ≥ 59.259

x1, x2, x3 ≥ 0

Let us assume that all the imprecise parameters estimated 
by the decision maker to be the trapezoidal IT2 FNs. To 
produce each unit of A, B and C, the requirements of R1,

R2 and R3are estimated as: 3̃ = ((3, 3, 4, 5; 0.90, 0.91),

(4, 4, 5, 6; 0. 92,0. 93)); 4̃ = ((3,5,5,7;0.90,0.98) , (2,4,4,5;0 
.92,0.97)); 3̃ = ((2,4,4,5;0.90,0.91), (3,4,5,5;0.92,0.93));

4̃ = ((3, 5, 5, 7; 0.90, 0.98) ,(2, 4, 4, 5; 0.92, 0.97));̃3 = ((3,3,4, 
5;0.90,0.91),(4,4,5,6,0.92,0.93)); 3̃ = ((3,3,4,5;0.90,0.91),

(4,4,5,6;0.92,0.93)); 3̃ = ((2, 4, 4, 5; 0.90, 0.91), (3, 4, 5, 5;

0.92, 0.93)); 4̃ = ((3,3,4,5;0.90,0.91), (4,4,5,6;0.92,0.93))  ; 
3̃ = ((2,4,4,5;0.90,0.91),(3,4,5,5;0.92,0.93)), respectively. 
The required existing resources for R1,R2 and R3 are estimated 
as: 90̃ = ((80,95,70,90;0.96,0.99),(90,80,100,110;0.97,0.99)),

70̃ = ((90,50,70,70;0.95,0.98), (90,80,80,90;0.97,0.99));60̃ =

((50,60,60,70;0.95,0.99), (50,60,60,70;0.94,0.99)),respectively. 
The conjectural time requirements in producing each unit of 
products ̃t1,̃t2 and ̃t3are estimated as: 3̃ = ((2,3,4,5;0.95,0.99) ,

(1,2,3,3;0.92,0.97)), 3̃ = ((3,4,5,6;0.96,0.98), (1,2,3,3;0.95,

0.96))  ;  4̃ = ((3,3,4,5;0.90,0.91), (4,4,5,6; 0.92,0.93)), 
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x
−
3
= Min

{
x
3

}
= 0 and x̄

3
= Max

{
x
3

}
= 2.669⇒ 0 ≤

x
3

≤ 2.667.
(Step 6) The corresponding tolerant interval of each of 

objective function is: (29.785, 76.168) and (54.699, 77.653),
respectively. Also, the lower tolerance limit for f1(x) is 
l1 = 29.785, and the upper tolerance limit for f2(x) is 
s2 = 77.653.

(Step 7) So, the membership functions are constructed as 
follows, based on (10) and (12):

This problem is solved by using Maple 2017 nonlinear 
optimization toolbox and the following result is obtained.

On the other hand, since function (28) is a linear function, 
it remains unchanged.

(Step 8) Applying Taylor polynomial approach (14) 
to function (27) around its solution x̃∗ =

(
x̃
1

= 0.457,

x̃
2

= 12.541, x̃
3

= 2.078

)
,𝜇

1

(f
1

x) = 1 an equivalent linear 
membership function to nonlinear membership function (27) 
is obtained as follows:

And the constrained region of (26) can be rewritten as 
follows:

Also, the nonlinear constraint functions given above are 
linearized at x̃∗ =

(
x̃
1
= 0.457, x̃

2
= 12.541, x̃

3
= 2.078

)
 as 

follows:

Then the linear constraint functions obtained are as 
follows:

However, g3(x) is a linear function and then it remains 
unchanged.

(29)

Max �
1

�
f
1

(x)
�
= 0.493

√
x
1

− 0.057x
1

+ 0.498

√
x
2

− 0.085x
2

+ 0.495x
(2∕3)

3

− 0.079x
3

− 0.642

s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ x
1

≤ 0.457,

12.541 ≤ x
2

≤ 20.862,

0 ≤ x
3

≤ 2.669,

�
1

�
f
1

(x)
�
≤ 1

x
1

, x
2

, x
3

≥ 0

x̃∗ =
(
x̃
1
= 0.457, x̃

2
= 12.541, x̃

3
= 2.078

)
, 𝜇1

(
f1(x)

)
= 1.

(30)�̃�1

(
f1(x)

)
≅

[
𝜇1

(
f1
(
x̃∗
))

𝜕x1

|||||x̃∗
(
x1 − 0.457

)
+

𝜇1

(
f1
(
x̃∗
))

𝜕x2

|||||x̃∗
(
x2 − 12.541

)
+

𝜇1

(
f1
(
x̃∗
))

𝜕x3

|||||x̃∗
(
x3 − 2.078

)]

= 0.308x1 − 0.015x2 + 0.180x3+0.675

s.t.

⎧
⎪⎪⎨⎪⎪⎩

g1(x) = 3.889x1x2 + 4.123x2 + 3.660x2
3
− 87.364 ≤ 0,

g2(x) = 4.123x2
1
+ 3.889x1x2 + 3.889x3 − 75.369 ≤ 0,

g3(x) = 3.660x1 + 3.889x2 + 3.660x3 − 59.259 ≥ 0,

x1, x2, x3 ≥ 0

g̃
j
(x)

j=1,2,3 ≅

[
g
j

(
x̃
∗
)

𝜕x
1

|||||x̃∗
(
x
1

− 0.457

)
+

g
j

(
x̃
∗
)

𝜕x
2

|||||x̃∗
(
x
2

− 12.541

)
+

g
j

(
x̃
∗
)

𝜕x
3

|||||x̃∗
(
x
3

− 2.078

)]

(31)g̃1(x) ≅ 48.772x1+5.900x2+ 15.212x3-125.456 ≤ 0;

Table 1  The individual optimal solutions for each objective

x Max f
1

(x) Min f
1

(x) Max f
2

(x) Min f
2

(x)

x
1

0.197 0 0 0.457

x
2

12.541 15.238 20.862 14.808

x
3

2.669 0 0.607 0

In order to apply Taylor polynomial approach (14), we 
need to determine an initial feasible point in the feasible 
region (26). Thus nonlinear membership function (27) under 
the linear inequalities is maximized as follows:

�1

�
f1(x)

�
≅

⎧
⎪⎪⎨⎪⎪⎩

1 f1(x) ≥ 76.168,

f1(x) − 29.785

(76.168 − 29.785)
, 29.785 ≤ f1(x) ≤ 76.168,

0 29.785 ≥ f1(x)

(27)

�
1

�
f
1

(x)
�
= 0.493

√
x
1

− 0.057x
1

+ 0.498

√
x
2

− 0.085x
2

+ 0.495x
(2∕3)

3

− 0.079x
3

− 0.642

�2

�
f2(x)

�
=

⎧
⎪⎪⎨⎪⎪⎩

1 f2(x) ≤ 54.699,

77.653 − f2(x)

77.653 − 54.699
, 54.699 ≤ f2(x) ≤ 77.653

0 77.653 ≤ f2(x)

(28)�2

(
f2(x)

)
= −0.120x1 − 0.157x2 + 0.169x3 + 3.383
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(Step 9): Based on (22) and (23), the linear membership 
goals is defined as follows:

where d−
1
≥ 0 and d−

2
≥ 0 represent the negative deviations 

from the aspired levels, respectively.
(Step 10): Based on model (24), the equivalent linear FGP 

is constructed as follows:

Since the problem given above is a single objective linear 
programming problem, it is solved by Maple 2017, and then 
the solutions obtained are as follows:

The membership values in (27) and (28) are obtained 
as:�1

(
f1
)
= 0.953, �2

(
f2
)
= 0.955. Also, value of each 

of the objective function is f1 = 73.977 and f2 = 55.739, 
respectively.

(Step 11) Let us suppose the DM does not accept this 
solution and desires more profit and then go to Step 13. The 
new lower tolerance limit in the first objective becomes 
73.977. The upper tolerance limit in the second objective 
function remains unchanged since the time is very close to 
the desired levels.

Thus the upper and lower limits of each objective func-
tion can be written as follows: 73.977 ≤ f1 ≤ 326.279; 
and 20.267 ≤ f2 ≤ 34.416. Keeps the current solution 
x =

(
x1 = 0.374, x2 = 12.998, x3 = 2.006

)
 to linearize 

the membership functions, and then returns to Step 7.
So, the membership functions in (27) are redefined as 

follows:

(32)
0.308x1 − 0.015x2 + 0.180x3+0.675 + d−

1
= 1,

−0.120x1 − 0.157x2 + 0.169x3 + 3.383 + d−
2
= 1

(33)

Min �

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.308x1 − 0.015x2 + 0.180x3+0.675 + d−
1
= 1

−0.120x1 − 0.157x2 + 0.169x3 + 3.383 + d−
2
= 1

48.772x1+5.900x2+ 15.212x3-125.456 ≤ 0

52.540x1+1.777x2+ 3.889x3 − 98.515 ≤ 0

3.660x1 + 3.889x2 + 3.660x3 − 59.259 ≥ 0

� ≥ d−
1
, � ≥ d−

2

� ∈ [0, 1]

d−
1
, d−

2
≥ 0

� = d
−
1

= d
−
2

= 0.045, x =
(
x
1

= 0.374, x
2

= 12.998,

x
3

= 2.006

)
.

(34)

�1

�
f1(x)

�
≅

⎧
⎪⎪⎨⎪⎪⎩

1 f1(x) ≥ 76.168,

f1(x) − 73.977

(76.168 − 73.977)
, 73.977 ≤ f1(x) ≤ 76.168,

0 73.977 ≥ f1(x)

Since the tolerance limits have not changed, the previous 
membership function (28) is taken as:

(Step 8) Applying Taylor polynomial approach (14) to 
nonlinear membership function (34) around its solution 
x =

(
x1 = 0.374, x2 = 12.998, x3 = 2.006

)
, an equivalent 

linear membership function to nonlinear function (27) is 
obtained as follows:

Also, the nonlinear constraint functions of (26) are lin-
earized around x =

(
x1 = 0.374, x2 = 12.998, x3 = 2.006

)
, 

as follows:

Thus, the linear constraint functions obtained are as 
follows:

However, g3(x) is a linear function, it remains unchanged.
(Step 9): Thus the linear membership goals are redefined 

as:

where d−
1
≥ 0 and d−

2
≥ 0 represent the negative deviations 

from the aspired levels, respectively.
(Step 10): Then the linear FGP (33) is updated as follows:

(35)�2

(
f2(x)

)
= −0.120x1 − 0.157x2 + 0.169x3 + 3.383

(36)

�̃�
1

(
f
1

(x)
)
≅

[
𝜇
1

(
f
1

(
x̃
∗
))

𝜕x
1

|||||x̃∗
(
x
1

− 0.374

)
+

𝜇
1

(
f
1

(
x̃
∗
))

𝜕x
2

|||||x̃∗
(
x
2

− 12.998

)
+

𝜇
1

(
f
1

(
x̃
∗
))

𝜕x
3

|||||x̃∗
(
x
3

− 2.006

)]

= 7.362x
1

− 0.348x
2

+ 3.895x
3

− 6.039

g̃
j
(x)

j=1,2 ≅

[
g
j

(
x̃
∗
)

𝜕x
1

|||||x̃∗
(
x
1

− 0.457

)
374 +

g
j

(
x̃
∗
)

𝜕x
2

|||||x̃∗
(
x
2

− 12.998

)
+

g
j

(
x̃
∗
)

𝜕x
3

|||||x̃∗
(
x
3

− 2.006

)]

(37)g̃1(x) ≅ 50.548x1+5.579x2+ 14.682x3-121.011 ≤ 0;

(38)
7.362x1 − 0.348x2 + 3.895x3 − 6.039 + d−

1
= 1,

−0.120x1 − 0.157x2 + 0.169x3 + 3.383 + d−
2
= 1

(39)

Min �

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7.362x1 − 0.348x2 + 3.895x3 − 6.039 + d−
1
= 1

−0.120x1 − 0.157x2 + 0.169x3 + 3.383 + d−
2
= 1

50.548x1+5.579x2+ 14.682x3-121.011 ≤ 0

53.635x1+1.456x2+ 3.889x3 − 94.871 ≤ 0

3.660x1 + 3.889x2 + 3.660x3 − 59.259 ≥ 0

� ≥ d−
1
, � ≥ d−

2

� ∈ [0, 1]

d−
1
, d−

2
≥ 0



1575International Journal of Machine Learning and Cybernetics (2019) 10:1563–1579 

1 3

Since the problem is a single objective linear optimiza-
tion problem, then it is solved by Maple 2017, and then the 
solutions obtained are as follows:

By putting the obtained solution x =
(
x
1

= 0.304,

x
2

= 12.733, x
3

= 2.358

)
 in (27) and (28), the origi-

nal membership values are obtained as: �
1

(
f
1

)
= 0.993,

�
2

(
f
2

)
= 0.945. Also, value of each of the objective func-

tion is f1 = 75.847 and f2 = 55.958, respectively.
If these results are unacceptable for the DM at Step 11, 

the principal modifications are implemented in Step 13, and 
then similar procedures are repeated from Step 7 to Step 10. 
Hence the following results achieved are as follows:

The original membership values in (27) and (28) are 
obtained as: �1

(
f1
)
= 0.998, �2

(
f2
)
= 0.940. Also, value of 

each of the objective function is f1 = 76.072and f2 = 56.071, 
respectively.

Repeating the same procedures once again, the following 
results are obtained.

The original membership values in (27) and (28) are 
obtained as:�1

(
f1
)
= 0.999, �2

(
f2
)
= 0.938. Also, value 

of each of the objective function is f1 = 76.141 and 
f2 = 56.125, respectively.

Let us suppose the DM accepts this solution as the opti-
mal solution of problem (27), and thus the algorithm is ter-
minated at Step 12.

The membership and objective function values obtained 
by the presented FGP approach are given in Figs. 1 and 2.

The results obtained above show that the presented inter-
active FGP approach converged toward the desired levels by 
updating the upper and lower tolerance limit. Thanks to the 
proposed solution procedure, the decision maker analyzes 
the results in each iteration and obtains the best decision.

In order to further demonstrate the performance of the 
recommended linearization procedures, the above numerical 
example has also been solved as a nonlinear programming 
problem by using different FGP approaches. Then these FGP 
approaches are converted to linear form the presented lin-
earization method. Solving these models using Maple 2017, 
results of nonlinear models and their linear forms were com-
pared. Comparison of results is shown in Tables 2 and 3. 
Also, the general models for these approaches are stated as 
shown below.

The FGP approach which is proposed by Mohamed [33]:

x =
(
x1 = 0.304, x2 = 12.733, x3 = 2.358

)
.

� = d
−
1

= d
−
2

= 0.060, x =
(
x
1

= 0.249, x
2

= 12.637,

x
3

= 2.514

)
.

� = d
−
1

= d
−
2

= 0.062, x =
(
x
1

= 0.223, x
2

= 12.590,

x
3

= 2.590

)
.

where d−
k
 and d+

k
 is the negative and positive deviation from 

aspired levels, respectively. w
k
, 1 ≤ k ≤ l is the relative 

importance of achieving the aspired levels of the fuzzy 
goals, which is considered as w

k
=

1

sk−LK
, 1 ≤ k ≤ l.

A FGP approach which is proposed by Gupta and Bhat-
tacharjee [18]:

where w
k
=

1

sk−lk
, 1 ≤ k ≤ l.

Taking the membership functions defined in (27) and 
(28), the corresponding FGP model of (40) for problem (26) 
is formulated as:

where w
1
= 0.22 and w

1
= 0.44.

It is solved as a nonlinear programming problem by 
Maple 2017 and the results are obtained as:

objective value = 0.0027

(40)

Min

�
l�

k=1

w
k
d−
k

�

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, 1 ≤ k ≤ l�

�k

�
fk(x)

�
+ d−

k
− d+

k
= 1, l� + 1 ≤ k ≤ l

constraints of model (6)

d−
k
, d+

k
≥ 0, 1 ≤ k ≤ l

d−
k
× d+

k
≥ 0

x
l
≥ 0, 1 ≤ l ≤ n

(41)

Max �

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w
k
� ≤ �k

�
fk(x)

�
, 1 ≤ k ≤ l�

w
k
� ≤ �k

�
fk(x)

�
, l� + 1 ≤ k ≤ l

� + d−
k
= 1, 1 ≤ k ≤ l

constraints of model (6)

d−
k
≥ 0, 1 ≤ k ≤ l

x
l
≥ 0, 1 ≤ l ≤ n

� ∈ [0, 1]

(42)

Min

�
2�

k=1

w
k
d−
k

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�1

�
f1(x)

�
+ d−

1
+ d+

1
= 1,

�2

�
f2(x)

�
+ d−

2
+ d+

2
= 1,

3.889x1x2 + 4.123x2 + 3.660x2
3
≤ 87.364

4.123x2
1
+ 3.889x1x2 + 3.889x3 ≤ 75.369

3.660x1 + 3.889x2 + 3.660x3 ≥ 59.259

d−
k
, d+

k
≥ 0, 1 ≤ k ≤ 2

d−
k
× d+

k
≥ 0, 1 ≤ k ≤ 2

x
1
, x

2
, x

3
≥ 0
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The membership values in (27) and (28) are obtained 
as: �1

(
f1
)
= 0.992, �2

(
f2
)
= 0.943. Also, value of each 

of the objective function is f1 = 75.789 and f2 = 56.003, 
respectively.

Taking the linear membership functions and the linear 
constraint function as defined in (28), (30) and (31), the cor-
responding linear FGP model of (40) for problem (26) is 
formulated as follows:

d−
1
= 0.008, d−

2
= 0.057, d+

2
= 0, d+

2
= 0,

x =
(
x1 = 0.276, x2 = 12.706, x3 = 2.414

)
,

(43)

Min

�
2�

k=1

w
k
d−
k

�

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.308x1 − 0.015x2 + 0.180x3+0.675 + d−
1
− d+

1
= 1

−0.120x1 − 0.157x2 + 0.169x3 + 3.383 + d−
2
− d+

2
= 1

48.772x1+5.900x2+ 15.212x3-125.456 ≤ 0

52.540x1+1.777x2+ 3.889x3 − 98.515 ≤ 0

3.660x1 + 3.889x2 + 3.660x3 − 59.259 ≥ 0

d−
k
, d+

k
≥ 0, 1 ≤ k ≤ 2

d−
k
× d+

k
≥ 0, 1 ≤ k ≤ 2

x
1
, x

2
, x

3
≥ 0

Fig. 1  Change of the member-
ship values obtained by the 
proposed FGP approach

Fig. 2  Change of the objective 
values obtained by the proposed 
FGP approach
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where w
1
= 0.22 and w

1
= 0.44.

It is solved as a single objective linear programming prob-
lem by Maple 2017 and the results are obtained as: objective 
value = 0.0024,

The membership values in (27) and (28) are obtained 
as: �1

(
f1
)
= 0.992, �2

(
f2
)
= 0.944. Also, value of each 

of the objective function is f1 = 75.771 and f2 = 55.978 
respectively.

The membership values obtained from problems (42) and 
(43) show that the solution procedure proposed in this study 
gives better results for the DMs.

By putting the nonlinear membership functions (27), (28) 
and constraints of (26) in model (41), the following nonlin-
ear FGP problem is obtained.

d−
1
= 0, d−

2
= 0.0.056, d+

1
= 0, d+

2
= 0,

x =
(
x1 = 0.291 x2 = 12.727, x3 = 2.377

)
,

(44)

Max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w
1
� ≤ �1

�
f1(x)

�
w
2
� ≤ �2

�
f2(x)

�
� + d−

1
= 1, � + d−

2
= 1

3.889x1x2 + 4.123x2 + 3.660x2
3
≤ 87.364

4.123x2
1
+ 3.889x1x2 + 3.889x3 ≤ 75.369

3.660x1 + 3.889x2 + 3.660x3 ≥ 59.259

d−
1
, d−

2
≥ 0

x
1
, x

2
, x

3
≥ 0

� ∈ [0, 1]

Table 2  Comparison of the solutions obtained from nonlinear FGP 
models

Mohammed’s approach (40) Gupta and 
Bhattacharjee’s 
(41)

f
1

75.789 67.029

f
2

56.003 56.512

�
1

(
f
1

)
0.992 0.803

�
2

(
f
2

)
0.943 0.921

Table 3  Comparison of results based on linearization procedures

The presented 
approach

Mohammed’s 
approach (40)

Gupta and 
Bhattacharjee’s 
(41)

f
1

76.141 75.771 73.914

f
2

56.125 55.978 56.805

�
1

(
f
1

)
0.999 0.992 0.951

�
2

(
f
2

)
0.938 0.944 0.908

where w
1
= 0.22 and w

1
= 0.44.

Solving the above problem by Maple 2017, the solutions 
obtained are as follows:

Similarly, by taking linear membership functions 
(28)–(30) and linear constraints (31), problem (44) is 
reduced to the following linear FGP problem:

where w
1
= 0.22and w

1
= 0.44.

Solving this model by Maple 2017, the solutions obtained 
are as follows:

When the results obtained from nonlinear problems (42), 
(44) and their linear forms (43), (45) are compared, it is 
observed that the linearization procedures presented in this 
paper give accurate and efficient results.

Furthermore, all the results show that all the sums of the 
membership values generated by the suggested procedure 
are greater than that generated by the approaches presented 
in [18, 33].

According to Theorem 3, x =
(
x
1

= 0.223, x
2

= 12.590,

x
3

= 2.590

)
 is an efficient solution to MONLPP (26) and 

then from Theorem  4, x =
(
x
1

= 0.223, x
2

= 12.590,

x
3

= 2.590

)
 is an efficient solution for MONLPP with IT2 

FNs (25).
Finally, the interactive solution procedure proposed in 

this study is applicable to obtain more and more profit with 
a needed time.

� = 1, d−
1
=, d−

2
= 0,

x =
(
x1 = 0.324 x2 = 13.883, x3 = 1.418

)
,

�1

(
f1
)
= 0.803, �2

(
f2
)
= 0.921,

f2 = 56.512.

(45)

Max �

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w
1
� ≤ 0.308x1 − 0.015x2 + 0.180x3+0.675

w
2
� ≤ 0.120x1 − 0.157x2 + 0.169x3 + 3.383

� + d−
1
= 1, � + d−

2
= 1

48.772x1+5.900x2+ 15.212x3-125.456 ≤ 0

52.540x1+1.777x2+ 3.889x3 − 98.515 ≤ 0

3.660x1 + 3.889x2 + 3.660x3 − 59.259 ≥ 0

d−
1
, d−

2
≥ 0, x

1
, x

2
, x

3
≥ 0

� ∈ [0, 1]

⎧⎪⎪⎨⎪⎪⎩

� = 1, d−
1
=, d−

2
= 0,

x =
�
x1 = 0 x2 = 11.774, x3 = 3.681

�
,

�1

�
f1
�
= 0.951, �2

�
f2
�
= 0.908,

f1 = 73.914, f2 = 56.805.
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As seen in the results, the decision maker evaluates the 
results obtained, and if not accepts the results, intervenes in 
the solution process and tries to obtain the best solution in 
his(her) preferred direction. In the familiar FGP (40) and 
(41), it is habitually difficult to attain the aspired levels for 
DMs. Since interactive approaches present additional data 
to decision makers for producing better decisions, then the 
solutions of numerical examples are obtained by using the 
presented interactive FGP approach. Thus the proposed 
interactive solution procedure offers a practical way to attain 
appropriate aspiration levels reducing the computational 
complexity.

5  Conclusions

This paper presents a model of Multiobjective Nonlin-
ear Programming Problems (MONLPP) with trapezoidal 
Interval type 2 Fuzzy Numbers (IT2 FNs). The most seri-
ous aspect of the modeled problem is that it is having two 
objective functions; one of them is to maximize the desired 
profit while the other is to minimize the integrated time. At 
first, MONLPP with IT2 FNs is converted into an equiva-
lent crisp MONLPP by using an expected value function. 
Then the feasible region of MONLPP is transformed to lin-
ear inequalities using the limits of decision variable. Thus 
the nonlinear membership and constraint functions in the 
model are also converted into an equivalent linear function 
by using Taylor polynomial approximation. In this way, a 
linear fuzzy goal programming model for the MONLPP with 
IT2 FNs is constructed. This model is also solved to obtain 
the optimal solution by using the different approaches. Thus 
desired more profit at the minimum time is obtained by using 
the proposed interactive approach.

Consequently, applications of the proposed procedures 
are discussed with a numerical model, and the effectiveness 
of the solutions achieved by the interactive procedures is 
verified.

The proposed interactive fuzzy goal programming based 
on Taylor series may be assistant in solving decision making 
problems in the area of manufacturing, planning, and carry-
ing, etc. In future, the presented approach can be applied to 
some other type of MONLPPs with different membership 
functions.
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