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Abstract. The main purpose of the study of dengue fever transmission is to be able to
determine the best approach to reduce human mortality and morbidity caused by the disease.
Therefore, it is essential to identify the relative importance of the different factors that contribute
to disease transmission and prevalence. Here, a fractional order epidemiological model describing
the dengue fever transmission is presented, as well as the basic reproduction number, denoted
by R0. The initial disease transmission is highly significant with the basic reproduction number,
R0. Thus, the needs for conducting an analysis that tells us how sensitive the threshold
quantity of R0 is, with respect to its parameters, is very crucial. The sensitivity analysis is
performed to calculate the sensitivity indices of the reproduction number R0, that measures the
disease transmission and the endemic equilibrium point, that measures disease prevalence to
the parameters model. It has been shown that for the reproduction number, the most sensitive
parameters are the mortality rate of the adult mosquito and the mosquito biting rate. However,
the equilibrium proportion of infected humans is very sensitive to the transition rate from the
immature vector stage to the adult stage, and human recovery rate. These suggest that dengue
control policies that target the vector population and recovery rate of individuals can be a great
resolution in controlling dengue.

1. Introduction
Dengue fever is a mosquito-borne disease that generally exists in tropical and subtropical areas
around the globe. The dengue virus is transmitted to human by the bites of Aedes mosquito,
primarily, Aedes aegypti. Dengue is caused by four serologically different viruses known as DEN
I, II, III, and IV. Individuals infected by one of the viruses or commonly called serotypes gain
a lifetime resistance to it, but short-term immunity to the other serotypes. Millions of dengue
cases reported every year, especially in Southeast Asia and the western Pacific, and rapidly in-
crease in Latin America and the Caribbean. Up until today, there is no perfect vaccine available
to treat the disease. Controlling and reducing dengue virus transmission are solely depend on
vector control and human awareness. [1]

Understanding of the effectiveness and efficiency of various control interventions is vital to
construct a reliable dengue control policy. In particular, knowledge of the threshold concepts in
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the modelling of infectious disease that contributes to the spread of infection is crucial. In an
epidemiological study, the most important threshold concept is the basic reproduction number,
denoted by R0, that is significant with the initial disease transmission. In general, the sensitivity
analysis of the basic reproduction number is performed to identify the relative importance of
different parameters to the transmission. Sensitivity analysis of model parameters is crucial in
providing the right direction to the public health practitioners in designing the control strategies
plan. Chitnis et al [2] have performed a thorough sensitivity analysis on the malaria model by
evaluating the sensitivity indices of the basic reproduction number and the endemic equilibrium
point. They have discovered the significant parameters contributed to the disease transmission
as well as disease prevalence of malaria.

Most of the sensitivity analysis presented in the literature for the epidemic model is of the
integer order differential equations [3, 4, 5, 6, 7]. To the best of author knowledge, sensitivity
analysis has not been done to the fractional order dengue epidemic model [8, 9, 10]. Other
than the goal to determine which parameters are significant in the dengue fever transmission
and prevalence, we are also aiming to study the effect of the order on the sensitivity indices of
R0, and how significant it is in the controlling the disease. In this study, we used the fractional
dengue epidemic model proposed by Hamdan and Kilicman [11, 12, 13] to analyze the sensitivity
indices of the basic reproduction number with respect to all model parameters. The sensitivity
analysis is performed using the normalized forward sensitivity index introduced by Arriola and
Hyman [14]. In addition, we numerically determine the sensitivity indices of the endemic point
of equilibrium following method used in [2].

2. Model
The dengue epidemic model presented in [11, 12, 13] consists of a system of fractional order
differential equations, where human population is divided into three epidemiological states
known as; susceptible, Hs, infected, Hi, and recovered, Hr. The total population size is denoted
by H = Hs +Hi +Hr. Meanwhile, mosquito population is divided into three subgroups namely
aquatic stage (for immature population), Am, susceptible, Ms, and infected, Mi. Here, we will
consider both models with the same order dynamics and different order dynamics of the host
and vector population. The model for the same order dynamics is represented by the following
system of fractional order differential equations:

DαAm = qφα(1−Am/C)M − (σαA + µαA)Am,

DαMs = σαAAm −
bαβm
H

MsHi − µαmMs,

DαMi =
bαβm
H

MsHi − µαmMi,

DαHs = µαh(H −Hs)−
bαβh
H

HsMi,

DαHi =
bαβh
H

HsMi − (γαh + µαh)Hi,

DαHr = γαhHi − µαhHr,

(1)

where α ∈ (0, 1). The model for different order dynamics is given by the following equations:
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DαmAm = qφαm(1−Am/C)M − (σαm
A + µαm

A )Am,

DαmMs = σαm
A Am −

bαmβm
H

MsHi − µαm
m Ms,

DαmMi =
bαmβm
H

MsHi − µαm
m Mi,

DαhHs = µαh
h (H −Hs)−

bαhβh
H

HsMi,

DαhHi =
bαhβh
H

HsMi − (γαh
h + µαh

h )Hi,

DαhHr = γαh
h Hi − µαh

h Hr,

(2)

with αh, αm ∈ (0, 1). Since system (1) and (2) monitors human and mosquito population, all
the parameters, and state variables are positive. The biological meaning of each parameter of
the models is described in Table 1.

Table 1. Descriptions of parameters involved in system (1) and (2)
Parameter Descriptions Units

q proportion of eggs that results in female mosquito Dimensionless
φ oviposition rate Time−1 (day)
C carrying capacity of the aquatic stage population Dimensionless
σA transition rate from aquatic stage to adult stage Time−1 (day)
µA mortality rate of aquatic stage Time−1 (day)
µm mortality rate of mosquito Time−1 (day)
µh mortality rate of human Time−1 (day)
b biting rate Time−1 (day)
βm transmission probability from human to vector Dimensionless
βh transmission probability from vector to human Dimensionless
γh recovery rate of human Time−1 (day)

3. The basic reproduction number R0 for dengue
The basic reproduction number generally denoted by R0, is defined as the average number of
secondary infections produced by an infected individual in a completely susceptible population
during the mean infectious period [15]. Epidemiologically, the disease will be eliminated when
R0 < 1, and when R0 > 1 an epidemic occurs, resulting in a persistent of the disease over time.
In this article, the basic reproduction number is derived using the next generation approach.
Details of the derivation can be found in [11, 12, 13]. Here, for the same order dynamics
model (1), we neglect the assumption that both human and mosquito population do not possess
memory. Therefore, the derivation of the basic reproduction number, R0, of system (1) following
[11, 12] is given by the formula:

R0 =

√
b2αβmβhC(qφασαA − µαm(σαA + µαA))

Hµ2αm qφ
α(γαh + µαh)

. (3)

For the different order dynamics, the basic reproduction number, R̄0, for system (2), is given
by the following equation:
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R̄0 =

√
bαhbαmβmβhC(qφαmσαm

A − µαm
m (σαm

A + µαm
A ))

Hµ2αm
m qφαm(γαh

h + µαh
h )

. (4)

4. Baseline parameters
In this article, the numerical computation is performed based on dengue data recorded in
Malaysia for year 2016. The parameter values used are determined from the published studies
and from the dataset available by the Department of Statistics Malaysia and the Ministry of
Health Malaysia. The baseline values and ranges for the parameters described in Table 1 are
given in Table 2.

Table 2. Baseline values and ranges for parameters and order of system (1) and (2).
Parameter Baseline Range of values References
q 0.8 0-1 [16, 17]
φ 7.5 0-11.2 per day [16, 17]
σA 0.08 0-0.19 per day [16, 17]
µA 0.25 0.01-0.47 per day [16, 17]
1/µm 34 11-56 days [18]
1/µh 75 72-77 years [19]
b 0.5 0-1 per day [20]
βm 0.375 0.35-0.8 [21, 22]
βh 0.75 0.35-0.8 [21, 22]
γh 0.30 0.083-0.33 per day [18, 16]

5. Sensitivity analysis
5.1. The basic reproduction number, R0

Sensitivity indices enable us to calculate the relative change in a state variable when a parameter
changes [2]. In this study, the sensitivity analysis is conducted using the method defined in [2],
which formerly introduced by Arriola and Hyman [14]. The normalized forward sensitivity index
of a variable to a parameter is the ratio to the relative change in the variable to the relative
change in the parameter. At a time when the variable is defined as the differentiable function
of the parameter, the sensitivity index may be interpreted using partial derivatives [2].

Definition 1 [2] The normalised forward sensitivity index of variable u, that depends
differentiably on a parameter p, is defined by

Υu
p =

∂u

∂p
× p

u
. (5)

Since the explicit formula for R0 is obtained in (3), we can easily compute the analytical
expression for the sensitivity of R0, based on Definition 1 to all parameters described in Table
1 as,

ΥR0
p =

∂R0

∂p
× p

R0
. (6)
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Table 3. Sensitivity indices of R0 evaluated at the baseline parameter values for α = 0.9.
Parameter Sensitivity index
µm −1.02
b +0.90
γh −0.52
σA +0.51
βm +0.50
βh +0.50
q −0.017
φ −0.011
µA +0.012
µh −1.42× 10−4

However, this expression for the sensitivity indices is rather complex. Therefore, the
sensitivity indices are evaluated at the baseline parameter values given in Table 2. The sensitivity
indices of R0 to all the parameters in the model (1) are shown in Table 3. The parameters are
ordered from most sensitive to least sensitive.

Chitnis et al. in [2] mentioned that the sensitivity index of R0 with respect to the biting rate
parameter (in our case denoted by b), does not depend on the values of the parameters because
ΥR0
σvh

is always equal to 1. We observed the same result in the fractional order model (1). The
sensitivity index of R0 with respect to b does not depend on the parameter values, but, it is
dependent on the order of the derivative α. That ΥR0

b is always equal to the value of order α.
This can be verified with the results in Table 3 and Table 4. However, this is not the case for
a system with different order dynamics (2), since the biting rate parameter b is now dependent
on two different order, thus, such observation is not valid.

Table 4. Sensitivity indices of R0 evaluated at the baseline parameter values for α = 0.6.
Parameter Sensitivity index
µm −1.02
b +0.60
γh −0.52
σA +0.51
βm +0.50
βh +0.50
q −0.017
φ −0.011
µA +0.012
µh −1.42× 10−4

From the data in Table 3 and 4, it is apparent that the most sensitive parameter is the mor-
tality rate of the mosquito, µm (1/µm is the expected lifespan of the mosquito) and the biting
rate, b. Other significant parameters include the recovery rate in the human population γh,
transition rate from aquatic stage to mature stage of the mosquito population σA, and transmis-
sion probability both from human to vector βm and from vector to human βh. The sensitivity
indices can be interpreted as, for example, as ΥR0

µm = −1.02 , if we increase (or decrease) µm by
10%, then the basic reproduction number R0 will be decreasing (or increasing) by approximately

10%. Similarly, as ΥR0
βm

= 0.5, decreasing (or increasing) βm by 10% will decrease (or increase)
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R0 by 5%. The obtained results agree with our intuitive expectation.

For system with different order dynamics (2), the sensitivity indices of R̄0 to all parameters
are given in Table 5. We observed that the result is similar to the result in the same order
dynamics of system (1), except for the biting rate b and recovery rate γh parameter (µh is
neglected as it is the least sensitive). These two parameters are affected by the change of order
on the differential operator.

Table 5. Sensitivity indices of R̄0 evaluated at the baseline parameter values for αm = 0.9 and
αh = 0.99, 0.8.

Parameter
Sensitivity index
(αm < αh)

Sensitivity index
(αm < αh)

µm −1.02 -1.02
b +0.81 +1.01
γh −0.62 -0.45
σA +0.51 +0.51
βm +0.50 +0.50
βh +0.50 +0.50
q −0.017 -0.017
φ −0.011 -0.011
µA +0.012 +0.012
µh −6.23× 10−5 −3.53× 10−4

Figure 1 shows graphs of infected individuals through parameter variation with order α = 0.9.
The obtained figures reinforce the sensitivity indices in Table 3. Each plot gives the number
of the infected human population using the baseline parameter values specified in Table 2 and
the corresponding plot with an increment of 10% in the parameter value. Some parameters like
µh, φ, q, µA having a little impact on R0 and the changes are not graphically noticeable. Thus,
we omit their graphs.

5.2. The point of the endemic equilibrium
Here, the local sensitivity analysis of the endemic equilibrium point of model (1) is performed
to access the importance of each parameter in the disease prevalence. Disease prevalence is
referring to the number of infected cases of a particular disease in a population at a specific
location at a particular time [23]. The analysis is associated to the endemic equilibrium point
E2 = (Am∗,M∗

s ,M
∗
i , H

∗
s , H

∗
i , H

∗
r ), particularly to the size of the infectious human [12]. The

sensitivity indices of the endemic equilibrium point are evaluated at the baseline parameter
values given in Table 2, using a similar method described in [2] (see Appendix). The calculated
sensitivity indices of the endemic equilibrium at the baseline parameters with respect to the
model parameters are presented in Table 6.

From Table (6), the most sensitive parameter for infectious human component, Hi, is the
transition rate from the aquatic stage to the adult stage of the mosquito population, σ. Any
increase in the population of adult female mosquito will increase the infected mosquito, thus,
leads to an increase in the infectious human class. Other highly significant parameter is the
recovery rate of infected individuals, γh, and followed by the biting rate, b, the mortality rate
of mosquito, µm, and the transmission probability rate from human to mosquito, βm, and from
mosquito to human, βh. These parameters are also among the important parameter for R0.
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Figure 1. Infected human population with the initial parameter value (solid line) and with an
increase of 10% of a specific parameter (dashed line).

6. Discussion and Conclusion
Together these results provide important insights into the contribution to the dengue disease
transmission as well as the prevalence of disease. The most important parameter for initial
disease transmission is the mortality rate of the mosquito population, µm, and this parameter is
also highly significant in the disease prevalence. This parameter is certainly become the biggest
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Table 6. Sensitivity indices of model (1) of the point of equilibrium.
Am Ms Mi Hs Hi Hr

q +0.0542 +0.1658 +0.5721 −0.4973 +0.0923 +0.1626
φ +0.0663 +0.2028 +0.6998 −0.6083 +0.1129 +0.1989
σA +0.1068 +2.7016 +9.3213 −8.1027 +1.5049 +2.6494
µA −0.0696 −0.2129 −0.7347 +0.6386 −0.1186 −0.2088
µm −0.0381 −0.8161 −3.9084 +3.3975 −0.6310 −1.1109
µh −0 +0.0002 −0.2003 +0.1271 −0.0906 −0.5194
b +0 −0.0028 +3.7291 −4.0526 +0.7527 +1.3251
βm +0 −0.0024 +3.2107 −2.7910 +0.5184 +0.9126
βh +0 −0.0004 +0.5183 −1.2616 +0.2142 +0.4125
γh −0 +0.0023 −3.0499 +2.6512 −1.3787 −0.8664

challenge in reducing the transmission rate, as increasing the mortality rate is a whole lot more
difficult than reducing it. However, this can be practically done by lowering the natural birth
rate of the mosquitoes and also control their frequent blood meals, through the destruction of
breeding sites and the use of insecticides. These strategies can also be used to tackle parameter
σA, which is the most sensitive parameter in the disease prevalence.

The second most important parameter is the mosquito biting rate, b. This parameter cannot
be targeted directly through the intervention approaches but can be done by lowering mosquito-
human contacts. Clearly, reducing the frequent contacts between humans and mosquitoes,
through a reduction in the regularity of mosquito blood meals, as well as the number of bites
that a human can tolerate can give a significant effect on the disease transmission. The strate-
gies that can reduce the human-mosquito contact are including the use of insecticide-treated
bed nets, mosquito repellent, and indoor residual spraying.

The analysis also shows that the human recovery rate parameter γh has an important role
in the disease transmission and disease prevalence. This parameter can be reduced through a
prompt and effective case management by the health authorities which emphasize immediate
and accurate diagnosis of the disease and proper medical treatment of dengue. Furthermore, the
transmission probability from an infected human to mosquito βm and the transmission proba-
bility from an infected mosquito to human βh are also important. Parameter βm can be treated
through current intervention strategies such as the release of genetically modified mosquitoes
(GM). While parameter βh can be managed by, for instance, in Malaysia, fogging will be carried
out based on the viral cases reported, hence, would reduce the chances of the infected mosquitoes
to transmit the virus to susceptible individuals.

Apart from that, we have observed an interesting result for the proposed fractional order
dengue models. The calculated sensitivity indices for model (1) and model (2) indicates that
the order of the differential equation has a significant effect on dengue transmission. As the order
of the differential equation represents the memory of the population, the targeted interventions
to control the disease can be planned accordingly, by taking into consideration every aspect
involving memory, especially in the mosquito population. We believe that the research direction
initiated in this study can benefit the public health authorities in designing a proper program
or policy in the effort of reducing the rising dengue cases.
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Appendix
In this appendix the computation of the sensitivity indices of the point of endemic equilibrium
described in [2] is given. By using the formula in (1), the partial derivative of the state variables
needs to be evaluated at the endemic equilibrium point with respect to the parameters. The
step-by-step computations are given as follow:

(i) For ease of notation, we suppose that the six state variables at the endemic equilibrium
point E2 = (A∗

m,M
∗
s ,M

∗
i , H

∗
s , H

∗
i , H

∗
r ) by x1, x2, . . . , x6, the parameters (q, φ, . . . , γh) by

p1, p2, . . . , p10, and the six equilibrium equation of the model by

f1(x1, . . . , x6; p1, . . . , p10) = 0,

...

f7(x1, . . . , x6; p1, . . . , p10) = 0.

(7)

(ii) The partial derivative ∂xi/∂pj for 1 ≤ i ≤ 6 and 1 ≤ j ≤ 10 for the baseline parameter
values is evaluated with the corresponding endemic equilibrium.

(iii) Taking full derivatives of the six equilibrium equations (7) with respect to the ten
parameters, pj , gives us equations of the form,

dfk
dpj

=

6∑
i=1

(
∂fk
∂xi

∂xi
∂pj

)
+

10∑
l=1

(
∂fk
∂pl

∂pl
∂pj

)
= 0, (8)

for 1 ≤ k ≤ 6 and 1 ≤ j ≤ 10. However, ∂pl/∂pj = 0 if l 6= j so each equation in (8) reduces
to

6∑
i=1

∂fk
∂xi

∂xi
∂pj

= −∂fk
∂pj

. (9)

(iv) Equation (9) can be written as the ten linear systems of six coupled equations as follows

Az(j) = b(j), (10)

where A is the 6× 6 Jacobian matrix of the dengue model (1) with Aki = ∂fk/∂xi, z
(j) is

the unknown 6 × 1 vector with the ith term of z(j) given by ∂xi/∂pj , and b(j) is a 6 × 1
vector with the kth term given by −∂fk/∂pj .

(v) Finally, we multiply ∂xi/∂pj by pj/xi, as in the Definition 1 of the normalized forward
sensitivity index.
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