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Abstract: Recent advancements in the Internet of Things and Machine Learning techniques have
allowed the deployment of sensors on a large scale to monitor the environment and model and
predict individual thermal comfort. The existing techniques have a greater focus on occupancy
detection, estimations, and localization to balance energy usage and thermal comfort satisfaction.
Different sensors, actuators, and analytic data methods are often non-invasively utilized to analyze
data from occupant surroundings, identify occupant existence, estimate their numbers, and trigger
the necessary action to complete a task. The efficiency of the non-invasive strategies documented in
the literature, on the other hand, is rather poor due to the low quality of the datasets utilized in model
training and the selection of machine learning technology. This study combines data from camera and
environmental sensing using interactive learning and a rule-based classifier to improve the collection
and quality of the datasets and data pre-processing. The study compiles a new comprehensive
public set of training datasets for building occupancy profile prediction with over 40,000 records. To
the best of our knowledge, it is the largest dataset to date, with the most realistic and challenging
setting in building occupancy prediction. Furthermore, to the best of our knowledge, this is the first
study that attained a robust occupancy count by considering a multimodal input to a single output
regression model through the mining and mapping of feature importance, which has advantages
over statistical approaches. The proposed solution is tested in a living room with a prototype system
integrated with various sensors to obtain occupant-surrounding environmental datasets. The model’s
prediction results indicate that the proposed solution can obtain data, and process and predict the
occupants’ presence and their number with high accuracy values of 99.7% and 99.35%, respectively,
using random forest.

Keywords: smart buildings; energy; indoor; occupancy; machine learning; carbon dioxide

1. Introduction

Understanding occupancy behavior has been highlighted as an essential factor in occu-
pancy modeling to achieve energy efficiency gains [1]. As a result, the International Energy
Agency (IEA) emphasizes the need for more research in predicting building occupancy
status, which can save up to 50% of total building energy consumption [2]. Occupancy
status prediction in the buildings benefits several systems, most notably the Heating, Venti-
lation, and Air Conditioning (HVAC) system. Other building management services, such
as security, emergency systems, fire systems, and automated energy management, can also
benefit from real-time occupancy information [3,4]. The research to detect and estimate
building occupants can be classified into direct and environmental sensing methods [5].
Direct sensing is based on technology that can directly indicate the presence of people
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through passive infrared, video cameras, and optical tripwires. The performance of the
direct sensing approach is excellent in detecting, estimating and tracking occupancy. How-
ever, the adoption of this approach in residential buildings and future smart homes has
research challenges. One of such challenge is preserving occupancy privacy. A smart indoor
occupancy prediction system should be designed to prevent occupancy or their activities
from being identified [6].

On the other hand, environmental sensing predicts the presence of occupancy through
sudden changes in environmental surroundings, such as heat or carbon dioxide (CO2) emis-
sions, without jeopardizing the occupants’ privacy in that specific location [7]. However, a
single environmental sensor data accurately confirm occupancy with a certain degree of
certainty without machine learning methods [3]. Jointly combined sensors with strong data
correlation can improve the performance accuracy of the prediction model [1]. However,
when data generated by sensors grows exponentially, conducting data processing, storage,
and reporting becomes too expensive. Furthermore, they are incapable of meeting the
processing requirements of real-time processes, especially if events monitored at regular
intervals are either redundant or have minor variations, resulting in a significant waste of
data storage resources and communication energy at relay and sensor nodes.

Researchers proposed incorporating various environmental parameters, such as indoor
temperature, humidity, CO2 concentration, and noise level, to improve precision and
accuracy in occupancy models based on single sensing sources. A study used the random
forest method to achieve a detection accuracy of up to 98% for dichotomous occupancy
status (occupied or vacant) [8].

For this reason, research on energy efficiency has put more emphasis and growing
interest in environmental sensing to improve building infrastructure, enabling smart indoor
control. For example, Aliero [1] uses random forest to perform demand control ventilation
to solve the problem of power imbalance during peak load profiles. The predictive control
using a fuzzy-based controller proposed in [9] and adaptive control in [6] lower the energy
consumption of the peak load, such as the HVAC system based on occupant-desired
comfort. Predictive control provides a solution for thermal comfort optimization, while
adaptive control solutions trade-off between energy consumption and thermal comfort
during peak hours [1].

Despite numerous academic’s efforts to tackle the challenge of building occupancy
prediction, little emphasis has been devoted to developing a shared dataset that allows
performance comparison of different machine learning algorithms for environmental sens-
ing approaches. There is, however, a limited number of publicly accessible datasets for
occupancy prediction [1]. However, the majority of these are poorly documented or have
not been utilized in formal research.

Zhou et al. [10], from the University of California, Irvine (UCI), offered seven features
and over 20,000 records. While this dataset is open to the public, it does not feature some
important features or attributes to perform prediction, such as the occupants’ number or
range. Barut et al. [10] and Kane et al. [11] offered datasets that can be used for occupancy
detection. The study of Kane et al. [11] consisted of a significant quantity of data collected
from numerous houses at various seasons of the year. However, this dataset has no ground
truth about occupancy, and access is not assured (it can only be accessed upon request
from Ecobee).

Several studies have been conducted to estimate occupancy based on environmental
sensing (ES) [11–16]. However, only a few studies employed non-environmental factors as
extra support for occupancy estimation. Studies such as that of Adeogun et al. [17] used
pressure, CO2 level, humidity, and Passive Infrared (PIR) sensor to reach an estimation
accuracy of 91%. Another example is that of Chitu et al. [18], who, in addition to utilizing
CO2 level, considered the status of all airflow entries and achieved an accuracy of 69%.

Jiang et al. [19] and Zhou et al. [13] are two studies that solely employed ES. Both
utilized CO2 to predict occupancy, with 77% and 82% accuracy, respectively. Another
example is the work of Viani et al. [20], who used temperature, humidity, and CO2 to
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achieve an accuracy of 82%. This work is one of a few that used temperature and humidity
to predict occupancy. To the best of our knowledge, no studies have solely employed ES,
without including CO2 [21]. Moreover, none of the research based solely on environmental
sensing achieved a solid performance comparable to that achieved by works that combined
environmental and non-environmental variables [22]. Moreover, most of these datasets
have not captured occupancy numbers (occupant ground truth) or are poorly documented,
which is a key attribute for efficient prediction [1].

The main research question of this work is how the collection and quality of the
training dataset for non-intrusive occupancy prediction can be improved. To answer the
main research question, the following sub-research questions are posed:

i. What are the existing studies for occupancy detection and estimation for energy saving?
ii. How can the quality of the training dataset be improved to obtain high-

performance prediction?
iii. How can the performance of the proposed data collection approach be evaluated

using various machine learning methods?

The major objectives of this study are as follows:

i. Conducting a literature review analysis.
ii. Using a recursive variable feature selection, normality feature cross-validation test,

and feature importance, choose and prioritize the most important variables with
strong features correlation.

iii. Performance comparison of five ML algorithms in terms of prediction accuracy.

This study suggests a new multi-wireless device data model that combines environ-
mental sensing for indoor condition data and camera sensing to capture occupant numbers
to establish compressive occupancy prediction datasets.

As a result, this study aims to create an open dataset with environmental variables
obtained from a living room setting and to test several Machine Learning (ML) algorithms
to predict occupancy levels. Thus, the major contributions of this study are twofold: it
generates datasets in real-world scenarios and evaluates five ML algorithms (Random
Forest (RF), Naive Bayes Classification (NBC), Support Vector Machine (SVM), Artificial
Neural Networks (ANN), and Logistic Regression (LR)) to estimate occupancy levels using
the generated datasets.

It is worth noting that this study focuses exclusively on predicting occupancy in
enclosed areas based on internal environmental variables. External environmental variables
are outside the scope of this study. In addition, because temporal dependency in the
data is not considered, the internal environment is deemed static. Furthermore, while
the integration of the suggested solution design took place in the design building and
EnergyPlus simulator, the actual integration with other building management services with
such systems is also beyond the scope of this study.

The research is structured as follows: The second section examines the research on
indoor occupancy detection and estimation. The methodology of this investigation is
presented in Section 3. The experimental work is presented in Section 4. Section 5 discusses
the results and compares them to the current literature. Finally, Section 6 presents the
study’s conclusions.

2. Literature Review

ML occupancy prediction models have demonstrated considerable promise in building
energy modeling and forecasting relevant appliances, such as occupancy behavior. The
research in [7] examined the occupancy prediction model both with and without a machine
learning method and found that the ML technique considerably increased accuracy and
saved 30% of the energy. Although these ML techniques have been widely utilized and
tested in previous research, the algorithm employed in each scenario varied. As a result
of the increasing quantity of papers, it is vital to investigate model capabilities and issues,
and conduct a critical evaluation for future research.
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Several data collection approaches have been subsequently devised to improve the
precision of occupancy prediction. According to various studies, occupancy detection
can reduce energy expenses by up to 30% while boosting indoor air quality [1,15]. How-
ever, while the usage of such technology is intriguing and offers a peek of future smart
homes, privacy concerns must be solved before it can be widely used. Integrating suitable
monitoring technologies of the environment with appropriate HVAC or other monitoring
capabilities can result in a higher precision and more accurate building simulation methods.

Camera-based occupancy detection, which is frequently used to provide the ground
truth of residents, is the most accurate method for detecting people and their number in
the building. An experiment using overhead cameras in research students’ office rooms
produced over 80% accuracy [5,6], and another surveillance system with cameras was used
to test the newly suggested occupancy prediction algorithm. However, due to privacy
concerns, most cameras were mounted in researchers’ offices or specialized research rooms.
In addition to cost and computing power, a camera-based approach is subject to privacy
concerns. Additionally, occupancy overlapping is a common challenge in addressed in [4,6].

The most basic occupancy detection method is based on a pure analysis of the gradient
of the observed CO2 profile [7,8,14,23,24]. The aim is to understand whether occupants are
present without regard for the actual quantity of occupiers. According to the authors, the
benefit of this approach is its simplicity by simply measuring room CO2 concentration as
an input parameter. Nonetheless, the findings are satisfactory and meaningful only if the
room’s air change rate stays unchanged for the duration of the study.

The change in CO2 generation relative to the number of people present is a typically
used statistic. This relation relies on deployment space and, as such, requires either explicit
knowledge of the target space [25–27] or the capacity to acquire the relation through
observation [9,14,16]. The fact that the former models need previous knowledge limits the
generality of a solution and would impede any redeployment for a wireless sensor network;
consequently, a learned solution is better. Previously, occupancy estimate systems based
on learned CO2-to-occupancy models were presented in [24]. Artificial neural networks,
classification and regression trees, gradient boosting, linear discriminant analysis, random
forests, and their derivatives were used in these solutions. In most of the CO2-based
approaches, such as those in [9,14,16,20,21], door or window opening (as indicated by the
researchers) may result in incorrect occupant detection calculations.

Other systems [10,28–30] provide occupancy detection from people’s perceptions with
permanent features, such as a room or entryway, as opposed to user- and activity-centric
occupancy approaches. Using sensors such as door contact or passive infrared is useful
in identifying people in a target region by monitoring sensor activations throughout a
network of deployed devices [31]. These installations protect privacy, are often low-cost,
and are well-suited for wireless sensor network deployments of various sizes. However,
the output of these sensors is confined to the binary occupancy state, as these modalities do
not generalize well for measuring the number of people unless linked with other sensors.

To enable demand control ventilation, occupancy prediction applications must be
incorporated into a control system. The incorporation has taken different forms, including
occupancy detection, estimate, identification, and monitoring of occupancy activities [24].
The research on occupancy-based demand control ventilation is summarized in Table 1.

The non-intrusive method predicts room occupancy by monitoring ambient conditions.
Room occupancy can be measured through various non-intrusive applications, such as
multi-sensing technologies, to measure the amounts of CO2 in the room. Recent research
combined cameras and ML techniques have been employed in commercial and residential
buildings to carefully evaluate and capture picture frames for occupancy prediction. The
fusion of these modalities is thought to distinguish human occupancy from other objects
releasing thermal heat in the surroundings and to aid in night vision prediction. The
vision-based approach can handle multi-class and binary occupancy predictions with up to
96% accuracy and 26% energy savings potential, respectively.
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Table 1. Occupancy integration in DCV.

Occupancy Input Study Approach Algorithm Test Environment

Occupancy Detection [8,16,24,32] Non-intrusive
approach Statistical analysis Commercial building

Occupancy Estimation [1,7,23,32] Non-intrusive
approach Random forests Residential building

Occupancy
Count/Estimation [5,6,33] Intrusive approach Random forest, Linear discriminant

analysis, and Vector support machine Commercial building

Occupancy Identity [23,26] Intrusive approach Linear regression and Random forest Commercial building

Occupancy Activity [10,25,28] Intrusive approach Artificial neural networks, Vector
support machines and classification Residential building

Occupancy Activity [29,30] Intrusive approach Linear regression and Random forest Commercial building

Wearables and acoustic techniques rely on activities accomplished by other systems
that can monitor the occupancy position. The ML model can acquire signal strength from
statically installed beacons in a target region to generate a fine-grained occupant placement
with a geolocation accuracy of five meters. The activation of the selected sensors with
known placements has recently been employed in passive infrared and acoustic sensors
to obtain occupancy and geolocation information via a multimodal sensing network. In
these investigations, multi-modal data fusion and deep learning approach were used to
predict occupancy.

In essence, the investigation of related work reveals that satisfactory performance lev-
els for occupancy prediction have been reached. However, disparities in geographical and
temporal dimensions, occupancy numbers, and sensor counts make accurate comparisons
exceedingly challenging. Likewise, few works that entirely concentrate on environmental
sensing without the inclusion of additional sensors were discovered, indicating that this
strategy should be researched. A preference for ML and Deep Learning (DL) techniques
over physical models was also seen. As a result, the purpose of this work is to focus on a
novel multi-model environmental sensing-based monitoring system that collects compre-
hensive datasets and conducts a performance analysis of the different ML techniques on
occupancy prediction.

3. Methodology
3.1. Dataset Collection and Selection Process

Datasets were gathered in a residential building environment, a sitting room in a
house that consists of five separate rooms, in Taman Teratai Johor, Malaysia, which has a
tropical environment year round with typical temperatures from 25 ◦C to 30 ◦C. The case
study considered incorporating an innovative lightweight structure approach utilizing a
stick-built timber frame and a cassette floor building system. The thermal properties and
thicknesses of the building material are shown in Table 2. These attributes are useful for
assessing occupant dynamic and steady behavior.

The sitting room is intended for occupants’ social meetings, such as relaxing, eating,
and watching TV. Sensors (see Table 3) were placed on the desk (see Figure 1) to monitor
indoor environmental variables, such as temperature, lighting, relative humidity, and CO2
levels. Furthermore, people’s arrivals and departures were carefully recorded in the sitting
room to confirm that the numbers match the sensor readings.

The temperature and humidity of the room were measured with a DHT22 sensor
attached to an Arduino Uno positioned on the desk around 0.5 m away from the occupants.
For temperature readings, the DHT22 sensor offers an accuracy of 0.5 ◦C and a precision of
0.1 ◦C. A thermal camera sensor situated around 2 m from the occupants and connected
to Raspberry PI and CO2 was used to gather occupancy information regarding room air
quality and light intensity. A breadboard was used for a simple wire connections to enable
information sharing among sensors (See Figure 1).
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Table 2. Room thermos-physical properties.

Properties Material c (J/Kg·K) (W/m·K) Thickness (cm)

Wall

Tuff 650 1.5 10

Brick 1000 0.11 18

Polystyrene 1600 0.028 8

Ground Floor

Concrete 650 0.43

Stoneware flooring 650 1.25 1.3

Igloo 650 0.07 8

Gravel 1.1 1

Screed ordinary concrete 650 1 5

Ceiling

Hollow-core concrete 650 0.7 25

XPS polystyrene panel 650 0.4 8

Bricks tuff 650 0.5 5

Table 3. Various sensor data sources.

Sensor Description Uncertainty Unit Data Record

Temperature Measure indoor
temperature 1 ◦C Degree Celsius 60 s interval

Relative
Humidity

Measure indoor
relative humidity ±5% Percentage 60 s interval

CO2

Measure indoor
CO2 concentration

levels

300–1000 ppm:
±120 ppm

Parts Per Million
(ppm) 60 s interval

Light
Measure

illuminance
indoor light levels

10–2000 lux
range Lux 60 s interval
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Figure 1. Experimental setup. Figure 1. Experimental setup.

The dataset was collected using consistent readings from 1 April 2021 to 28 April 2021.
Only datasets with full-day readings and more than three columns from different streams
in a row were used. Furthermore, when datasets were released, records were exchanged to
avoid exposing occupancy timelines. CO2 concentrations, as reported by Schwee et al. [29],
can be anonymized for vulnerable privacy attacks. On odd days (Sunday, Tuesday, and
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Thursday), the streams of the two successive rows were exchanged at random, whereas
on even days (Saturday, Monday, and Wednesday), the streams of the first two rows were
exchanged sequentially. Even though it was not taken into account in a recent study by [8],
the researchers decided to include and calculate the humidity ratio from the original dataset
stream to improve occupancy estimation accuracy.

3.2. Dataset Pre-Processing

Based on the normality assumption theorem, dataset pre-processing is necessary to
ensure that the dataset is normal and does not consist of anomalies that influence the overall
accuracy of the estimation method [20]. Even though it has been noted that, if the sample
size of the dataset is 100 or greater, violation of normality is not a serious challenge [29],
the normality assumption should be employed for valid conclusions, irrespective of the
sample size. Before analyzing the dataset’s normality, a statistical summary (see Table 3)
and a Q-Q plot (see Figures 2 and 3) were performed [18].
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Figure 2. (a) Temperature, humidity, and light dataset distribution. (b) Temperature, humidity, and
light dataset normality check.

3.2.1. Normality Test

The statistical summary (see Table 4) approach shows the dataset normality charac-
teristics from statistical terms such as the mean and standard deviation, skewness, and
kurtosis. The statistical summary of time streams consisting of 2668 readings on five
variables parameters (Date, Temperature, Humidity, Light, CO2, Humidity Ratio, and
Occupancy) is presented in Table 4.
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Table 4. Statistical summary of the dataset.

Date Temperature Humidity Light CO2 Humidity Ratio Occupancy

Count 2668 2668 2668 2668 2668 2668 2668

Average 3.7 × 107 21.4 25.35 193.8 718.1 0.00463 2.394

Standard deviation 1.6 × 106 1.03 2.435 250.7 292.7 0.00061 2.808

Coeff. of variation 4.36% 4.8% 9.60% 129% 40.7% 15.164% 117%

Minimum −4.7 × 107 20.2 22.1 0 427.5 0.0031 0

Maximum 3.7 × 107 24.4 31.4 1697 1402 0.0053 9.0

Range 8.4 × 107 4.20 9.37 1697 974.7 0.0020 9.0

Stnd. skewness −1089.21 17.8 14.1 16.01 16.56 13.643 18.63

Stnd. kurtosis 28,130.2 −6.4 −2.85 −5.70 −7.71 −7.743 −5.77

The standardized skewness and kurtosis determine if the sample has a normal distri-
bution. Notwithstanding, the results’ standardized skewness and kurtosis values range
from −2 to +2, demonstrating strong deviations from normality that tend to nullify the
normally distributed data theory assumption. Even though the statistical summary pro-
vides an unbiased ruling of dataset normality, it may be tolerant to small dataset sample
sizes or be overly cautious for large dataset sizes. Because our dataset is not small (it
contains over 2000 records), a parametric test was carried out using a graphical Q-Q Plot
(see Figures 2 and 3). In cases where a statistical summary test can be overly or under
sensitive, graphical analysis inspires decisions to assess normality.

However, the graphical representation for assessing normality requires a great deal of
expertise to prevent incorrect interpretations. The data for graphic performance is usually
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presented in histograms or Y and X vectors. According to Gregorutti et al. [34], suppose Y is
the variable that depends on the regression matrix of variables X. If X(x1, x2, x3, . . . xn) are
jointly normal, then Y is said to be conditionally on X and µ = f (X) is normally distributed
vector. Therefore, Y and µ can be expressed as:

X ∼ N
(
µ = f (X), σ2

)
(1)

where
µ = f (X) = (ß0 + ß1 ∗ x1 + ß2 ∗ x2 + . . . ßn ∗ xn)

The graphical presentation of the normality distribution of the sample dataset was
conducted using the Q-Q plot (see Figures 2 and 3).

The graphical presentation sample dataset distribution and normality check were
conducted using the Q-Q plot (see Figures 2 and 3). Figures 2a and 3a show the occupancy
present and activities that can influence changes in the indoor surroundings, such as
temperature, humidity, lighting, CO2, and humidity ratio within the building, respectively.
A common feature observed on each dataset was the tendency of the similarity of the peak
frequency values’ distribution. Similarly, Figures 2b and 3b show the normal distribution
of the temperature, humidity, occupancy, CO2, and humidity ratio datasets. A small outlier
is observed in the light dataset. This is a result of light penetrating through glass windows
when curtains are not drawn or inappropriately drawn. When lighting is observed in a
room with empty occupancy, the light sensor assumes occupancy is present. This indicates
there is a strong correlation between predicting variables and predictors.

According to the observation in Figures 2b and 3b, the dataset points do not entirely
conform to the normal distribution comprising slight variance, and thus necessitate data
analysis to obtain a Gaussian distribution at this level. After manually inspecting the
unfitted points, it was determined that the skew is not induced by inaccurate sensor
readings or recordings but is formed unexpectedly and is not inherently a concern that
can affect the model prediction results. Unfitted point distributions appear in all variables,
with more outliers in the CO2 and occupancy variables. Many such experiments have
shown that approximately 1 in 340 conclusions in a regular distribution would be at least
three standard deviations away from the mean [32]. Randomness, on the other hand, can
incorporate outliers in smaller datasets.

3.2.2. Computing Variable Feature Correlation

Model feature selection requires variable feature correlation, which can improve model
predictive accuracy. The dependence relationship of the predicting variable on predictors
was used to evaluate feature correlation. Figure 4 depicts the distribution of the indoor
occupancy variable (predicting variable) to other indoor variables (predictors) during room
occupancy. Figure 4 shows that all variables strongly correlate with room occupation,
particularly CO2 and humidity. The value of the significant correlation between occupancy
and other predicting variables, however, cannot be easily determined from Figure 4.

Pearson’s Product-Moment Coefficient (PPMC) was used in this research to calculate
the correlation coefficient value. When given a set of paired (x,y) values between−1 and +1,
PPMC calculates the dependency strength between the variables x and y [20,32]. Figure 5
depicts the computed PPMC values using six variable parameters ranging from −1 to 1.
The 1 denotes a strong positive correlation mark colored with a white background color,
followed by 0.9 colored with a red background color, and so on, until 0.00 and−0.00 shaded
with a green background color denote a weak correlation between the variables.
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3.3. Variable Feature Selection

Feature engineering is essential in developing ML models, which requires remov-
ing features with weak correlation before deploying the dataset sample into the model
for evaluation. A variable importance measure metric in Gregorutti et al. [34] is consid-
ered to remove uncorrelated variables parameters. The theory in Gregorutti et al. [34]
suggests predicting variable Y and predicts X =

(
X1, . . . , Xp

)
to be a vector of random

variables. The rule ƒ̂ in the regression setting for predicting variable Y is a function
that can be measured using the values in R. The prediction error of ƒ̂ can be defined by
R(ƒ̂) =

[(
ƒ̂(X)−Y2

)]
and object is to calculate the conditional expectation ƒ(x) = E[Y|X = x].

Similarly, let Dn = {(X1, Y1), . . . (Xn, Yn)} be a set of learning of n replications of (X, Y),
where Xi =

(
Xi1, .., Xi p

)
. Since the true prediction error of ƒ̂ is unknown in practice, the

observation of a test dataset (D) is considered for prediction and, therefore, D can finally
be presented as:

D: R̂
(

ƒ̂, D
)
=

1
D ∑

i:(Xi ,Yi∈D)
Yi − ƒ̂

(
Yi − ƒ̂(Xi)

)2
(2)
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Permutation variable importance is a model inspection technique by Breiman [35]
that has shown proficiency in non-linear estimators such as our model and, therefore, was
adopted in this study. The technique considers predictors XiXj as the critical predicting Y
from Equation (2). If the link between the feature XiXj and Y is broken, an increase in the
prediction error score may be observed. The score value in the model reflects how much the
model is dependent on the feature. This methodology has the advantage of being model
agnostic, allowing it to be measured several times with various function permutations. To
demonstrate this model, Breiman [35] randomly permuted the observations of the XiXj’s.

Formalizing the statistical permutation value calculation was conducted as follows: Define
a group of out-of-bag samples {Dt

n = Dn\D
t
n, t = 1, . . . , ntree}. Let {Dtj

n, t = 1, . . . , ntree}
represent permuted out-of-bag samples by randomized permutations of the j− th variable’s
values in each out-of-bag subset. The variable Xj’s statistical permutation value is defined as:

Î
(
Xj
)
=

1
ntree

∑ntree
t=1

[
R̂
(

ƒ̂t, Dtj
n

)
− R̂

(
ƒ̂t, Dt

n

)]
(3)

This quantity is the statistical equivalent of the permutation importance measure
Î
(
Xj
)

recently formalized by Zhu [36]. Let
(
Xj
)

=
(

X1, . . . , X′j, . . . , Xp

)
be the random

vector such that X′j is an independent replicate of Xj that is also independent of Y and all
other predictors, and the permutation significance measure is provided by:

I
(
Xj
)
= E

[(
Y− ƒ

(
X(j)

))2
]
−E

[
(Y− ƒ(X))2

]
(4)

In the expression of Î
(
Xj
)
, the permutation values of Xj mimics the identical and

independent duplicate of the distribution of
(
Xj
)

in I
(
Xj
)
. Thus, Equation (4) can compute

the correlation index value of predicting variable and independent variable, as presented
in Table 5.

Table 5. Predicting variable versus independent variable correlation index.

Variables Correlation Index

Occupancy + Date 0.03

Occupancy + Temperature 0.86

Occupancy + Humidity 0.90

Occupancy + Light 0.76

Occupancy + CO2 0.99

Occupancy + Humidity Ratio 0.95

Occupancy + Occupancy 1

Table 5 displays the predictor’s correlation index in relation to the predictor variable
to aid in determining and eliminating predictors with low correlation values. As shown in
Table 5, the variable predictor “Date” has a low correlation index and was thus excluded
from the original dataset. The remaining variables can be fed into the model to train it and
measure its precision against the test dataset.

4. Experimental Work
4.1. Model Training and Testing

When ML algorithms are used to make accurate predictions on data to evaluate their
efficiency, datasets are usually split into training and testing datasets throughout model
training. The technique is simple and quick to assessing model prediction performance
using various ML techniques and selecting the best techniques for model prediction. The
technique involves swapping and dividing the original dataset into training and testing
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in a 70:30 ratio (see Figure 6). The first section, the training dataset, is employed to fit the
model. The test dataset is used as input to the variables dataset to feed the model, assess
prediction, and evaluate the prediction results.
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4.2. Machine Learning Occupancy Detection Results

Five candidate ML techniques were selected for further investigation in order to better
understand their efficiency in ML, including both occupancy detection and estimation
prediction problems. Such techniques are less sophisticated than a lot of the more recent
advancements in this field, but they are well-known and frequently serve as efficiency
benchmarks. Another benefit of these techniques is that, aside from occupancy detection
and estimation, they are fundamental choices for several other applications and, as such,
are well-served by ML libraries. The sci-kit learn Python library was employed in im-
plementations in this work, and specifications regarding preset algorithm setups can be
observed in the Python Standard Library [34].

4.2.1. Random Forests

Random Forests (RF) are a set of decision trees that are used consecutively from a root
(parent) node to a terminal (or child) node to predict the actions exhibited by the trained
data [31]. To fit training datasets by related features, this technique has multiple conditional
rules, which may be as simple as correlating a sensor reading to a threshold. Bootstrap
sampling, also known as bagging [31], is used for both deep and very deep trees, which
essentially uses two-thirds of the training samples for prediction and the remainder for
evaluating predictive performance. Table 6 depicts the outcome of this technique.

As can be seen in Table 6, the RF classifier was evaluated to assess its performance
prediction on new data. In many cases, the ML classifiers can perform well when tested
with the original training dataset and performed differently with a new dataset. Therefore,
the scoring bin in Table 5 holds the dataset record split into the training and testing datasets.
The accuracy of the binary prediction analysis shows a strong positive prediction rate with
accuracy performance ranging from 58.3% to 99.6% for accuracy, 73.6% to 99.7% for F1
score, 58.3% to 99.9% using precision, and 97.8% to 100% recall.
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Table 6. Occupancy prediction performance using RF.

Score Bin Ground
Truth

Positive
Rate

Negative
Rate

Fraction
above

Threshold
Accuracy F1

Score Precision Recall Cumulative
AUC

(0.900, 1.000) 25 25 0 0.570 0.987 0.988 0.999 0.978 0.000

(0.800, 0.900) 25 25 1 0.576 0.991 0.992 0.998 0.986 0.001

(0.700, 0.800) 25 25 1 0.576 0.991 0.992 0.998 0.986 0.001

(0.600, 0.700) 22 22 1 0.578 0.993 0.994 0.997 0.990 0.003

(0.500, 0.600) 22 21 2 0.583 0.995 0.995 0.995 0.995 0.005

(0.400, 0.500) 20 20 0 0.583 0.995 0.995 0.995 0.995 0.005

(0.300, 0.400) 20 20 1 0.585 0.996 0.997 0.995 0.999 0.006

(0.200, 0.300) 20 20 1 0.589 0.994 0.995 0.990 1.000 0.013

(0.100, 0.200) 20 20 1 0.596 0.987 0.989 0.978 1.000 0.029

(0.000, 0.100) 20 20 5 1.000 0.583 0.736 0.583 1.000 0.999

4.2.2. Naive Bayes Classification

Naive Bayes Classification is one of the strongest and most efficient classification
algorithms (NBC). The algorithm is based on Reverend Thomas Bayes’s [34] Bayesian
Theorem of Probability. According to the theorem, the probability of a hypothesis is a
feature of subsequent facts and previous experiences. It is a method for determining
how a new piece of evidence directly impacts the probability that a hypothesis is correct.
It has been used in a variety of applications. Often these ML techniques in real-world
applications focus on learning in a continuous feature set. Table 7 depicts the efficiency of
binary occupancy prediction using NBC.

Table 7. Occupancy prediction performance using NBC.

Score Bin Ground
Truth

Positive
Rate

Negative
Rate

Fraction
above

Threshold
Accuracy F1

Score Precision Recall Cumulative
AUC

(0.900, 1.000) 25 24 0 0.510 0.926 0.932 0.999 0.874 0.000

(0.800, 0.900) 25 24 1 0.533 0.950 0.955 0.999 0.914 0.000

(0.700, 0.800) 25 24 1 0.549 0.966 0.970 0.999 0.942 0.000

(0.600, 0.700) 22 22 1 0.564 0.981 0.983 0.999 0.968 0.000

(0.500, 0.600) 22 21 1 0.573 0.989 0.991 0.999 0.983 0.000

(0.400, 0.500) 20 20 1 0.591 0.991 0.992 0.985 0.999 0.019

(0.300, 0.400) 20 20 1 0.602 0.981 0.984 0.968 1.000 0.045

(0.200, 0.300) 20 20 1 0.626 0.957 0.964 0.931 1.000 0.103

(0.100, 0.200) 20 20 1 0.648 0.934 0.946 0.898 1.000 0.156

(0.000, 0.100) 20 20 5 1.000 0.583 0.736 0.583 1.000 0.999

As can be seen in Table 7, the RF classifier performed slightly better than the NBC
classifier as a result of the presence of a negative rate. The performance results of NBC
range from 58.3% to 99.1% for accuracy, 73.6% to 99.2% for F1 score, 58.3% to 99.9% using
precision, and 87.4% to 100% recall.

4.2.3. Support Vector Machine

To draw conclusions, the Support Vector Machine (SVM) algorithm does not make
the same hypotheses as the LDA model. This method finds the limit that greatly increases
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the difference among the groups to be partitioned, which is always obtained in a high-
dimensional space. The limit is found by matching the data samples with a predetermined
kernel function, which notifies the correlation of neighboring data. Linear, polynomial,
sigmoid, and radial basis functions are examples of kernels. The kernel in this approach
is the radial basis function. This method uses only the data samples closest to the edge,
which does not require the entire dataset to be covered to make decisions. Table 8 depicts
the SVM efficiency for binary occupancy prediction.

Table 8. Occupancy prediction performance using SVM.

Score Bin Ground
Truth

Positive
Rate

Negative
Rate

Fraction
above

Threshold
Accuracy F1

Score Precision Recall Cumulative
AUC

(0.900, 1.000) 25 24 0 0.420 0.837 0.837 0.999 0.720 0.001

(0.800, 0.900) 25 24 1 0.447 0.849 0.854 0.983 0.754 0.013

(0.700, 0.800) 25 24 2 0.467 0.855 0.862 0.968 0.776 0.027

(0.600, 0.700) 22 22 2 0.481 0.865 0.874 0.965 0.798 0.030

(0.500, 0.600) 22 21 2 0.499 0.867 0.877 0.950 0.814 0.047

(0.400, 0.500) 20 20 3 0.519 0.860 0.873 0.926 0.825 0.073

(0.300, 0.400) 20 20 3 0.588 0.833 0.857 0.853 0.861 0.169

(0.200, 0.300) 20 20 1 0.742 0.808 0.855 0.763 0.971 0.364

(0.100, 0.200) 20 20 1 0.876 0.706 0.799 0.665 1.000 0.644

(0.000, 0.100) 20 20 2 1.000 0.583 0.736 0.583 1.000 0.941

The data presented in Table 8 indicate the performance of SVM classifier is a little bit
low compared with the RF and NB classifiers due to the high negative rate results. The
result analysis shows that the SVM performance results range from 58.3% to 86.7 % for
accuracy, from 73.6% to 87.7 % for F1 score, from 58.3% to 99.9% using precision, and from
72% to 100% for recall.

4.2.4. Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically based structures designed for
modeling problem estimation by predicting various variables using sample data during
training. The neural net scheme uses a series of dependent and independent variables
to learn the model responsible for data. Individual neurons make up these networks.
Typically, the weights of neural connections are calculated using specific learning rules.
The dataset is used to test a neural net with two hidden layers, each with the same neuron
number mixture. The backpropagation algorithm is used to comprehend, and network
errors are propagated backward from the output layer to the input layer. The data are
simply handled within the network’s layers, and the weights of each neuron are changed
to reduce the mean-squared error between the variables t and the target based on a given
precision index or after a set of iterative learning processes is completed. Table 9 depicts
the outcome of the ANN efficiency for binary occupancy prediction.

As can be seen in Table 9, the RF classifier performed slightly better than the ANN
classifier, with performance results ranging from 58.3% to 99.1% for accuracy, from 73.6% to
99.2% for F1 score, from 58.3% to 99.9% using precision, and from 87.4% to 100% for recall.
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Table 9. Occupancy prediction performance using ANN.

Score Bin Ground
Truth

Positive
Rate

Negative
Rate

Fraction
above

Threshold
Accuracy F1

Score Precision Recall Cumulative
AUC

(0.900, 1.000) 25 24 0 0.556 0.972 0.976 0.999 0.953 0.000

(0.800, 0.900) 25 24 1 0.560 0.976 0.979 0.999 0.960 0.000

(0.700, 0.800) 25 24 1 0.566 0.983 0.985 0.999 0.971 0.000

(0.600, 0.700) 22 22 1 0.569 0.986 0.987 0.999 0.976 0.000

(0.500, 0.600) 22 21 1 0.571 0.988 0.989 0.999 0.980 0.000

(0.400, 0.500) 20 20 1 0.578 0.991 0.992 0.996 0.988 0.004

(0.300, 0.400) 20 20 1 0.583 0.995 0.996 0.995 0.996 0.005

(0.200, 0.300) 20 20 1 0.586 0.993 0.994 0.991 0.997 0.011

(0.100, 0.200) 20 20 1 0.596 0.984 0.987 0.976 0.998 0.033

(0.000, 0.100) 20 20 5 1.000 0.583 0.736 0.583 1.000 0.999

4.2.5. Logistic Regression

Logistic Regression (LR) predicts a dependent variable with two alternative values
output and one or more independent variables in logistic configurations. The dataset is used
to assess the independent variables, traditionally using a maximum-likelihood calculation
to identify which is adequate in predicting depending on the variable. When no or few
correlations and variable transformations are used, the potential model sophistication in
logistic regression is low. Table 10 depicts the efficiency of binary occupancy prediction
using LR.

Table 10. Occupancy prediction performance using ANN.

Score Bin Ground
Truth

Positive
Rate

Negative
Rate

Fraction
above

Threshold
Accuracy F1

Score Precision Recall Cumulative
AUC

(0.900, 1.000) 25 24 0 0.391 0.807 0.802 0.999 0.670 0.001

(0.800, 0.900) 25 24 0 0.436 0.852 0.855 0.999 0.747 0.001

(0.700, 0.800) 25 24 0 0.466 0.883 0.888 0.999 0.799 0.001

(0.600, 0.700) 22 22 0 0.497 0.913 0.920 0.999 0.852 0.001

(0.500, 0.600) 22 21 0 0.539 0.956 0.960 0.999 0.925 0.001

(0.400, 0.500) 20 20 1 0.604 0.966 0.971 0.954 0.989 0.065

(0.300, 0.400) 20 20 0 0.653 0.930 0.943 0.892 1.000 0.166

(0.200, 0.300) 20 20 1 0.727 0.855 0.890 0.801 1.000 0.344

(0.100, 0.200) 20 20 1 0.783 0.799 0.853 0.744 1.000 0.479

(0.000, 0.100) 20 20 1 1.000 0.583 0.736 0.583 1.000 0.998

5. Evaluation Metrics

When testing new data, it is critical to evaluate model performance on specific ML
techniques in order to determine which technique is more efficient for occupancy detection
and estimation. Typically, the precision metric alone cannot provide sufficient information
for this decision; thus, other metrics members are taken into account as described in this
section. Traditionally, a single metric cannot provide adequate knowledge for model
performance. As a result, other metrics are taken into account.
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5.1. F-Score

Having an ultimate metric to trade off precision and recall efficiency by assessing a
single grade value score is critical. As a result, combining the precision and recall metrics
makes sense.

F-Score = 2×
(

Precision× Recall
Precision + Recall

)
(5)

5.2. Mean Absolute Error

The magnitude of the difference between the model prediction observation and the
actual value of that observation, calculated for the entire group, is referred to as the mean
absolute error (MAE). MAE can be expressed mathematically as:

MAE =

(
∑n

i=1 abs(yi− λ(xi))
n

)
(6)

5.3. Root-Mean-Square Error

The Root-Mean-Square Error (RMSE) measures how far projections differ from the
actual values. The residual difference between prediction and ground truth for each data
point, whether during testing or cross-validation. RMSE can be expressed mathematically as:

RMSE =

√
∑n

i=1 ‖ y(i)− ŷ(i) ‖2

N
(7)

5.4. Relative Squared Error

Relative Squared Error (RSE) is straightforward measurements that simply measure
the average of the actual values. Thus, the relative squared error normalizes the overall
squared error by dividing it by the total squared error of the simple predictor. RSE can be
expressed mathematically as:

Ei =


(

∑n
j=1 Pij − Tj

)2

∑n
j=1
(
Tj − T

)2

 (8)

where Pij is the predicted value by the model i for sample set j (out of n sets); Tj is the target
value for record j; and T is given by the following equation:

T =
1
n∑n

j=1 Tj

5.5. Relative Absolute Error

When a mean error is compared to errors produced by a negligible or naive model,
relative absolute error (RAE) is expressed as a ratio. RMSE can be expressed mathematically
as RAE, which is expressed mathematically as:

Ei =
∑n

j=1 |Pij − Tj|
∑n

j=1 |Tj − T|
(9)

5.6. Coefficient of Determination

The coefficient of determination (CD), also known as R2, describes how well a model
performs when replicating observed results. It provides information on the likelihood of certain
events occurring within the expected outcomes. CD can be expressed mathematically as:

R2 =
n(∑ xy)− (∑ x)(∑ y)[

n ∑ x2 − (∑ x)2
] [

n ∑ y2 − (∑ y)2
] (10)
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5.7. Average Log Loss

Average log loss (ALL) is a method for evaluating model prediction efficiency based
on the likelihood of a record being classified in a specific class and then assigning the data
point to one of two classes (1 or 0) based on whether the probability exceeded a threshold
value. ALL can be expressed mathematically as:

logloss =
1
n

n

∑
i=1

loglossi (11)

where:
Loglossi = −[yilnpi + (1− yi)] ln(1− pi)]

logloss = − 1
n

n

∑
i=1

[yilnpi + (1− yi)] ln(1− pi)]

6. Machine Learning Occupancy Estimation Results

Unlike the occupancy presence detection problem, in occupancy estimation, the model
uses data from five predicting variables that are jointly correlated and combined to estimate
the number of occupants present in the room to ensure the model produces reliable results
on a new dataset. The model evaluation results on five ML techniques are presented in
Table 11.

Table 11. Five machine learning prediction results of the multi-class occupancy estimation using
different evaluation metrics.

Parameters SVM RF ANN LR NBC

Mean Absolute Error 0.096879187 0.019526 0.096879 0.100153 0.98778

Root-Mean-Squared Error 0.131030149 0.071733 0.131030 0.084941 0.12956

Relative Absolute Error 0.113426824 0.022869 0.113427 0.010241 0.010789

Relative Squared Error 0.017528291 0.005255 0.017528 0.006101 0.018759

Coef. of Determination 0.982471709 0.994745 0.982472 0.989242 0.952472

Precision 0.949570815 0.997222 0.999062 0.999006 0.999065

Recall 0.814167433 0.989890 0.979761 0.924563 0.982521

F-Score 0.876671620 0.993542 0.989317 0.960344 0.990724

AUC 0.940750355 0.999280 0.999057 0.997513 0.998989

Average Log Loss 0.282908778 0.027124 0.039812 0.174177 0.068973

The model performance evaluation using various performance measures presented
in Table 11 indicates that the proposed approach achieved high performance using RF
compared to other ML models. For example, they demonstrate excellent performance
with an F-Score value of 0.993 and an MAE of 0.019526. The literature indicates that the
performance of most of the existing environmental sensing approaches tends to reduce as
the number of occupants increases in the building due to the low quality of training dataset
or lack of strong variables correlation between predicting variables and predictors. The
proposed approach utilizes the historical occupancy data from sensors (CO2, occupancy
numbers, and occupancy correlations with building environmental variables) through
continuous occupancy monitoring and machine learning techniques. It provides excellent
prediction with minimum MAE error when the occupants’ number are more than seven in
the building.



Energies 2022, 15, 9231 18 of 22

7. Comparison of Machine Learning Occupancy Prediction with the Existing Literature

CO2 is one of the significant environmental parameters that modify the indoor con-
dition to indicate occupant presence in the building. Thus, its application for occupancy
detection has been fully utilized in the literature presented in Table 12. Regarding the
classifier’s performance presented in Abade et al. [7] for occupancy, detection is very poor,
with an F-Score value of 6.59% using CO2. The authors reported that the prototype testing
was conducted in a chemical laboratory and was expected to have a good performance in a
non-chemical environment. This is because the classifier produces a higher performance
when tested using temperature and light parameters (see Table 12). The F-The scores
achieved by the proposed classifiers using CO2 demonstrate that it is possible to reach a
high -performance accuracy for occupancy detection using the RF, SVM, ANN, NBC, and
LR algorithms, which is closely aligned with the performance values reported in [8,32,33].

Table 12. Comparison of occupancy prediction with the existing literature.

S/N Reference Temperature CO2 Noise Light Motion Humidity

1 [7] 89.7% 6.59% 1.28% 95.6% - -

2 [8] 67–87% 75–87% - 97–99% 87% 32

3 [33] - 81.67% - 98.12% - -

4 [32] 70% 65% - 80.6% 77% -

5 Proposed
approach

58.3–
99.7%

Much of the environmental sensing literature uses two or more indoor variable con-
ditions for occupancy estimation. The prototype proposed in Abade et al. [7] was tested
in commercial buildings using LR, ANN, RF, and SVM for occupancy estimation with
prediction performances of 89.7%, 6.59%, 1.28%, and 95.6%, respectively (see Table 12). The
authors noted that the lack of variable correlation between the predictors and predicting
variables contributes to a poor model performance. In comparison, the proposed version on
occupancy estimation using LR, ANN, and SVM is 96%, 98.9%, 99%, and 87%, respectively
(see Table 12). The research work in [8] obtained an accuracy of 85–97% for occupancy esti-
mation using the linear discriminant analysis model (see Table 12). The model performance
can be compared with the results obtained in the proposed model using SVM and LR due
to the classifiers’ linearity, which reached F-Score values of 87% and 96%, respectively.

Furthermore, the model performance was also tested using classification and regres-
sion trees, and the accuracy obtained was around 86–99.3%. In comparison, our model
scored 87–99.35% using RF. Similarly, ANN demonstrated an accuracy of 89% in the work
of Candanedo and Feldheim [8], and our ANN model reached 98.9%.

In [32], the authors demonstrated a correlation between the five indoor predictors that
can be used to estimate the occupants’ number in a building. Instead of ML techniques, their
approach used statistical analysis correlation coefficients to measure the room occupancy.
The CO2 parameter was concluded to have the highest prediction accuracy among the
five parameters considered. The authors developed prototypes and tested them in three
different rooms with random occupants. The results indicate that CO2 obtained an accuracy
of 87.7% in room 1, 89.2% in room 2, and 80.65% in room 3 (see Table 11). Compared with
our approach, CO2 achieved a 99% correlation between CO2 and the occupant number.

The proposed approach prototype by [33] was tested in an office environment to
demonstrate its performance. The occupancy estimation performance using CO2 features
produced a higher accuracy of 98.12% for occupancy detection and 81.67% for occupancy
estimation, followed by relative humidity (see Table 12). The temperature and pressure
feature results were discarded due to the low influence in estimating the occupant number.
The proposed model achieved an accuracy of 99.7% for presence detection and 99.35% for
occupancy estimation.
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8. Application of Occupancy Prediction

The application areas or services that occupancy prediction technologies provide their
users include healthcare, security, and resource management. The following are brief
descriptions of the key application areas of occupancy prediction.

Elderly persons and some patients want to live independently at home. Keeping them
safe at home implies monitoring and telecare, which might be achieved via smart home
technology. Examples of healthcare and elderly care services include fall detection, health
monitoring, and medication administration. These services should be provided without
disturbing the user, without being intrusive, and without restricting movement. Numerous
research works have covered various types of these services.

Another significant function of occupancy prediction is to provide smart home tech-
nology to its users with security. Traditional home security systems aid in the protection of
the house against intruders. However, smart home alarms offer additional benefits such as
fire and smoke detection, intruder detection, and home monitoring and surveillance.

Energy management and water are critical resources in smart home systems. Effective
resource management is essential for creating more sustainable and cost-effective smart
homes. As a result, many study efforts in the field of smart homes concentrate on monitor-
ing resident resource consumption, anticipating requests, and proposing novel algorithms
for increasing resource usage in smart homes.

9. Research Implication

The current study adds to the existing body of knowledge on the issue of occupancy
prediction. It can help not solely the relevant research and academic sector, as well as smart
building engineers and manufacturers, but also the larger building industry players on
several fronts.

First, this paper presented a thorough overview of the literature on various occupancy
prediction systems. The existing work, for example, primarily focuses on invasive tech-
nologies or applications that do not provide or ensure occupant privacy. Drawing on the
literature, the limits of occupant privacy should be defined in terms of technical solutions,
which has particularly suffered from a lack of attention in occupancy prediction research.

Second, it described a data collection and feature selection technique for determining
the variable with the highest correlation. Additionally, this study provided insights into
how to choose an ML method for efficient occupancy prediction.

Third, the current study proposed future research suggestions to enhance the func-
tioning and applicability of occupancy prediction.

Lastly, the study might be broadened to include longitudinal and comparative data.
In this situation, for example, we hypothesized the existing solution’s thermal comfort and
possible energy efficiency levels. More research might improve this element by supplying
helpful information for selecting the appropriate methods and datasets. Further investiga-
tions may adopt an adaptive strategy, asking whether specific algorithms or methodologies
have drastically changed inefficiency in recent decades, which would aid those responsible
for choosing or building realistic control systems.

10. Research Limitations

The concept of building occupancy prediction is not a simple process. The proposed
approach reported an accurate number of occupants when there is an occupancy overlap-
ping in the building. As a result, our research provides an opportunity for future research
to improve occupancy prediction using crowd sensing or another viable approach.

A large-labeled dataset is required for reliable occupancy prediction. However, la-
beling the occupancy dataset is time-consuming since it usually involves occupant par-
ticipation. Even though the approach succeeded in ensuring only high-quality datasets
are recorded for training, it requires occupants to respond with an available number of
occupants in the building each time the environmental sensor records data. Therefore,
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the current interactive learning strategies require further study to record occupancy data
without occupant interaction.

Most anomalies observed during data collection come from the light-variable sen-
sor due to outside light reflection. Currently, the proposed approach does not feature
intelligence to ignore outdoor brightness when the indoor light is turned off.

11. Conclusions

Occupancy detection and estimation can support building infrastructure to improve
DCA to trade off between energy consumption and thermal comfort in a smart building.
Occupancy privacy is critical, especially in residential buildings, and for this reason, the
application of many of the proposed occupancy estimation approaches that use invasive
technologies, such as cameras and wearable Wi-Fi routers, is not practically suitable for
residential environments. For this reason, the environmental sensing approach has received
considerable attention. However, the performance of environmental sensing is relatively
poor, as reported in the literature, due to the poor training dataset, lack of strong feature
correlation between predictors and predicting variables, and inappropriate selection of
ML techniques in the prediction model. This makes it difficult to evaluate the efficacy of
different ML techniques.

This study offered a direct comparison of five different ML techniques on occupancy
detection and presented an estimation approach that used data from five sensor streams
strongly correlated with the occupancy in the building. A model prototype was developed,
trained, and tested with five popular ML techniques for performance evaluation. The
model demonstrated a good prediction performance across the different ML techniques.
It indicates RF outperformed in both occupancy detection and estimation, with an over-
all performance of 99.7% for occupancy detection and 99.3% for occupancy estimation.
Moreover, the results demonstrated that incorporating more variable parameters with a
strong correlation alongside the ML method can help to improve occupancy prediction
problems rather than using a single variable parameter or directly using data from the
sensors. Additionally, multivariable parameters or a complex model do not necessarily
mean a higher prediction accuracy can be achieved without validating the quality of the
training dataset.

The results also confirm that, without the exception of the proposed model, envi-
ronmental sensing approach performance tends to be reduced or introduce errors in the
prediction as the number of occupants grows in the building. It was observed that, during
the experiment, the level of CO2 is significantly reduced when a door or window is open as
well as when the kitchen or bathroom is opened. This problem needs further study and
analysis to be carefully addressed.

12. Future Work

Research on building occupancy prediction has placed more emphasis on and has a
growing interest in the fusion of two or more approaches to improve building infrastruc-
ture, enabling smart indoor comfort and energy control. However, despite the efforts of
numerous academics to tackle this issue, little emphasis has been placed on developing an
approach that generates an occupancy dataset that allows the performance comparison of
different machine learning algorithms and ranks them based on their performance.

There is, however, a limited number of publicly accessible datasets for occupancy
prediction to support building energy management. Therefore, future work includes
the following:

i. Research will have considered more datasets generated from various buildings for
occupancy prediction.

ii. This work employed a simple way to predict building occupancy. This approach can
be extended in diverse applications, such as building evacuation and emergency, to
provide more information about the exact number of occupants in a building and
their specific locations.
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iii. The work can be extended to minimize building energy consumption and ensure
satisfactory comfort levels.
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