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Abstract
Background Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, can lead to advanced liver
damage and has become an increasingly prominent health problem worldwide. Predictive models for early identification of high-
risk individuals could help identify preventive and interventional measures. Traditional epidemiological models with limited
predictive power are based on statistical analysis. In the current study, a novel machine-learning approach was developed for
individual NASH susceptibility prediction using candidate single nucleotide polymorphisms (SNPs).
Methods A total of 245 NASH patients and 120 healthy individuals were included in the study. Single nucleotide polymorphism
genotypes of candidate genes including two SNPs in the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene
(rs6413432, rs3813867), two SNPs in the glucokinase regulator (GCKR) gene (rs780094, rs1260326), rs738409 SNP in patatin-
like phospholipase domain-containing 3 (PNPLA3), and gender parameters were used to develop models for identifying at-risk
individuals. To predict the individual’s susceptibility to NASH, nine different machine-learning models were constructed. These
models involved two different feature selections including Chi-square, and support vector machine recursive feature elimination
(SVM-RFE) and three classification algorithms including k-nearest neighbor (KNN), multi-layer perceptron (MLP), and random
forest (RF). All nine machine-learning models were trained using 80% of both the NASH patients and the healthy controls data.
The nine machine-learning models were then tested on 20% of both groups. The model’s performance was compared for model
accuracy, precision, sensitivity, and F measure.
Results Among all nine machine-learning models, the KNN classifier with all features as input showed the highest performance
with 86% F measure and 79% accuracy.
Conclusions Machine learning based on genomic variety may be applicable for estimating an individual’s susceptibility for
developing NASH among high-risk groups with a high degree of accuracy, precision, and sensitivity.
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Bullet points of the study highlights

What is already known?
& Currently, no reliable predictive model is available to predict nonalcoholic steatohepatitis (NASH) risk.
& The genetic factors affecting the development of NASH and NASH-derived hepatocellular carcinoma, are not well-

delineated.

What is new in this study?
& In the current study, we developed a novel machine learning-based method to predict the individual susceptibility to

develop NASH based on the candidate gene/single nucleotide polymorphisms (SNPs).

What are the future clinical and research implications of the study findings?
& Machine learning based on genomic variety may be applicable for estimating susceptibility for developing NASH

among high-risk groups with a high degree of accuracy, precision, and sensitivity.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a health problem
that is rising globally with a prevalence of 25% to 30% [1, 2].
The prevalence of NAFLD among high-risk populations may
exceed 70% to 90% [1]. NAFLD has a wide spectrum of
abnormalities. Although simple steatosis, which is considered
a less severe form of NAFLD, covers the main share of the
spectrum, approximately 7% to 30% of patients develop non-
alcoholic steatohepatitis (NASH), which is the severe form of
NAFLD [1]. This can lead to advanced hepatocellular dam-
age, inflammation, liver fibrosis, or cirrhosis or even hepato-
cellular carcinoma [1]. Numerous conditions including genet-
ic aptitude and metabolic syndromes such as obesity, insulin
resistance, type 2 diabetes, dyslipidemia, and hypertension
may act in parallel to impact the development of NASH [2].
Despite the fact that NASH is increasing globally, the disease
is underdiagnosed due to the absence of clear symptoms and
the lack of reliable markers. There is a need to intervene early
and identify NASH patients before advanced fibrosis and ir-
reversible liver damage occur.

Risk stratification has emerged as a fundamental issue in
preventive strategies and disease management [3]. Although
there are many clinical, biochemical, metabolic, and lipid bio-
markers used to predict NASH, currently, no reliable predic-
tive model is available [4].

Genome-wide association studies and candidate gene stud-
ies have provided insight into a part of the genetic variants
associated with NASH development among different popula-
tions. Disease prediction based on a combination of single
nucleotide polymorphism (SNP) parameters and clinical fac-
tors has been modeled previously [5–7]. Although several
studies show a strong association of patatin-like

phospholipase domain-containing 3 (PNPLA3) and trans-
membrane 6 superfamily member 2 (TM6SF2) with develop-
ment of NASH, the genetic factors affecting the development
of NASH and NASH–derived hepatocellular carcinoma are
not well-delineated [5, 6].

Currently, all prediction modeling techniques, which use
SNP associated with NASH have adopted a traditional statis-
tical test. Machine learning emerges as a unique technique for
uncovering potential biological interactions for better predic-
tion and diagnosis of complex diseases like NASH [8].

In the current study, a novel machine-learning-based meth-
od is developed to predict the individual susceptibility to de-
velopment of NASH based on the candidate gene/SNPs in-
cluding two SNPs in the cytochrome P450 family 2 subfamily
E member 1 (CYP2E1) gene (rs6413432, rs3813867), two
SNPs in the glucokinase regulator (GCKR) gene (rs780094,
rs1260326), rs738409 SNP in PNPLA3, and gender. The
method used a two-step approach that involves feature selec-
tion and classification. The method was subsequently trained
and tested to compare the performance metrics (Fig. 1).

Methods

Study population and SNP genotyping

The medical records of NASH patients who had histologic
and biochemical evidences (e.g. abnormal aspartate amino-
transferase [AST], alanine aminotransferase [ALT], gamma-
glutamyl transferase [GGT], and hyperbilirubinemia) were
studied. Individuals who were biopsy-proven NASH patients
using the steatosis, activity and fibrosis (SAF) scoring system
were included in the patient group. The age range of
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participants was 18–70 years. Individuals who had chronic
liver disease other than NASH such as chronic viral hepatitis,
autoimmune liver diseases, and metabolic liver diseases (e.g.
Wilson’s disease, Crigler-Najjar/Rotor syndrome, and hemo-
chromatosis); confounding concomitant drug users (e.g. glu-
cocorticoids, aspirin, tamoxifen, synthetic estrogens, metho-
trexate, and calcium-channel blockers); regular alcohol con-
sumers; pregnancy; or incomplete medical records were all
excluded. Finally, 245 patients were enrolled in the study

and were invited to participate in the study and provide blood
samples.

One hundred and twenty healthy volunteers with the same
age range who showed normal liver enzyme levels, normal
bilirubin, negative results for hepatitis B virus and hepatitis C
virus polymerase chain reaction (PCR) tests, and no historical
evidence of metabolic diseases that meet the exclusion criteria
were included in the study as a healthy control group.

An in-house-modified salt-out method for deoxyribonucleic
acid (DNA) extraction from whole blood was used to extract

Fig. 1 Graphical abstract of novel
machine-learning model to pre-
dict an individual’s susceptibility
to nonalcoholic steatohepatitis.
AST aspartate aminotransferase,
ALT alanine
aminotransferase, GGT gamma-
glutamyl transferase, NASH non-
alcoholic steatohepatitis, HBV
hepatitis B virus, HCV hepatitis C
virus, PCR polymerase chain re-
action, SNP single nucleotide
polymorphism, DNA deoxyribo-
nucleic acid
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genomicDNA from 20-mL peripheral blood samples taken from
participants. Subsequently, SNP genotyping from the candidate
genes involving two SNPs in the CYP2E1 gene (rs6413432,
rs3813867), two SNPs in the GCKR gene (rs780094,
rs1260326), and one known rs738409 SNP in the PNPLA3 gene
were determined by using a polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP) approach.

A fragment of each region was amplified using specific
primers in the optimized conditions via in-house-developed
protocols. The rs6413432 and rs3813867 SNPs inside the
CYP2E1 gene were amplified in 236-base-pair (bp) and
244-bp fragments that respectively were restricted from the
TTT/AAA and AG/CT cut sites using DraI and AluI enzymes.
In the same way, rs780094 and rs1260326 SNPs, which place
at the GCKR gene, were amplified in 196 bp and 199 bp
length via conventional PCR and subsequently were restricted
from the allele-specific site (A/CATGT, C/CGG), using PCiI
and MspI enzymes, respectively. In addition, a 168-bp frag-
ment, involving rs738409 SNP in PNPLA3, was amplified
and afterward was restricted via the NlaIII enzyme from the
CATG/ cut site (Table 1). Later, restricted fragments were run
over the 2% agarose gel electrophoresis to determine the ge-
notypes of each allele and their frequency among NASH pa-
tients and those in the control group. The data set used in this
study contained phenotype information, allele distribution of
each SNP, and participant gender (all enzymes purchased
from MilliporeSigma, Massachusetts, USA).

Data quality control

Allele frequency distributions were checked for Hardy-
Weinberg proportions (HWP) using the following formula:

P ¼ 2� obs AAð Þ þ obs Aað Þ
2� obs AA½ � þ obs Aa½ � þ obs aa½ �ð Þ

q ¼ 1−p

Hardy−Weinberg equilibrium ¼ p2þ 2pqþ q2 ¼ 1

where A and a are the symbols for dominant and recessive
relevant allele nucleotide variants, p2 is the relative frequency
of homozygotes for allele A, 2pq is the relative frequency of
heterozygotes for alleles A and a, and q2 is the relative fre-
quency of homozygotes for allele a [9].

To test deviation from HWP and the comparability of ob-
served genotype frequencies between NASH patients and the
healthy control group, the differences between the observed
and expected allele frequency in the healthy group were
assessed via Pearson’s Chi-square test with 95% confidence
level. The significance level was defined as p-value ≤ 0.05.

Therefore, the Hardy-Weinberg allele frequency expecta-
tion was calculated via the following formula:

EXP AAð Þ ¼ p2n
EXP Aað Þ ¼ 2pqn
EXP aað Þ ¼ q2n

where n is the total number of healthy participants.

Feature selection and classification algorithms

For the development of a high-metrics prediction model, feature
selection algorithms including filter-based method (e.g. Chi-
square) and wrapper method-like support vector machines-
recursive feature elimination (SVM-RFE) were implemented to
identify the features, which are highly associated with the pheno-
type. Additionally, three classification algorithms including k-
nearest neighbor (kNN), multi-layer perceptron (MLP), and ran-
dom forest (RF)were used for classification of patients and heathy
individuals. All the algorithms were developed using Python ver-
sion 3.8.0 (Python Software Foundation, Delaware, USA).

Model construction

To predict the individuals’ susceptibility to NASH, nine dif-
ferent machine-learning models were constructed. These

Table 1 Candidate genes/single nucleotide polymorphisms and characteristics of the amplified fragment

Gene SNP Primers: 5′……..›3′ Fragment size Cut sit Restriction enzyme

CYP2E1 rs6413432 Forward: AGGCTCGTCAGTTCCTGAAA 236 bp 5′.....TTT↓AAA …3′
3′... AAA↑TTT….5′

Dra I
Reverse: ACCACACCCGGCTACTTTTT

rs3813867 Forward: CCAGTCGAGTCTACATTGTCA 244 bp 5′...AG↓CT…3′
3′....TC↑GA…5′

Alu I
Reverse: TTCATTCTGTCTTCTAACTGG

GCKR rs780094 Forward: GATTGTCTCAGGCAAACCTGGTAG 196 bp 5′….A↓CATGT …3′
3′...TGTAC↑A...5′

PCi I
Reverse: CATGTTGGCTAGGCTTGTTG

rs1260326 Forward: CTGGATGGTGAGAGGGAAGAT 199 bp 5′….C↓CGG …3′
3′...GGC↑C...5′

Msp I
Reverse: CCCTACAGCCTTGGGTTTTT

PNPLA3 rs738409 Forward: GCCCTGCTCACTTGGAGAAA 168 bp 5′…..CATG↓…3′
3′....↑GTAC…..5′

Nla III
Reverse: TGAAAGGCAGTGAGGCATGG

SNP single nucleotide polymorphism, CYP2E1 cytochrome P450 family 2 subfamily E member 1, GCKR glucokinase regulator, PNPLA3 patatin-like
phospholipase domain-containing 3, bp base pair
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models included six integrated machine learning and three
additional classification algorithms.

Each integrated machine-learning model was made up of
one feature selection and one classification algorithm.
Selected parameters in the feature selection algorithms subse-
quently were used as inputs to classifiers. Moreover, all pa-
rameters used as inputs were the only classifier algorithms
applied.

All nine machine-learning models were trained with ran-
domly selected input parameters of 80% of patients and 80%
of the healthy control group. Subsequently, the models were
tested with 20% of NASH patients and 20% of healthy sam-
ples’ parameters. The performance of the models was com-
pared for model accuracy, precision, sensitivity, and F mea-
sure metrics.

Results

The patients’ and healthy individuals’ ages were in the range
of 18–70, and the mean age was 44.4 ± 15.1 and 42.7 ± 14.8
years, respectively. Overall, with 245 NASH patients and 120
healthy controls, the female/male ratio was 129/116 in the
NASH group and 79/41 in the control group.

The gene/SNP alleles and their frequencies are presented in
Table 2. Allele frequencies in all SNPs were within HWP. No

deviation from the HWP was detected in the genotype distri-
bution of healthy groups (p-value > 0.05). Among the six
parameters used as input, rs738409, rs3813867, rs1260326,
and gender showed a high association with NASH (p-value
≤ 0.05) when a Chi-square filter was applied. The SVM-RFE
algorithm determined that rs738409, rs3813867, rs780094,
rs1260326 SNPs, and gender variables were the best parame-
ters for a high-performance predicting model (Table 3).

Among all nine machine-learning models, the KNN classi-
fier algorithm with no feature selection demonstrated the
highest accuracy (79%) followed by SVM-RFE-MLP,
SVM-RFE-RF, Chi-square-RF, and RF (78%). In contrast,
Chi-square MLP (85%) and RF (85%) models showed the
highest precision. Moreover, the SVM-RFE-MLP (94%),
KNN (92%), and Chi-square-RF (90%) models demonstrated
the highest sensitivity. However, the F measures were over
80% and were approximately close. Howbeit, the KNN clas-
sifier with all features as input showed the highest perfor-
mance among all models with an 86% F measure and 79%
accuracy (Fig. 2).

Discussion

Traditional epidemiological analysis that relies heavily on lo-
gistic regression to anticipate the potential association of clin-
ical variables or genetic factors to a specific disease has lim-
ited predictive power [10, 11]. In the past decade, genome
association studies have been used to identify genetic variants
related to diseases. Machine-learning algorithms have
emerged as an effective method for risk prediction of complex
diseases due to their ability to handle multi-dimensional data
[12].

The existing machine-learning models developed regard-
ing NASH are mainly developed based on socio-demograph-
ic, laboratory, and clinical parameters that can be applied for
diagnosis, not for early prediction. Machine-learning models
with laboratory parameter input for the diagnosis of NAFLD
in the general population have been developedwith 87% over-
all accuracy, 92% (86% to 96%) sensitivity, and 90% (86%
to 93%) precision [13]. In another model, developed by
Canbay et al. (2019), the training dataset included the serum
parameters AST, ALT, AST/ALT ratio, GGT, albumin, total
cholesterol, triacylglycerols, fasting blood sugar, hemoglobin
A1c, thrombocyte count, caspase-cleaved serum CK-18, and
adiponectin, as well as socio-demographic parameters such as
gender, age, height, weight, and body mass index [14].
Fialoke et al. have developed a machine-learning model based
on demographic properties (age, gender, and race), type 2
diabetes status, and longitudinal lab parameters of ALT,
AST, and platelets to distinguish NASH patients from healthy
controls [15]. Perakakis et al. presented a machine-learning-
based predictive algorithm using omics data (lipidomics,

Table 2 Candidate gene/single nucleotide polymorphism allele’s fre-
quency distribution

Gene/SNP Alleles Allele frequency

NASH patients (n) Healthy (n)

CYP2E1; rs6413432 AA 3 2

TA 38 19

TT 204 99

CYP2E1; rs3813867 GC 6 9

GG 239 111

CC 0 0

GCKR; rs780094 AA 6 4

GA 3 0

GG 236 116

GCKR; rs1260326 CC 33 28

CT 116 60

TT 96 32

PNPLA3; rs738409 CC 84 67

GC 72 43

GG 89 10

SNP single nucleotide polymorphism, CYP2E1 cytochrome P450 family
2 subfamily E member 1,GCKR glucokinase regulator, PNPLA3 patatin-
like phospholipase domain-containing 3, NASH nonalcoholic
steatohepatitis
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glycomics), and hormone values that can differentiate NASH
patients from healthy controls with high accuracy (up to 90%)
[16]. Chiappini et al. developed a random forest–based
machine-learning method that allowed discriminating NASH
with 100% sensitivity and specificity based on characterizing
a signature of 32 lipids [17].

In the current study, nine machine-learning models were
developed to evaluate the SNP genotype–based predictive
model for early detection of high-risk individuals among at-
risk groups. The results from the screening model revealed the
gender, rs738409, rs3813867, rs780094, and rs1260326 as the
most discriminative features in the data set.

PNPLA3 rs738409 polymorphism is a well-known predis-
posing factor for NAFLD, fibrosis, and alcoholic cirrhosis.
The PNPLA3 gene variants show significant association with
high serum ALT [18]. Several studies demonstrate that G-
allele carriers of rs738409, particularly of the GG genotype,
are highly associated with a greater risk of progressive NASH,
fibrosis, and hepatocellular carcinoma. G-allele was found to
be significantly associated with high AST, ALT, ferritin
levels, and the fibrosis stage in patients with NAFLD
[18–21]. It is presumed that there is an association between
the rs780094 and rs1260326 variations in GCKR and predis-
position to NASH. Such variations along with PNPLA3
rs738409 polymorphism interact to increase an individual’s
susceptibility [22]. The CYP2E1 gene involves genetic

polymorphisms with a high variety in frequency among dif-
ferent ethnic groups [23]. However, the CYP2E1 rs3813867
polymorphism is not considered as a genomic factor associat-
ed with developing NASH. The current study suggests that
rs3813867 SNP inside the CYP2E1 gene is a highly associat-
ed biomarker for developing NASH. Studies show age and
gender differences in prevalence and severity of NAFLD and
NASH. Gender differences in NASH susceptibility have been
demonstrated in an animal study [24].

Currently, NASH is one of the leading causes for liver
transplantation, particularly in females [25]. Although the
prevalence of NASH in younger ages is more common among
men, the disease is becomingmore common among women in
older ages, particularly in those over 60 years. In individuals
who develop NASH, 37.6% of them develop progressive fi-
brosis [26].

Model accuracy is the rate of true predictions made from all
predictions and is widely used because it is one singlemeasure
for summarizing model performance. However, to decide
whether model robustness is enough, accuracy alone is not
adequate to predict NASH. The true-positive rate is a more
accurate predictor. Low precision and sensitivity, respective-
ly, may result in excessive false positives and false negatives.
Precision and sensitivity as a measure of a model’s exactness
and completeness play a critical role in decision-making about
the predisposition and diagnosis of NASH. Models that have

Table 3 Feature selection
methods and selected parameters Feature selection methods Parameters

Gender rs6413432 rs3813867 rs780094 rs1260326 rs738409

Chi-square √ √ √ √
SVM-RFE algorithm √ √ √ √ √

SVM-RFE support vector machine recursive feature elimination

Fig. 2 Comparison of machine-
learning models’ performance
developed in this study to predict
individuals’ susceptibility to non-
alcoholic steatohepatitis. Nine
different models were compared
in terms of accuracy, precision,
sensitivity, and F measure. KNN
classifier showed the highest per-
formance with an F measure of
86%, which is the harmonic mean
of sensitivity and precision, and
an accuracy of 79%. KNN k-
nearest neighbor, SVM-RFE sup-
port vector machine recursive
feature elimination, MLP multi-
layer perceptron, RF random
forest
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high precision with low sensitivity or models with both low
precision and low sensitivity do not provide enough parame-
ters for making a true decision. Therefore, F measure, the
harmonic mean of precision and sensitivity, provides a way
to express both concerns with a single score of sensitivity and
precision using a factor that controls their relative importance
[27].

We developed superlative algorithms for the prediction of
individual NASH development susceptibility. Moreover, the
current study demonstrated that machine learning based on
genomic variety may be applicable for estimating susceptibil-
ity for developing NASH among high-risk groups with a high
degree of accuracy, precision, and sensitivity.
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