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Abstract: Forensic DNA Phenotyping (FDP) can reveal the appearance of an unknown individual
by predicting the ancestry, phenotype (i.e., hair, eye, skin color), and age from DNA obtained at
the crime scene. The HIrisPlex system has been developed to simultaneously predict eye and hair
color. However, the prediction accuracy of the system needs to be assessed for the tested population
before implementing FDP in casework. In this study, we evaluated the performance of the HIrisPlex
system on 149 individuals from the Turkish population. We applied the single-based extension
(SNaPshot chemistry) method and used the HIrisPlex online tool to test the prediction of the eye
and hair colors. The accuracy of the HIrisPlex system was assessed through the calculation of
the area under the receiver characteristic operating curves (AUC), sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV). The results showed that the proposed
method successfully predicted the eye and hair color, especially for blue (100%) and brown (95.60%)
eye and black (95.23) and brown (98.94) hair colors. As observed in previous studies, the system
failed to predict intermediate eye color, representing 25% in our cohort. The majority of incorrect
predictions were observed for blond hair color (40.7%). Previous HIrisPlex studies have also noted
difficulties with these phenotypes. Our study shows that the HIrisPlex system can be applied to
forensic casework in Turkey with careful interpretation of the data, particularly intermediate eye
color and blond hair color.

Keywords: HIrisPlex; population differences; prediction accuracy; forensic DNA phenotyping

1. Introduction

Genome-wide association studies (GWASs) have been a powerful tool for unraveling
the molecular genetic basis underlying natural human phenotypic variations. Through
GWAS, many single nucleotide polymorphisms (SNPs) that are involved in human phe-
notypic variations (i.e., eye, hair, and skin color) have been identified [1–3]. For over two
decades, forensic scientists been benefitted from the GWASs by producing new forensic
clues (prediction of the eye, hair color, etc.) for criminal investigations [3–5]. Forensic
DNA Phenotyping (FDP) is defined as an investigative tool through which biogeographic
ancestry, externally visible characteristics (EVCs), and age are predicted by using the DNA
obtained at a crime scene [4,5]. In standard forensic DNA profiling, short tandem repeats
(STRs) are used to identify biological evidence collected from crime scenes. However, STR
profiling has limitations because of the nature of the comparison-based analysis method. In
cases where there is no suspect or the DNA profile obtained from the crime scene is not
recorded in forensic DNA databases, STR profiling is of limited value in the investigations.
In such situations, FDP can help the police investigation to narrow down the potential
suspect groups by determining features of the perpetrator’s physical appearance. FDP can
also be applied to other cases such as in the identification of mass disaster victims and
missing persons [5–8].
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The first FDP study started with the identification of the MC1R (melanocortin 1
receptor) gene associated with the red hair and freckles’ variation in normal populations [9].
More than 200 SNPs were found to be highly polymorphic predominantly in Europeans.
Grimes et al. developed a small panel consisting of 12 MC1R SNPs to accurately assign
individuals with red hair color. However, red hair color prediction had limited application
in forensics due to its low prevalence (1–2%) globally [9]. The first comprehensive FDP
study was conducted by Liu et al. [10] by selecting the most informative SNPs for eye color
and developing statistical models that accurately predicted eye color. Afterward, Walsh
et al. [11] used a small subset of this study and developed the IrisPlex system to predict
blue and brown eye color. The IrisPlex panel includes six SNPs from six genes (rs12913832
in HERC2, rs1800407 in OCA2, rs12896399 in SLC24A4, rs16891982 in SLC45A2, rs1393350
in TYR, and rs12203592 in IRF4) and can be genotyped using SNaPshot chemistry and
capillary electrophoresis. The developed prediction model was based on a multinomial
logistic regression (MLR) that calculates the prediction probabilities for blue, brown, or
intermediate (green-hazel) eye color using genotype and phenotype information from
European databases [11]. This panel was subsequently tested for various populations
including admixed and intermediate populations and showed similar accuracies with
Europeans [12–14].

In the last years, the HIrisPlex system, which includes a single multiplex genotyping
assay for 24 SNPs, was developed by the same research group by extending the eye color
panel with additional 18 SNPs that are associated with hair color variations [15]. The
panel consists of a total of 24 SNPs from 11 genes (10 SNPs and one InDel from MC1R
gene, two SNPs from SLC45A2, two SNPs from TYR, two SNPs from SLC24A4, one from
KITLG, one from EXOC2, one from IRF4, one from OCA2, one from HERC2, one from
ASIP/PIGU, and one from TYRP1). The model-based prediction could be conducted
for eye color with six SNPs and hair color with all SNPs except two (rs1393350 in TYR
and rs12896399 in SLC24A4). The HIrisPlex prediction model was developed by using
European populations [15]. The HIrisPlex system has also been tested on the HGDP-CEPH
sample set. The researchers concluded that the performance of the HIrisPlex systems
was independent of the biogeographic ancestry. However, this dataset does not provide
phenotype information on the samples [16]. Before applying this panel to forensic cases, its
precision for non-European populations should be tested. Therefore, the main objective of
this study is to estimate the precision of the HIrisPlex panel on the Turkish population.

2. Materials and Methods
2.1. Sample Collection

Buccal swabs were taken from 149 unrelated volunteers (72 males, 77 females) living
in Istanbul, Turkey. All individuals were randomly selected, except for four red-haired
individuals who were invited because red hair is not widespread in Turkey. The samples
were also selected according to their birthplace and the parents’ birthplace to reflect seven
geographical regions (Mediterranean Region, Black Sea Region, Aegean Region, Marmara
Region, Central Anatolia Region, Eastern Anatolia Region, Southeastern Anatolia Region)
of Turkey. All volunteers were asked to complete a questionnaire that included basic
information such as gender, ancestry, age (between 18–69, on average 31.30), and data
concerning eye and hair pigmentation phenotypes. The volunteers’ statements on their hair
and eye colors were recorded on consent forms. The photos were taken in portrait mode
with equal light intensity using a Nikon D5100, 18–55 mm lens at an equal distance. Two
independent researchers assigned each volunteer’s eye and hair color into categories (for
eye color: blue, intermediate (green/hazel), and brown; for hair color: red, blond, brown,
and black), according to the phenotyping regimes applied by Walsh et al. [11,15,16]. The
HIrisPlex predictions were compared to the actual phenotypes of volunteers based on these
data. During the course of our study, we noted volunteers with hair color changes from
childhood to adulthood.
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Eye colors were classified into three categories: brown (61.07%), intermediate (25.50%),
and blue (13.42%). Hair colors were classified into four main categories: blond (19.45%),
brown (63.75%), black (14.7%), and red (2.68%).

2.2. DNA Samples and Genotyping

Genomic DNA was purified from buccal swabs using the QIAamp DNA Mini Kit
(Qiagen, Hilden, Germany). The amount of extracted DNA was measured with the Qubit®

fluorometer using the QubitTM dsDNA HS Assay Kit (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA), according to the manufacturer’s protocols.

We used the HIrisPlex panel, a 24-plex assay (23 SNPs and 1 InDel) that has been
developed over the years for predicting eye and hair color [15]. HIrisPlex SNPs were
genotyped according to the protocol described by Walsh et al. 2014 [15]. Multiplex PCR
was set up with a total volume of 10 µL and contained 4 µL of Qiagen Multiplex Master
Mix, 2.84 µL of PCR primer mix (0.4–0.5 µM), 0.5–1 ng DNA, and 0.16 µL nuclease-free
water. PCR was performed using a SimpliAmp™ Thermal Cycler Applied Biosystems
(Thermo Fisher Scientific) with the following program: denaturation at 95 ◦C for 10 min,
then 33 cycles of 95 ◦C for 30 s, 61 ◦C for 30 s, and final extension at 61 ◦C for 5 min.
Excess primers and dNTPs were removed by the addition of 0.25 µL Exo, 0.75 shrimp
alkaline phosphatase (SAP) to 2.5 µL PCR product, incubation at 37 ◦C for 90 min, followed
by enzyme inactivation at 85 ◦C for 15 min. Single base extension reactions (SBE) were
carried out in 5 µL volumes containing 1 µL of SNaPshot® reaction mix (Thermo Fischer
Scientific), 1.61 µL of SBE primer mix (0.1 µM), 0.39 µL nuclease-free water, and 2 µL of
purified DNA under the following conditions: 30 cycles of 96 ◦C for 10 s, 50 ◦C for 5 s, and
60 ◦C for 30 s. Excess nucleotides were removed by the addition of 1 µL SAP to the total
volume of extension products, and incubation at 37 ◦C for 80 min, and then by enzyme
inactivation at 85 ◦C for 15 min. Capillary electrophoresis was performed using an ABI
PRISM 3130 Genetic Analyzer (Thermo Fischer Scientific). The matrix standard DS-02
and POP-4 polymers were used on the AB PRISM 3130 Genetic Analyzer with filter set E5
to process the data. Genotypes were generated with GeneMapper v4.0 (Thermo Fischer
Scientific) or Peak Scanner Software v2.0 (Thermo Fischer Scientific).

2.3. Statistical Analysis

Phenotype predictions were performed using the online HIrisPlex tool (https://
hirisplex.erasmusmc.nl/, accessed on 14 November 2021). The model calculates the predic-
tion probabilities for the eye (blue, brown, and intermediate) and the hair (black, brown,
blond, and red) colors using the multinomial logistic regression (MLR) model. For eye
color, the threshold was set as 0.7 as suggested by Walsh et al. [11]. Hair color was classified
according to the 0.5 probability threshold determined by Walsh et al. [16,17]. The predicted
eye and hair phenotypes were then compared with the true phenotypes.

The overall prediction accuracy of the model for each phenotypic character was
assessed by calculating the area under the curve (AUC) and the receiver operating charac-
teristic (ROC) curves using a script written in Python 3. Moreover, the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) of the model were
calculated according to Liu et al. [10]. The sensitivity was determined as the percentage of
the truly predicted color type among all observed color types. The specificity was defined
as the percentage of truly predicted non-color type among the observed non-color type [10].

We also compared the allele frequencies of the HIrisPlex SNPs with the European pop-
ulation data from 1000 Genomes Phase 3 (Utah residents with ancestry from Northern and
Western Europe [CEU], Finnish [FIN], British from England and Scotland [GBR], Iberians from
Spain [IBS], and Toscani in Italy [TSI]) to explore the ancestry differences between populations.
SNP frequencies of the Turkish population were calculated by gene counting.

https://hirisplex.erasmusmc.nl/
https://hirisplex.erasmusmc.nl/
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3. Results and Discussion

In this study, we evaluated the performance of the HIrisPlex system for the Turkish
population. Before testing the population samples, we completed an internal validation
study according to the validation guidelines for forensic DNA analysis methods of the
Scientific Working Group on DNA Analysis Methods (SWGDAM) [18]. In the validation of
the study, we determined that the sensitivity of the panel required a minimum of 0.25 ng
DNA input [18]. In the present study, we successfully genotyped our 149 samples using the
single base extension (SBE) approach and SNaPshot chemistry. In a few samples (N = 8),
the N29InsA InDel variant’s peak heights were too low to detect. This InDel variant was
reported as the lowest peak in the assay and it plays a minor role in predicting red hair
color. Thus, the missing data for N29InsA InDel did not affect the red hair prediction [16].
In the samples with no N29InsA data (none of them have red hair color), we applied the
prediction model without re-genotyping the samples, and the predictions were accurate, as
expected. However, when a hint of red hair color is observed in a case, the sample should
be repeated to obtain this variant for accurate red hair color prediction.

To determine the effect of ancestry on the phenotype prediction, we compared the
Turkish population allele frequencies with the European population from the 1000 Genomes
Project Phase 3 data. The allele frequencies of our population were very similar to that
of the overall European 1000 Genomes population data except for SNP rs683, rs16891982,
and rs12913832 (Supplementary Table S1). rs683 in the TYRP1 gene is associated with
eye and hair color [19]. Therefore, this SNP was added to the HIrisPlex panel. When
the TT genotype is present at rs683, it helps differentiate European from non-European
populations. The T allele frequency was lower in the Turkish population (0.33) than in all of
the European populations (0.63). rs1689198 in SLC45A2 was associated with hair color and
skin pigmentation. The rs16891982 (C) variant increases the likelihood of having darker
hair color [20,21]. The allele frequency of the C allele was observed as 0.26 in the Turkish
population. Although the allele frequency of the C allele was 0.06 in the overall European
population, the Mediterranean IBS population showed the highest allele frequency among
Europeans (0.18) (Supplementary Table S1). rs12913832 in HERC2, a well-known SNP
near the OCA2 gene, functionally linked to blue or brown eye color due to a lowering
of promoter activity of the OCA2 gene. The GG genotype is strongly associated with
blue eye color and European ancestry [22]. In our data, the frequency of the G allele was
calculated as 0.43. The overall European data showed a higher frequency (0.64). The
Mediterranean-Southern European populations (IBS and TSI) had similar frequencies to
the Turkish population (0.32 and 0.42, respectively) (Supplementary Table S1).

3.1. Eye Color Prediction

The actual eye color of the individuals and their predictions were classified into three
categories: blue, intermediate, and brown. We preferred a conservative approach and
applied a threshold value (p > 0.7) for eye color predictions. After applying the threshold
value, we observed the prediction success for blue eye of 100% (n = 20) and brown eye of
95.60% (n = 91) in the Turkish population samples (Table 1). The incorrect assignment of
the intermediate eye phenotypes was 78.94% (30 out of 38) while 21.05% (eight out of 38) of
the intermediate eye phenotypes were under the 0.7 threshold for prediction. Most of the
intermediate eye color phenotypes (52.63%) were predicted as brown, and approximately a
quarter (26.31%) of them were classified as blue with the HIrisPlex MLR model (Table 1). We
also classified intermediate eye colors as light and dark colors. The detailed classification
of the intermediate eye colors indicates that most of the “light intermediate eyes” were
predicted as blue, and similarly, most of the “dark intermediate eyes” were predicted as
brown (Figure 1). Similar results were observed in Italian population samples [14].
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Table 1. The classification for each different eye color category and summary statistics (AUC,
sensitivity, specificity, PPV, and NPV) using HIrisPlex for the Turkish population.

Predicted % (Bold Numbers Indicates
Prediction Success Percentage) Summary Statistics

HIrisPlex
(Eye Color) Blue Brown Intermediate Undetected Samples AUC a Sensitivity % Specificity % PPV % b NPV % c

Blue 100 0 ND 0 20 0.66 100 92.24 66.66 100
Brown 0 95.60 ND 4.39 91 0.88 95.60 65.51 81.30 90.47

Intermediate 26.31 52.63 ND * 21.05 38 0.59 0 100 ND 74.49

* ND: Not Determined; a Area under the curve; b Positive predictive value; c Negative predictive value.
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The eye color model was developed to predict only blue and brown eye colors. The
prediction results for intermediate eye color individuals were, however, mainly false
positives, either blue or brown [15]. If the eye color of a suspect was predicted as blue
or brown, the possibility of the real eye color of the sample could be intermediate (hazel
green or green). Intermediate eye color prediction is difficult, and this can be explained
by its complex genetic structure. Some studies have focused on understanding the genetic
structure of the intermediate eye color and finding new SNPs [23,24]. Kukla-Bartoszek
et al. developed an advanced machine learning-based prediction model that increased the
sensitivity of the intermediate eye color prediction by up to 39% [24]. However, current
assays and prediction models cannot predict the intermediate eye color with high accuracy.

The prediction accuracy AUC values for each eye color were 0.66 for blue, 0.88 for
brown, and 0.59 for intermediate (Table 1). The obtained sensitivity values were very
high for the brown (95.6%) and blue (100%) eye colors. The sensitivity was not calculated



Genes 2022, 13, 2094 2099 of 2104

for the intermediate eye color prediction due to no correct classification of the analyzed
intermediate-eyed individuals.

The specificity values were very high for blue (92.24%) and intermediate (100%) eye
colors while the specificity was lower for brown (65.51%) eye color. This can be explained
by the high number of intermediate-eye-colored individuals who were classified as mostly
brown (Table 1 and Figure 1). We also calculated the positive predictive value (PPV) and
negative predictive value (NPV) according to Liu et al. [10]. PPV and NPV values were
66.66% and 100% for blue, 81.30% and 90.47% for brown, respectively. The PPV value was
not computed for the intermediate eye color due to no correct prediction, and the NPV
value was 74.49% (Table 1).

Liu et al. (2009), who developed the prediction model, tested the IrisPlex SNPs on 6168
Dutch European populations. The accuracy of the eye color prediction was over 90% for blue
and brown eye colors [10]. In our previous study, based on only the IrisPlex assay, we observed
a high accuracy of 95.77% and 100% for brown eye colors on 100 Turkish individuals [13].
Salvoro et al. (2019) tested four different eye color prediction models (IrisPlex, Ruiz, Allwood,
and Hart models) for IrisPlex eye color SNPs in a sample of 296 Italians. They applied
different thresholds (0.7, none, and 5:3 top probability ratio) for the IrisPlex model eye color
assignments. The sensitivity was highest (99% for brown and 98% for blue at 0.7 thresholds).
Among the overall performance of the four eye color prediction tested models, when the
IrisPlex model was applied, the misclassification was the lowest frequency (17%), while the
number of inconclusive results was the highest (18%) [14].

The success of the blue and brown eye color predictions of the HIrisPlex (or IrisPlex)
system has been proven by different researchers who tested different population samples.
Similarly, a high percentage of false predictions for intermediate eye color have been
reported [12,13,25–28]. Our results of the eye color predictions were in agreement with
previous studies.

3.2. Hair Color Prediction

The actual hair colors of the individuals were divided into four independent classes:
red, blond, brown, and black hair. The prediction distributions were made according to the
highest observed p-value from the four phenotype classes (black, brown, blond, and red).
Then, within the highest categories, the dark or light p-values for color shade were considered
for the final phenotype prediction [15,16]. The prediction success of hair colors was 95.23%
(n = 21) for black, 96.90% (n = 97) for brown, 59.25% (n = 27) for blond, and 75% (n = 4) for
red, respectively (Table 2). A total of 89.26% of the samples correctly predicted their true hair
colors. The most inaccurate prediction was blond hair being brown with 40.74% (11 out of 27)
(Table 2). All black hair-colored individuals were correctly classified, except for one individual
who was assigned to have brown hair color. Three out of 97 brown hair-colored individuals
were incorrectly predicted in which two of them were assigned to have black and one of
them was assigned to have blond hair color. None of the black, brown, or blond hair-colored
individuals were classified as red. However, one of our red hair-colored individuals (one out
of four) was incorrectly predicted to have blond hair (Table 2).

Table 2. The classification for each different hair color category and summary statistics (AUC,
sensitivity, specificity, PPV, and NPV) using HIrisPlex for the Turkish population.

Predicted % (Bold Numbers Indicates
Prediction Success Percentage) Summary Statistics %

HIrisPlex (Hair Color) Black Brown Blond Red Samples AUC a Sensitivity % Specificity % PPV % b NPV % c

Black 95.23 4.76 0 0 21 0.96 95.23 98.43 90.90 99.21
Brown 2.06 96.90 1.03 0 97 0.89 96.90 76.92 88.67 93.02
Blond 0 40.74 59.25 0 27 0.90 59.25 98.36 88.88 91.60
Red 0 0 25.00 75.00 4 0.55 75.00 100 100 99.31

a Area under the curve; b Positive predictive value; c Negative predictive value.

The hair prediction accuracy AUC values were observed as high for black (0.96), brown
(0.89), blond (0.90), and lower for red (0.55) (Table 2). The obtained sensitivity values were
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high for the black (95.23%) and brown (96.90%) hair colors. The sensitivity values for blond
and red hair were lower (59.25% and 75.00%, respectively). The PPV and NPV values were
high for all hair colors (0.88–100) (Table 2).

The lowest sensitivity value was obtained for blond hair as a result of the highest
proportion of incorrect predictions (Table 2 and Figure 2). The blond hair predicted pheno-
types were divided into three classes: blond, blond/dark blond, dark blond/brown, and
depending on the light p-value as described by Walsh et al. [16]. In our population, almost
half of the blond-haired individuals were correctly predicted to have blond or blond/dark
blond (simply called blond). The highest p-values were detected in the brown class for
11 individuals whose actual hair color was blond or dark blond. Therefore, these individ-
uals were incorrectly predicted to have brown hair (Figure 2). For example, the sample
T19-XY-104 has blond hair. However, the hair phenotype prediction was brown because of
the highest p-value in the brown category (brown p-value 0.613, light p-value 0.711) among
the other phenotype categories (blond, red, and black).

The specificity was highest for the red, black, and blond hair colors (100%, 98.43%,
and 98.36%, respectively). The specificity of the brown hair color was lower (76.92) due
to incorrectly predicted individuals (mostly blonds) as brown. Hence, in an investigation,
if the unknown sample is predicted as brown, the true hair color is highly possible to be
brown, but also possible to be blond and maybe black hair color. Therefore, the analyst
should consider that the suspect could have hair color varying from dark blond to black.

The HIrisPlex panel includes 22 SNPs for hair color prediction [16]. The HIrisPlex assay
was tested on >1500 individuals from Western (Irish), Eastern (Polish), and Southern (Greek)
parts of Europe to assess the power of the hair color prediction of the panel. HIrisPlex
hair color prediction model accuracies were 0.93 for red, 0.87 for black, 0.82 for brown, and
0.81 for blond hair color [16]. Our results are similar to these findings except for the red
(0.75) and blond hair (0.59) color prediction accuracy. This difference in red hair color can
largely be attributed to the small sample size in our study (only four individuals) than the
one used by HIrisPlex. In fact, the frequency of red-haired individuals is very low in the
Turkish population compared to Europe. In a study on the Norwegian population, the
prediction success of red hair color was 97% and black hair was 93%, while the prediction
success of brown was 70% and blond hair was 72% [29]. Our findings for black hair (95.23%)
color agreed with this study, and we observed a higher prediction success for brown hair
(96.90%) color whereas the red hair (75%) and blond hair (59%) colors were lower, as
explained above. Blond/brown hair color phenotypes have been reported as challenging
in terms of accurate prediction due to their age-dependent changes in hair color. The blond
hair phenotypes during childhood often darken over the years. The molecular structure
of these changes is still not clear [16,30]. The brown hair color prediction success was
lower in other European population studies compared to our results [16,29,31]. Blond
hair phenotypes are more common in Europe than in the Turkish population. Therefore,
age-related hair color changes may also occur more frequently, resulting in an increased rate
of false predictions. In our study population, the blond hair phenotype (14%) was much
lower than brown hair (65%). Most of the brown hair-colored individuals were not affected
by age-dependent changes in our cohort. Thus, this resulted in high accuracy in brown hair
prediction. On the other hand, the blond hair prediction was the most erroneous prediction
in our sample set, and 11 individuals with blond hair were assigned as having a brown hair
color. Similar incorrect predictions were also observed in other studies [29,32,33]. This may
also be explained as a subjective perception of hair color by individuals, and it is sometimes
difficult to distinguish dark blond from light brown.
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The HIrisPlex model yields additional hair color shade prediction values (light and
dark) to aid in the better classification of each hair color. The p-value of the light color
shade provides additional information for blond hair color predictions [16,29].

The EVCs (e.g., eye and hair colors) are the most visible variations between popula-
tions. Individuals from different geographical regions may have different SNP variations
that might affect their EVCs. In this study, we observed allele frequency differences in three
SNPs (rs683, rs16891982, and rs12913832) between the Turkish and European populations.
These allele frequency differences again show how important it is to test the HIrisPlex
panel in non-European populations. As discussed above, the prediction performance of
the eye and hair colors were reasonable for the blue and brown eye colors, and black and
brown hair colors. However, non-European populations have more variation in the inter-
mediate phenotypes compared to Europeans, which resulted in false predictions for those
phenotypes. Therefore, the interpretation and reporting should be made more carefully for
these phenotypes and potential errors should be addressed. Improvement in the prediction
of challenging phenotypes needs further studies for a better understanding of the genetic
structure and additional new markers.

The determination of intermediate eye and blond/brown hair colors may be subjec-
tive. To eliminate subjectivity, it is necessary to standardize the collection and reporting of
EVCs. To increase consistency, the standardization of nomenclature is also required [34].
Moreover, a guideline or standard interpretation form could be added to the case re-
port for a better understanding of the % correct predictions per phenotype as a means
of indicating potential errors.
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4. Conclusions

In this study, we assessed the performance of the HIrisPlex system (SNaPshot method
and MLR model) for hair and eye color prediction in the Turkish population. We determined
the prediction performance by calculating the sensitivity, specificity, AUC, PPV, and NPV
values of the HIrisPlex panel. We obtained high prediction accuracies (over > 95%) for
blue and brown eye colors and black and brown hair colors. The prediction errors were
observed in the more complex phenotypes such as intermediate eye color and blond hair
color. Despite the challenges with these phenotypes, the HIrisPlex system can be reliably
applied to the Turkish population when interpreted with caution.

Supplementary Materials: The following supporting information can be downloaded at: https://
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