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A B S T R A C T   

This study provides empirical evidence on the relationship between energy efficiency and production- and- 
consumption based carbon emissions by assessing the impact of population size, income, and clean energy on 
the carbon dioxide (CO2) emissions function. Method of Moments Quantile Regression (MM-QR) and Augmented 
Mean Group (AMG) estimators are applied to observe long-term associations between the variables, and 
Dumitrescu-Hurlin (DH) Ganger causality test is used to identify the direction of causality. Findings reveal that, 
across all specifications, energy intensity and population size have positive (increasing) impact on both estimates 
of CO2 emissions while renewable energy use has a negatively significant impact and stronger on consumption- 
based estimates. The presence of an inverted U-shaped curve in the relationship between per capita income and 
CO2 emissions, as predicted by the Environment Kuznets curve (EKC) hypothesis, only exists when CO2 emissions 
are calculated based on production pattern. Further empirical analysis based on DH causality tests show a 
bidirectional causality between energy intensity and production-based CO2 emissions, population size and 
consumption-based CO2 emissions, per capita income and consumption-based CO2 emissions, and energy in-
tensity and renewable energy use. In addition, a unidirectional causality runs from per capita income to 
production-based CO2 emissions, and from energy intensity and renewable energy use to consumption-based CO2 
emissions. This analysis outlines a paradigm for the formulation of a green development strategy in developing 
economies via energy and environmental resources.   

1. Introduction 

Ongoing global developments consistently highlight the need for 
cleaner and sustainable production and consumption patterns if the at-
mospheric warmings and potential ecological, physical and health im-
plications are to be mitigated [1]. In addition, many strategic policies 
have been under consideration at different levels and among national 
and international bodies, which advocate for an increased dependence 
on clean energy sources. For example the United Nations (UN), has 

extensively pushed for the achievement of its sustainable development 
goals (like SDG 7) which underscores the need for an increased use of 
clean energy across the globe. Through an SDG 7 target of increasing 
clean energy utilization (SDG Target 7.2) and doubling energy efficiency 
rates among countries (SDG Target 7.3), the big question is whether 
these policy targets impact the attainment of climate change mitigation 
goals (SDG 13). Experts highlight energy efficiency and renewable en-
ergy as crucial factors that can facilitate the achievement of climate [2] 
change mitigation targets [1]. For instance, employing efficient tech-
nologies and mechanisms that boost energy-saving options (e.g. gas 

* Corresponding author. Faculty of Economics Administrative and Social sciences, Department of International Logistics and Transportation, Istanbul Gelisim 
University, Istanbul, Turkey. 

E-mail addresses: muhdshahbaz77@gmail.com (M. Shahbaz), nwani.chinazaekpere@funai.edu.ng (C. Nwani), fbekun@gelisim.edu.tr (F.V. Bekun), bagyamfi@ 
ticaret.edu.tr (B.A. Gyamfi), dagozie@ug.edu.gh (D.Q. Agozie).  

Contents lists available at ScienceDirect 

Energy 

journal homepage: www.elsevier.com/locate/energy 

https://doi.org/10.1016/j.energy.2022.124951 
Received 13 November 2021; Received in revised form 20 April 2022; Accepted 24 July 2022   

mailto:muhdshahbaz77@gmail.com
mailto:nwani.chinazaekpere@funai.edu.ng
mailto:fbekun@gelisim.edu.tr
mailto:bagyamfi@ticaret.edu.tr
mailto:bagyamfi@ticaret.edu.tr
mailto:dagozie@ug.edu.gh
www.sciencedirect.com/science/journal/03605442
https://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2022.124951
https://doi.org/10.1016/j.energy.2022.124951
https://doi.org/10.1016/j.energy.2022.124951
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2022.124951&domain=pdf


Energy 260 (2022) 124951

2

boilers, electric bicycles) can reduce per unit energy demand of eco-
nomic output to alleviate the global pressure on energy consumption 
[3]. Energy sources considered clean include wind, geothermal, and 
solar energy, among others, offer another path toward the reduction in 
the dependence of economic activities on fossil fuels [4]. 

In line with the set objectives of SDG 7 (Increasing the proportion of 
renewable or clean energy production globally) and 13 (doubling the 
improvement rates of energy efficiency among countries), this study 
examines the energy intensity, renewable energy, and CO2 emissions 
nexus. It focuses on environmental conditions in developing countries, 
particularly, in Africa, Asia, the Latin America, and the Caribbean. This 
study, by this step, extends the literature on the phenomenon at hand 
from two perspectives. First, the strand of studies that have examined 
the relationship [5] between energy intensity and carbon pollution [6], 
and the others that have considered the renewable energy utilization [7] 
and CO2 emission [8] nexus [5]. The gap [9]left by these two groups of 
studies is whether increasing the share of renewable energy in the en-
ergy mix could have significant reduction effect on the intensity of en-
ergy use (i.e. improves energy efficiency). Thus, this study extends 
extant literature through an empirical examination of the role of clean or 
renewable energy consumption in reducing energy intensity through the 
lens of selected developing economies. Taking this additional step is 
necessary, considering that recent developments in the renewable en-
ergy sector show that most forms of renewable energy also offer effi-
ciency gains [11]. 

This study shows novelty in three aspects. Foremost, it extends to the 
current scheme of literature on the relationship between renewable 
energy, energy efficiency and environment, and its causal association. 
This study, by analyzing the heterogeneous effects of renewable energy, 
energy efficiency on environment, particularly for developing econo-
mies presents new insights on a nascently explored issue. Thus, the study 
extends the global debate on energy efficiency and its impact on envi-
ronment for developing countries. This topic has important policy sig-
nificance for the growth, sustainability, and efficiency in emerging 
economies. Further, this study explores, beyond economic contribution, 
the contribution of energy efficiency to climate recovery (sustainabil-
ity). Moreover, empirical discussions in the literature have largely 
shown interest on modeling CO2 emissions related to domestic pro-
duction activities (i.e. emissions embodied in territorial production 

activities). A key limitation of a production-based measure of CO2 
emission is that it fails to account for the growing environmental impact 
of international trade and its diverse effects on consumption patterns 
and lifestyles, particularly in developing economies [12]. Most devel-
oped countries pay attention to services and knowledge-based sectors 
that possess lower carbon potential and, as such, have de-materialized 
their production processes, improved transportation systems, and 
substituted travel time to achieve greater energy efficiency [13]. Hence, 
economic engagements differ significantly in developed and developing 
economies. Dirty industries have shifted production activities abroad, 
boosting extractive activities (e.g. mining, construction, oil, and gas) 
and low-technologically driven production processes that mostly occur 
in developing economies [13]. Thus, this present study takes these 
varying conditions into account. Recent literature concludes that 
attributing CO2 emissions from productive activities in developing 
countries places a strong limitation on environmental policy choices as 
CO2 generation is highly embedded in these production activities and is 
worsened by their final consumers [12]. Therefore, this study focuses on 
developing economies, which have received little attention on this issue 
in policy and from an existing literature point of view, shedding more 
insights and evidence from a consumption-based perspective for policy 
formulation on the total lifecycle of emissions [15]. Further, looking at 
the estimations of the Global Carbon Project (GCP), it is revealed that 
many developing economies generate more CO2 emissions in their 
consumption than production (i.e. net importers of CO2 emissions) [16]. 
According to the most recent GCP data, more than 80% of African and 
South American countries are net importers of CO2 emissions. In addi-
tion, this study shies from traditional econometric models and adopts 
the Moments Quantile Regression (MM-QR) and the Augmented Mean 
Group (AMG) estimators to evaluate the relationships between endog-
enous and exogenous variables in the long run. It also employs the 
Dumitrescu-Hurlin Ganger causality approach to examine causality be-
tween the variables. These second-generation estimators are superior to 
conventional first-generation estimation techniques. For instance, the 
MM-QR and second-generation panel regression techniques are the most 
effective for reducing heterogeneity and cross-sectional issues. 

The rest of this paper is organized as follows: Section-II, reviews 
existing literature. Then a detailed explication of the methodological 
procedure is shown in Section-III. Section-IV presents the empirical 
analysis, results, and discussion. Section-V presents conclusions with 
policy implications. 

1.1. Literature review 

The perceived impact of efficient production and [17] clean energy 
[9] utilization has [18] received [19] considerable attention from 
Ref. [7] scholars and [20]experts from various [5] domains in the 
literature [10]. Largely, several extant works support the notion that 
energy intensity contributes to the growth of carbon emissions. For 
example, using data from 53 middle-income economies over the period 
1991–2013, Lin et al. [21] revealed that energy intensity increases CO2 
emissions. Ghazali and Ali [22] drew a similar conclusion that energy 
intensity increased carbon emissions, using a panel of 10 newly indus-
trialized economies. However, Irfan et al. [6] identified a different 
long-run condition among South Asian economies over a decade for the 
period of 1990–2014 using the reciprocal of energy intensity to define 
efficiency in energy use in south Asia. Their study revealed a significant 
negative long-run impact on energy intensity and carbon emissions in 
the region. Subsequently, production of clean or renewable energy is 
highlighted as a path to reducing CO2 emissions. For example, Nguyen 
and Kakinaka [7], and Ulucak et al. [10] among others, studied the 
relationship between renewable energy utilization and CO2 emissions 
from different countries over different periods. They employed a panel 
of 107 countries over the period 1990–2013, Inglesi-Lotz and Dogan [8] 
employed data from 10 African states for the period 1980–2011, Hanif 
et al. [9] used 25 developing Asian economies for the period of 

List of nomenclature/abbreviations 

EKC Environmental Kuznets curve 
SDG Sustainable Development Goals 
MM-QR Method of Moments Quantile Regression 
DH Dumitrescu-Hurlin 
AMG Augmented Mean Group 
CO2 carbon dioxide emissions 
UN United Nations 
STIRPAT Stochastic Impacts by assessing the Relationship 

between Population, Affluence, Technological 
innovation 

CD Cross-section dependence 
CADF Cross-sectionally Augmented Dickey-Fuller unit root 

test 
ECM Error correction model 
P Population (in Millions) 
REn Renewable energy 
EnI Energy intensity 
PrdCE Production-based CO2 emissions 
ConCE Consumption-based (trade adjusted) CO2 emissions 
PCI Affluence measured 
GDP Economic growth  
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1990–2015 while others like Ulucak et al. [10] examined all OECD 
member states for the period of 1980–2016. The results from Nguyen 
and Kakinaka [7] revealed renewable or clean energy utilization facil-
itates CO2 emissions among low-income countries while it reduces CO2 
emissions in middle-income and high-income countries. Ulucak et al. 
[10] confirmed the existence of EKC and adverse environmental effects 
of non-renewable energy utilization. However, this result is contrary to 
evidence found among OECD states, where renewable energy use had no 
significant mitigation effect on CO2 emission. Further, Hanif et al. [9] 
and Irfan et al. [6] found increasing renewable energy sources in the 
consumption mix significantly reduces CO2 emissions among selected 
sub-Saharan African states and Asian and South Asian states 
respectively. 

Further empirical discussion from some recent studies focusses on 
the heterogeneous effect of efficient energy production and clean energy 
indicators on CO2 emissions across diverse economies. By seeking to 
extend the EKC framework, Akram et al. [5] investigated the hetero-
geneous effect of clean energy utilization on carbon emissions in 66 
developing economies over the period of 1990–2014. Analysis from this 
study validated the inverted U-shaped relationship as predicted by the 
EKC hypothesis but reveals a stronger prediction at the upper quantiles. 
In addition, the estimates revealed that energy efficiency and renewable 
or clean energy have reduction effects on carbon emissions on all 
quantiles, with the mitigation effect of improving energy efficiency 
being stronger at upper quantiles while renewable energy provides 
stronger mitigation effect in countries at lower quantiles. Xu and Lin [2] 
employed the data from 30 Chinese provinces and showed that energy 
efficiency has stronger mitigation effect at the lower quantile provinces 
of CO2 emission scale. For the transport sector in China, Haung et al. 
[60] observed that energy intensity contributes to growth of emissions 
with greater impact observed at upper quantiles. Further, Anwar et al. 
[23] observed how clean and unclean (non-renewable) energy genera-
tion affects the environment among ASEAN countries between 1990 and 
2018. This examination also validated the EKC hypothesis. In that, 
non-renewable energy utilization contributes to CO2 emissions in all the 
countries while clean (renewable) energy showed a mitigation effect 
only in countries within the lower quantiles of CO2 emission scale. 

In view of the above discussion, there are still gasps in the existing 
literature. Existing studies have largely studied CO2 emissions related to 
fossil fuels in domestic production, while neglecting the perspective of 
the increasing impact of trade-induced consumption patterns on envi-
ronment among less developed states. Further, policy considerations on 
the potential contribution of energy intensity and renewable energy use 
are limited. Therefore, to contribute to these deficiencies in the litera-
ture, this examination applies a non-aggregated CO2 emissions data to 
cater for the varying effects of production and usage trends among 
developing states. 

2. Methodology 

2.1. Analytical framework and model specification 

The STIRPAT (Stochastic Impacts by Assessing the Relationship be-
tween Population, Affluence, Technological Innovation) forms the 
analytical basis for modelling the impacts of human-environment 
related activities [24] is defined for a panel data using the following 
mathematical equation: 

lnIit = a0 + α1lnPi,t + α2lnAi,t + α3lnT + εit (1) 

The parameters I P and A, represent environment, population size 
and affluence respectively while T is 

a measure of technological progress. “ln” indicates the logarithmic 
presentation of the variables, i represents the cross-sectional country 
index and t indicates time index for the period covered, a0 is constant of 
equation-1, ai (with i= 1…3) are coefficients to be estimated, and ε is 
error term. I is defined as carbon emissions (CE), affluence (A) is 

measured using per capita income (PCI) while technological progress (T) 
is explained by cleaner energy transition indicators. Specifically, this 
study examines the effectiveness of SDG target 7.2 (Increasing the pro-
portion of renewable or clean energy production globally) and SDG 
target 7.3 (Doubling the improvement rates of energy efficiency among 
countries) in mitigating carbon related environmental sustainability 
challenges in developing economies. The extended STIRPAT equation-1 
can be written as follows: 

lnCE it = a0 + α1lnPi,t + α2lnPCIi,t + α3lnEnIi,t + α4lnREni,t + εit (2) 

In equation-2, EnI is for SDG indicator 7.3.1 (energy intensity 
measured in terms of primary energy and GDP) while REn is for SDG 
indicator 7.2.1 (renewable energy share in total final energy consump-
tion). This study considers carbon emissions (CE) from two perspectives: 
production-based emissions (PrdCE) and consumption-based emissions 
(ConCE). The following model specifications are derived for empirical 
investigation: 

lnPrdCE it = a0 + α1lnPi,t + α2lnPCIi,t + α3lnEnIi,t + α4lnREni,t + εit (3)  

lnConCE it = a0 + α1lnPi,t + α2lnPCIi,t + α3lnEnIi,t + α4lnREni,t + εit (4) 

Next, equation-3 and 4 are augmented with the square of per capita 
income (PCI) to account for the assumptions of Environmental Kuznets 
Curve (EKC) hypothesis. The EKC framework predicts an inverted U- 
shaped relationship between CO2 emissions and per capita income, 
suggesting that economic activities are more carbon intensive at the 
early stage of growth but reverses after certain level of income is ach-
ieved [25]. The following STIRPAT augmented EKC model specifications 
are therefore derived for additional empirical investigation: 

lnPrdCE it = a0 + α1lnPi,t + α2lnPCIi,t + α3lnPCI2
i,t + α4lnEnIi,t + α5lnREni,t

+ εit

(5)  

lnConCE it = a0 + α1lnPi,t + α2lnPCIi,t + α3lnPCI2
i,t + α4lnEnIi,t

+ α5lnREni,t + εit (6)  

where PCI2 is the square of per capital income. Depending on the value 
of α2, the coefficient of PCI and the value of α3, the coefficient of square 
( PCI2), equation-4 and 5 can produce different functional relationships. 
The EKC is only one of these possible functional outcomes, which exists 
when the value of α2 is positive (α2 > 0) and the value of α3 is negative 
(α3 < 0). Further empirical steps are considered to determine whether 
renewable energy can be used to reduce the intensity of energy use in 
developing economies. The model is specified in equation-7: 

lnEnI it = a0 + α1lnCEi,t + α2lnPi,t + α3lnAi,t + α4lnREni,t + εit (7)  

2.2. Data 

The data on the consumption-production-based carbon emissions 
data was accessed from the Global Carbon Budget report (see Table 1). 
The World Bank data on world development indicators was used to 
collect data per capita GDP, population size (both indicators of afflu-
ence) (CD-ROM, 2021) while the data on energy intensity and renewable 
energy consumption from the WDI repository and the SDG Indicators 
repository. This study focuses on developing economies in Africa, Asia 
and Latin America and the Caribbean. Only countries with available 
data for all the identified variables over the period of 1995–2019 are 
included in the panel. Based on the condition of data availability, a 
balanced panel consisting of forty (40) countries is constructed. The 
countries are listed in Appendix-A. 

3. Definition of variables and source of data 

ConCE is for Consumption-based (trade adjusted) CO2 emissions (in 
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million tonnes); PrdCE is for Production-based CO2 emissions (in 
(million tonnes). Data on ConCE and PrdCE are from the Global Carbon 
Budget [16] available at https://doi.org/10.5194/essd-11-1783-2019; 
P is for population (in Millions), Total, Data collected from the World 
Development Indicators (WDI), World Bank; PCI is for affluence 
measured using GDP per capita (Constant 2010 US$) data collected from 
WDI of World Bank; EnI is for Energy intensity level of primary energy 
(megajoules per constant 2011 purchasing power parity GDP); REn is 
for Renewable energy consumption (% of total final energy consump-
tion). Data on EnI and REn are from two sources; 1995–2015 from WDI, 
World Bank (available at https://databank.worldbank.org/source/wo 
rld-development-indicators#advancedDownloadOptions) while esti-
mates for 2016 and 2017 are from the SDG Indicators Global Database, 
United Nations available online at: https://unstats.un.org/sdgs/indi 
cators/database/. 

Basic descriptive statistics on the variables are summarised in Table- 
2. The mean CO2 emissions based on estimates of domestic territorial 
production activities (PrdCE) approximates to 108.89 million tonnes 
(Mt), but individually, estimates vary between 0.79 mt and 2259.68 mt. 
Comparatively, the mean as well as the maximum estimates are higher 
when CO2 emissions are calculated based on trade-induced consumption 
demands, specifically at 112.86 mt and 2456.95 mt, respectively. This 
suggests, against existing empirical evidence that consumption-based 
CO2 emissions could offer more reliable implications for understand-
ing the environmental impacts of these developing economies. As 
highlighted in Figure- 1, there are also vast differences in the intensity of 
energy use and the size of renewable energy in the energy mix among 
the countries, with countries like Saudi Arabia, South Africa, Jordan, 
and Malaysia deriving less that 20% of their energy mix from renewable 
energy sources while for few others like Zambia, Tanzania and Burkina 
Faso, renewable energy sources constitute a major proportion of the 
energy mix. Jarque-Bera test, based on the Skewness and Kurtosis of the 

distribution, rejects the null hypothesis of normality in the series of all 
the variables. Also, Fig.1 indicates a non-symmetric distribution for 
PrdCE and ConCE. Clearly, the distribution of the variables varies 
significantly from their mean values. 

3.1. Estimation techniques 

3.1.1. Preliminary tests 
The required preliminary tests include: (i) cross-section dependence 

(CD) test, (ii) unit root tests (iii) and a slope heterogeneity test. Specif-
ically, as a robust assessment measure for both large and small cross- 
sectional dimensions, this study conducts the Pesaran test [26]. Then 
the Cross-sectional Augmented IPS test of Pesaran [27] and 
Cross-sectionally Augmented Dickey-Fuller (CADF) test developed by 
Pesaran [23] are employed for a panel unit root analysis. Finally, to 
check for slope heterogeneity in the panel data, this study employs the 
Pesaran and Yamagata test [29]. 

3.2. Cointegration test 

For the purposes of assessing cointegration, after establishing the 
integration order, this analysis applies the Westerlund cointegration 
procedure [30] The [31] Westerlund (2005, 2007) cointegration pro-
cedure is underpinned by the assumption that constructs or factors exist 
in a first order of integration, thus it is based on the error correction 
mechanism assumption. Thus, the expression used for the rectification 
of errors in this panel study is expressed in equation-2: 

△Yit = πidi + θi
(
Yit− 1 + γ*

i Xit− 1
)
+

∑m

j=1
θij△Yit− j +

∑m

j=0
δij△Xit− j + εit (8) 

From equation-8, the expression π*
i = (π1i, π2i)

*, depicts the param-
eter vector, while dt = (1 − t)*, and θi represent the deterministic 
mechanisms, and the respective error correction parameter. To identify 
the existence of cointegration [30],a Least Square based estimator, 
Westerlund [31]) test procedure and their respective significance of the 
adjustment term θi of ECM is employed. In the mathematical model in 
equation-8, these statistics are grouped into the group and panel sta-
tistics. Thus, Gτ depicts the mean statistics of the group, whereas Gα 
expresses the derivations from the expressions in equation-3 and 4: 

Gτ =
1
N

∑N

i=1

∝̂i
SE(∝̂i)

(9)  

Gα =
1
N

∑N

i=1

T∝̂i
∝̂i(1)

(10)  

where, ∝̂i is denoted by SE(̂∝i) as standard error. The semiparametric 
kernel technique of ∝i(1) is ∝̂i(1). 

Pτ= ∝̂i
SE(∝i)

(11)  

Pα= Tα̂ (12) 

Equation-5 and 6 show other two panel estimation procedure used in 
this study to show evidence of cointegration in the study’s entire panel. 
It is noteworthy that, the procedures delineated in this study possess 
substantial use by extant [32] works in the literature [33]. 

3.2.1. Parameter estimation using Augmented Mean Group (AMG) 
estimator 

From the ensuing discussion, this study applies a robust estimation 
procedure that helps to account for cross-sectional dependency in series 
data. Specifically, the Augmented Mean Group (AMG) heterogenous 
panel estimator of Eberhardt and Bond; and Eberhardt and Teal [34]. 
This [35] procedure is modelled in the mathematical function in 

Table-1 
Summary of studies on the role of renewable energy and energy efficiency.  

Author Variable Findings 

[50] Renewable energy, energy 
intensity improvements, total final 
consumption, CO2 emission, 
energy efficiency, 

Renewable energy and energy 
efficiency, combined with 
electrification of end-uses reduces 
CO2 emissions 

[51] Consumption, income, renewable 
energy, total factor productivity, 
trade 

Non-rejection of EKC hypothesis 
emphasized the impact of 
renewable energy. 

[52] EKC Hypothesis, Institutional 
quality, CO2 emissions, energy 
consumption, economic growth 

The EKC hypothesis is valid in 
South Africa, renewable energy 
decreases CO2 emissions 

[53] Institutional quality, green 
innovation, and energy efficiency 

Significant positive influence of 
both green innovation and 
institutional quality on energy 
efficiency 

[54] Human capital trade renewable 
energy Investment innovative 
activity 

Renewable energy promotes 
innovation through investment, 
trade, and human capital. Cleaner 
energy and energy efficiency has a 
significant impact on innovation. 

[55] Carbon dioxide emissions, GDP per 
capita, renewable energy 

Renewable energy reduces carbon 
dioxide emissions. 

[56] Renewable energy, CO2, foreign 
direct investment, urbanization, 
ICT use, GDP 

An inverted U-shape relationship 
between economic growth and 
environmental degradation 

[57] Renewable energy, real income, 
CO2 

Renewable energy mitigates 
emissions; however, the 
interaction effect stays positive 

[58] Renewable energy, coal rent, CO2, 
Economic development, energy 
utilization 

Renewable energy, has a negative 
and significant impact on CO2 

emissions 
[59] Biomass energy, FDI, trade flow, 

economic growth 
Renewable energy usage in the 
long run reduces pollution and 
negatively correlates with CO2 

emissions level  
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equation-13: 

ΔYit =αi + βiΔXit +
∑T

t=1
πtDt + φiUCFt + μit (13) 

The OLS estimator of the differenced equation-13 is used to produce 
AMG estimator shown in equation-14. φi represents the estimated 

gradient parameters of Xit variable in equation-13. 

AMG =
1
N

∑N

i=1
φi (14)  

Table-2 
Definition of variables, source of data and descriptive statistics.  

Variables Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera Probability Observations 

ConCE 112.86 15.58 2456.95 0.62 266.53 5.05 34.95 43036.28 0.00 920 
PrdCE 108.89 20.24 2259.68 0.79 246.61 4.98 33.94 40492.08 0.00 920 
P 69.58 20.49 1338.66 1.47 183.08 5.47 33.65 40610.75 0.00 920 
PCI 3480.95 2097.92 21399.10 215.17 3752.78 2.28 9.44 2390.38 0.00 920 
EnI 6.39 5.15 44.71 2.12 4.39 3.03 16.98 8898.94 0.00 920 
REn 45.04 38.96 94.27 0.01 29.37 0.20 1.63 77.91 0.00 920  

Figure-1. a Distributional Plots of Key Variables. b. Distributional –Kernel and Normality Plots of CO2 Emissions.  
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3.2.2. Distributional heterogeneity analysis using method of Moments 
Quantile Regression (MM-QR) approach 

The MM-QR is implemented to investigate the sectoral and hetero-
geneous influence throughout quantiles [36]. The Quantile regressions 
provide more reliable predictions compared with simple regressions. 
Particularly, when the relationship between two parameters seems un-
likely or non-existent [37]. To further improve the model estimations, 
this study employed the MM-QR with a static impact in line with 
Machado and Silva [38]. A quantile regression is not sensitive to 
Ref. [39] potential unseen heterogeneity [40]. The MM-QR approach 
permits detection of partial heterogeneous covariance effects in a 
parsimonious fashion. This approach is effective in conditions that have 
several consequences of human actions and endogenous response vari-
able MM-QR method is also simple to use because it provides 
non-crossing predictions of the regression quantiles. For estimating the 
contingent quantiles QY (τ/X), the estimate is given by:  

Yit = αi + Xit՛β+ (δi + Zit՛γ) Uit                                                      (15) 

and the probability, P {δi + Zit՛γ > 0} = 1. (α, β, δ, γ՛)՛ are factors for the 
analysis. (αi, δi), i = 1 … …, n, shows the individuals I fixed impact and Z 
is the k-vector of recognised factor of X which are differentiable alter-
ations with component l given by:  

Zl = Zl (X), l = 1 … k                                                                   (16) 

where, Xit id the proxy of any fixed i is independent across time (t). Uit is 
a proxy distributed across individuals (i) and across time (t) which are 
normalized to satisfy the moment situation but does not imply limit as 
show in equation-15 show as:  

QY (τ/Xit) = (αi+ δiq(τ)) + Xit՛β+ Zit՛γq(τ)                                       (17) 

From equation-17, Xit represents vector of explanatory factors which 
are per capital income (P) and its square (PCI), energy intensity (EnI) as 
well as renewable energy share (Ren). QY (τ/Xit) represents the depen-
dent variables in this analysis which are, production-based CO2 emis-
sions (PrdCE) and consumption-based CO2 emissions (ConCE). 

3.2.3. Panel causality test 
This analysis tests the causal relationship and the respective direc-

tion among the variables using the Dumitrescu-Hurlin [41] modified 
Granger [42] non-causality test which accommodates heterogeneity and 
CD in panel data. The Granger causality test is based on the following 
equation: 

Yit = δi +
∑p

k=1
β1ikYi,t− k +

∑p

k=1
β2ikXi,t− k + εit (18) 

From equation-18, β2ik and β1ik denote the regression coefficients and 
autoregressive parameters for individual panel variable i at time t 
respectively. Following the assumption of a balance panel of observation 
for the variable Yit and Xit, the null hypothesis of non-existent causality 
among the variables was assessed or compared with the alternate hy-
pothesis of heterogenous causality in the panel investigation. 

Based on the above steps, the analytical framework in Fig. 2 is 
constructed to guide empirical analysis. 

3.3. Empirical results 

The cross-sectional dependence (CD) test proposed by Pesaran [26] 
is employed to assess the possible dependence among the variables 
across 40 developing economies. The empirical results in Table- 2 reject 

Figure-2. Flow of analysis.  
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the null hypothesis. Thus, no cross-sectional dependence among the 
selected variables at 1% significance level. Therefore, each variable 
contains cross-sectional dependence, indicating that shocks in one 
country spread to other countries in panel. Next, the analysis employs 
2nd-generation panel unit root tests to examine the stationarity prop-
erties of the variables. These tests include: CIPS and CADF. The empir-
ical results show the presence of unit root in the variables at level form 
but at first difference, reject the null hypothesis of unit root for all the 
variables (see Table- 3). Table- 4 presents observations from the Pesaran 
and Yamagata [29] test for slope heterogeneity. The test results herein 
suggest a rejection of the null hypothesis of slope homogeneity in all 
model specifications. Thus, there is a slope heterogeneity concern in 
panel data. 

A stationary test at first difference is conducted for all the variables to 
test for the presence of a long run relationship between the variables. 
Then the Westerlund [30] cointegration test is performed to evaluate the 
existence of cross-sectional dependence. In addition, as an extension to 
the analysis procedure, a second-generation error-correction technique, 
based on the cointegration is also performed. Results from the two tests 
are presented in Table- 5. Westerlund [30] test results show that all 
panels are cointegrated. Further, p-values for test statistics from the 
Westerlund [31] error-correction based cointegration test show that the 
null hypothesis is rejected for the Gt test statistic, providing evidence 
that cointegration exists in at least one of cross-sectional units (i.e. in at 
least one group). Of more importance is the rejection or otherwise of the 
null hypothesis for the panel test statistics. Observing the results for Pt 
test statistic shows that the null hypothesis of no cointegration is 
rejected in all the model specifications, providing evidence that coin-
tegration exists among the variables for the whole panel. The analysis 
further uses the Augmented Mean Group estimation, which caters for the 
existence of cross-sectional dependence and heterogeneity in the panel 
data to estimate the parameters of the model specifications. The derived 
estimates are therefore highly robust, unbiased, and efficient for various 
combinations of cross-section and time dimensions even when consid-
ered with non-stationary data and in the absence of cointegration [35]. 
To account for distributional heterogeneity in the panel, the MM-qreg 
technique is employed, defining three sections of quantiles: the lower 
quantile (qtile_25th); the median quantile (qtile_50th) and the upper 
quantile (qtile_75th). 

The empirical results from the modelling of production-based carbon 
emissions are presented in Table- 7. Starting with the environmental 
impact of population, the coefficient of lnP showed a positive coefficient 
and statistically significant at 1% level across all specifications, irre-
spective of the estimation technique used. Based on STIRPAT augmented 
EKC model, a 1% increase in population size increases production-based 
CO2 emissions by 1.40%. From the MM-qreg estimates, the environ-
mental impact of increasing population size is stronger in developing 
economies at the lower quantile of lnPrdCE distribution. Further, the 
coefficient of per capita income (lnPCI) in extended STIRPAT model is 
positive and statistically significant at 1% level and indicates a 1.11% 
increase in production-based CO2 emissions in response to a 1% increase 

in per capita income (lnPCI). In specification-5, the model is augmented 
with the square of per capita income (lnPCI2) to accommodate the EKC 
hypothesis. The results show valid an inverted U-shaped curve in the 
relationship between income per capita and production-based CO2 
emissions in the sampled developing countries. MM-qreg estimates show 
that an inverted U-shaped curve in the relationship between income per 
capita and production-based CO2 emissions is valid irrespective of the 
quantile location of the countries and affirms the findings of Saint [43], 
Gokmenoglu and Taspinar [44]. Again, this result reinforces the Envi-
ronmental Kuznets curve hypothesis which suggests that there is a direct 
connection between an increasing standard of living and environmental 
degradation [45]. The coefficient of energy intensity (lnEnI) is positive 
and statistically significant at 1% level across all specifications. From the 
AMG estimates in model specification-5, a 1% increase in energy in-
tensity increases production-based CO2 emissions by 0.71%. Conversely, 
a 1% increase in energy efficiency reduces production-based CO2 
emissions by 0.71%. MM-qreg estimates show that the environmental 
impact of energy intensity is stronger in developing economies at the 
lower quantile of lnPrdCE distribution. This finding affirms the studies of 
Emir and Bekun [46], Shahbaz et al. [45], Ulucak and Khan [48] that 
also confirms that, energy intensity increases pollution (see Table 6) (see 
Table 5). 

The coefficient of renewable energy consumption (lnREn) is negative 
and statistically significant at 1% level across all specifications. The 
AMG estimates in model specification-5 show that a 1% increase in the 
use of renewable energy decreases production-based CO2 emissions by 
0.35% while MM-qreg estimates highlight stronger mitigation effect in 
countries at the lower quantiles of lnPrdCE distribution. This observa-
tion makes important revelations referring from previous studies of 
Alola and Alola [48], who propose that increased consumption of 
renewable energy mitigates CO2 emissions. The empirical results in 
Table- 7 show AMG estimations for the extended STIRPAT specification. 
It is observed that a 1% rise in the size of population (lnP) raises 
consumption-based CO2 emissions by 1.90% while MM-qreg estimates 
provide further evidence to indicate stronger environmental impact in 
developing economies at the lower quantile of lnConCE distribution. The 
estimates of the STIRPAT specification, show that a significant positive 
relationship also exists between per capita income and 
consumption-based CO2 emissions. In specification 6, the model is 
augmented with the square of per capita income (lnPCI2) to accommo-
date the EKC hypothesis. From the estimates, income per capita (lnPCI) 
reveals a positive effect with statistical significance attained at 10% 
level. The coefficient of square (lnPCI2) is negative as expected, but 
statistically insignificant. The MM-qreg estimates show that lnPCI and 
lnPCI2 have statistically insignificant coefficients in countries at the 
lower (MM-qtile_25) and upper (MM-qtile_25) quantiles of the lnConCE 
distribution. For the median quantile (MM-qtile_50) of the distribution, 
the estimates confirm a monotonically increasing relationship between 
per capita income and consumption-based CO2 emissions as also sug-
gested by AMG estimates. This finding corroborates with surveys of 
studies on the divergence in the evidence across countries on the EKC 
hypothesis due to differences in measures of environmental indicators. It 
is therefore interesting to note that the EKC hypothesis does hold for 
consumption-based CO2 emissions in the selected developing econo-
mies. Looking at the coefficient of lnEnI in Table- 8, a positive and sta-
tistically significant relationship exists between the intensity of energy 
use and consumption-based CO2 emissions. From the AMG estimates, a 
1% increase in energy intensity contributes by 0.60% increase in 
consumption-based CO2 emissions. Again, this indicates that a 1% in-
crease in the rate of improvement in energy efficiency will reduce 
consumption-based CO2 emissions by 0.60%. MM-qreg estimates show 
that energy intensity has stronger impact in countries at the lower 
quantiles of lnConCE distribution. The estimates also show a negative 
and statistically significant coefficient for renewable energy consump-
tion (lnREn) across all the specifications. The AMG estimates in model 
specification show that a percentage increase in renewable energy 

Table-3 
Pesaran (2004, 2015) cross-section dependence analysis.  

Variable CD-test p-value average joint mean ρ mean abs(ρ) 

lnPrdCE 92.435 0.000 23.00 0.69 0.80 
lnConCE 93.593 0.000 23.00 0.70 0.76 
lnP 132.793 0.000 23.00 0.99 0.99 
lnPCI 93.919 0.000 23.00 0.70 0.76 
lnPCI2 94.045 0.000 23.00 0.70 0.76 
lnEnI 46.158 0.000 23.00 0.34 0.56 
lnREn 36.835 0.000 23.00 0.28 0.55 

Note: All the variable apart from PU underwent logarithmic transformation; 
Under the null hypothesis of cross-section independence, CD ~ N(0,1); ***p <
0.01, **p < 0.05, *p < 0.1; P-values close to zero indicate data are correlated 
across panel groups. 
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utilization reduces consumption-based CO2 emissions by 0.39% while 
MM-qreg estimates highlight stronger mitigation effect at the upper 
quantiles of lnConCE distribution. 

The empirical results from further empirical analyses are provided in 
Table- 9. Specifically, this step is taken determine whether renewable 
energy can be used to reduce the intensity of energy (i.e. increase the 
rate of improvement in energy efficiency) in developing economies. 
From the estimates, lnREn has a negative coefficient with statistical 
significance achieved at 5% level. Looking at the coefficient across the 
two specifications reveals that increasing the amount of renewable en-
ergy in energy mix by 1% could reduce the intensity of energy by 0.19%– 
0.24%. Conversely, it means that a 1% increase in the amount of 
renewable energy in energy mix increases energy efficiency by 0.19%– 
0.24%. Interestingly, the estimates also confirm a significant positive 
relationship between sources of CO2 emissions (i.e. lnPrdCE and 
lnConCE) and energy intensity in these economies. The empirical results 
in Table- 10 show the causal linkages among the variables. In Panel-A, 
the null hypothesis that lnEnI does not cause lnPrdCE is rejected at 1% 
level of significance. The null hypothesis that lnPrdCE does not cause 
lnEnI is as well rejected at 5% level of significance. These results imply 
the existence of bidirectional causal relationship between energy in-
tensity and production-based carbon emissions. Surprisingly, no signif-
icant causal relationship exists between renewable energy use and 
production-based CO2 emissions in this group of developing econo-
mies. Other causal linkages include a unidirectional causality that runs 
from population size and per capita income to production-based CO2 
emissions. In Panel-B, a unidirectional causality runs from energy in-
tensity and renewable energy use to consumption-based CO2 emissions. 
The causality between population size and consumption-based CO2 
emissions is bidirectional. Also, bidirectional causality exists between 
per capita income and consumption-based CO2 emissions but not with 
the squared term, in which case, the null hypothesis that lnConCE does 
not Granger-cause lnPCI2 is not rejected. Another interesting finding is 
the bidirectional causal relationship between energy intensity and 
renewable energy use (see Panel-C). A summary scheme for the causality 
is highlighted in Fig. 3. 

4. Conclusion and policy implications 

The transition to a low-carbon economy is an essential component of 
the sustainable development (UNSDG-7.13) agenda. Increasing the 
share of renewable energy in energy mix (SDG Target 7.2) and doubling 
the rate of improvement in energy efficiency (SDG Target 7.3) are 
among many policy options currently considered to have the potential to 
facilitate the transition to green economy especially for developing and 
emerging blocs. In this study, the nexus between the intensity of energy 
use, an indicator of energy efficiency (see SDG indicator 7.3.1), 
renewable energy use (see SDG indicator 7.2.1), and CO2 emissions is 
examined based on a STIRPAT augmented model that also incorporates 
the EKC specification. The environmental impacts of developing 

Table-4 
Panel unit root analysis.   

Variables 
Panel A: CIPS (Pesaran, 2007) unit-root test Panel B: CADF (Pesaran, 2003) unit root test 

Level I (0) 1st Difference I (1) Level I (0) 1st Difference I (1) Decision 

Without Trend With Trend Without Trend With Trend Without Trend With Trend Without Trend With Trend 

lnPrdCE − 2.225** − 2.717** − 4.682*** − 4.733*** − 1.486 − 1.744 − 3.369*** − 3.391*** I (1) 
lnConCE − 2.307*** − 2.762*** − 4.761*** − 4.783*** − 1.706 − 2.156 − 3.548*** − 3.660*** I (1) 
lnP − 1.656 − 2.480 − 2.214** − 4.428*** − 1.487 − 1.039 − 3.641*** − 5.716*** I (1) 
lnPCI − 1.732 − 2.008 − 3.348*** − 3.651*** − 1.101 − 1.407 − 2.548*** − 2.999*** I (1) 
lnPCI2 − 1.696 − 1.935 − 3.296*** − 3.618*** − 1.082 − 1.417 − 2.484*** − 2.954*** I (1) 
lnEnI − 1.786 − 2.193 − 4.457*** − 4.601*** − 0.840 − 1.384 − 2.876*** − 2.897*** I (1) 
lnREn − 1.878 − 2.047 − 4.338*** − 4.488*** − 1.674 − 1.625 − 2.900*** − 3.048*** I (1) 

Note: ***p < 0.01, **;0 .05; * 0.1. The null hypothesis assumes for CADF assumes all series are non-stationary in a heterogeneous panel all with cross-sectional 
dependence. 

Table-5 
Pesaran and Yamagata (2008) slope heterogeneity analysis.  

Specifications Delta tilde (△) Adjusted delta tilde (△Adj) 

1.1. lnPrdCE 21.979*** [0.000] 25.565*** [0.000] 
1.2. lnPrdCE (EKC) 17.632*** [0.000] 21.140*** [0.000] 
2.1. lnConCE 19.624*** [0.000] 22.825*** [0.000] 
2.2. lnConCE (EKC) 16.062*** [0.000] 19.258*** [0.000] 
3.1. lnEnI with lnPrdCE 27.345***[0.000] 31.806***[0.000] 
3.2. lnEnI with lnConCE 28.698***[0.000] 33.380***[0.000] 
P-values in parentheses; ***p < 0.01; ** 0.05; *0.1.  

Table-6 
Panel cointegration analysis.  

Specifications 

Panel A: Westerlund (2005) panel cointegration test  
Some panels  All Panels 

1.1. lnPrdCE − 3.1620***[ 
0.0008]  

− 1.9070**[ 0.0283] 

1.2. lnPrdCE 
(EKC) 

− 3.7742***[ 
0.0001]  

− 2.1642**[0.0152] 

2.1. lnConCE − 3.5330***[ 
0.0002]  

− 1.8509**[ 0.0321] 

2.2. lnConCE 
(EKC) 

− 3.8987***[ 
0.0000]  

− 2.0681**[0.0193] 

3.1. lnEnI 
with 
lnPrdCE 

− 2.9772*** 
[0.0015]  

− 1.9084**[0.0282] 

3.2. lnEnI 
with 
lnConCE 

− 2.7528*** 
[0.0030]  

− 1.8325**[0.0334] 

Panel B: Westerlund (2007) Error-correction panel cointegration test  
Gt 
Value [Robust 
p-value] 

Ga 
Value 
[Robust p- 
value] 

Pt 
Value [Robust 
p-value] 

Pa 
Value 
[Robust p- 
value] 

1.1. lnPrdCE − 2.944*** 
[0.000] 

− 2.512 
[0.968] 

− 12.262*** 
[0.000] 

− 2.129 
[0.768] 

1.2. lnPrdCE 
(EKC) 

− 3.218*** 
[0.000] 

− 1.415 
[0.980] 

− 15.992*** 
[0.000] 

− 1.262 
[0.712] 

2.1. lnConCE − 3.240*** 
[0.000] 

− 2.110 
[0.996] 

− 14.066***[ 
0.000] 

− 2.129 
[0.684] 

2.2. lnConCE 
(EKC) 

− 3.771*** 
[0.000] 

− 1.266 
[0.992] 

− 27.998*** 
[0.000] 

− 1.848 
[0.596] 

3.1. lnEnI 
with 
lnPrdCE 

− 3.243*** 
[0.000] 

− 3.048 
[0.831] 

− 15.659*** 
[0.000] 

− 2.678 
[0.800] 

3.2. lnEnI 
with 
lnConCE 

− 3.122*** 
[0.000] 

− 2.557 
[0.958] 

− 12.478*** 
[0.000] 

− 2.349 
[0.996] 

The Robust P-Values are from 250 bootstrapping of critical values under null 
hypothesis of no cointegration. ***p < 0.01, **p < 0.05, *p < 0.1 indicate the 
level at which the null hypothesis is not accepted. 
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economies in Latin America, Asia, the Caribbean, and Africa form the 
scope for the empirical analysis. Based on available data on the vari-
ables, a panel consisting of 40 countries is constructed for the study. To 
provide a more complete picture of total lifecycle emissions, this study 
used both production and consumption-based measures of carbon 
emissions. Results revealed that population size drives CO2 emissions in 
developing economies. It establishes an inverted U-shaped association 
between income per capita and production-based CO2 emissions, thus 
validating the EKC hypothesis. The coefficient of energy intensity is 
positive and significant across all specifications. Renewable energy 
utilization shows a negative effect, significant at 0.01 across all speci-
fications. The analysis observed bidirectional causality between energy 
intensity and production-based CO2 emissions. A unidirectional cau-
sality runs from population size and per capita income to production- 
based CO2 emissions. A unidirectional causality runs from energy 

intensity and renewable energy use to consumption-based CO2 emis-
sions. The causality between population size and consumption-based 
CO2 emissions is bidirectional. Bidirectional causality also exists be-
tween per capita income and consumption-based CO2 emissions. 
Another interesting finding is the bidirectional causal relationship be-
tween energy intensity and renewable energy use. 

Taking cognizance of the current findings, several important in-
ferences can be made. First, the results highlight the need for policy-
makers to consider the increasing importance of energy efficiency as a 
crucial consideration for CO2 emissions mitigation. Many developing 
economies face difficulties in producing electric power and increase 
access to cleaner energy options or even optimize their production. At 
present, many countries have made attempts at trying to reduce adverse 
environmental actions to curb the negative impacts on the global envi-
ronment. This action to an extent has inspired other countries have 

Table-7 
Parameter estimates for production-based carbon emissions.   

Variables 
1.1 1.2a 1.2b 1.2c 1.2d 

Extended STIRPAT model STIRPAT Augmented EKC model 

AMG AMG MM-qtile_25 MM-qtile_50 MM-qtile_75 

lnP 1.6453*** 1.4000*** 1.1276*** 1.1049*** 1.0806*** 
(0.1637) (0.1242) (0.0586) (0.0515) (0.0573) 
[10.049] [11.274] [19.254] [21.439] [18.858] 

lnPCI 1.1091*** 13.8423*** 3.0739*** 3.2512*** 3.4414*** 
(0.0978) (4.3567) (0.2304) (0.2028) (0.2252) 
[11.338] [3.177] [13.342] [16.033] [15.280] 

lnPCI2 . − 0.7347*** − 0.1359*** − 0.1473*** − 0.1595*** 
. (0.2846) (0.0140) (0.0123) (0.0137) 
. [-2.582] [-9.692] [-11.932] [-11.633] 

lnEnI 0.6532*** 0.7102*** 0.5134*** 0.4826*** 0.4495*** 
(0.1012) (0.1084) (0.0474) (0.0417) (0.0463) 
[6.457] [6.550] [10.839] [11.575] [9.704] 

lnREn − 0.3182*** − 0.3530*** − 0.2195*** − 0.2061*** − 0.1917*** 
(0.0970) (0.0992) (0.0321) (0.0283) (0.0314) 
[-3.280] [-3.560] [-6.828] [-7.285] [-6.094] 

Constant − 30.6989*** − 74.6321*** − 31.7251*** − 31.9403*** − 32.1712*** 
(3.7095) (18.0813) (1.2872) (1.1327) (1.2597) 
[-8.276] [-4.128] [-24.647] [-28.199] [-25.538] 

Observations 920 920 920 920 920 
Number of ID 40 40 40 40 40 

Note: Standard errors in ( ); t-statistics in [ ]; ***p < 0.01, **p < 0.05, *p < 0.1. 

Table-8 
Parameter estimates for consumption-based carbon emissions.   

Variables 
2.1 2.2a 2.2b 2.2c 2.2d 

Extended STIRPAT model STIRPAT Augmented EKC model 

AMG AMG MM-qtile_25 MM-qtile_50 MM-qtile_75 

lnP 1.6325*** 1.9008*** 1.5882*** 1.4764*** 1.3739*** 
(0.2927) (0.3314) (0.0966) (0.0767) (0.0781) 
[5.578] [5.735] [16.441] [19.256] [17.595] 

lnPCI 1.3181*** 8.7412* 1.1262 0.9763* 0.8388 
(0.1768) (5.0472) (0.7014) (0.5573) (0.5686) 
[7.457] [1.732] [1.606] [1.752] [1.475] 

lnPCI2  − 0.3556 − 0.0074 − 0.0000 0.0067  
(0.3295) (0.0463) (0.0368) (0.0375)  
[-1.079] [-0.159] [-0.001] [0.179] 

lnEnI 0.4865*** 0.6000*** 0.5470*** 0.4626*** 0.3851*** 
(0.1179) (0.1176) (0.0896) (0.0711) (0.0725) 
[4.125] [5.101] [6.105] [6.504] [5.312] 

lnREn − 0.5801*** − 0.3851*** − 0.2252*** − 0.2486*** − 0.2700*** 
(0.1432) (0.1280) (0.0702) (0.0558) (0.0569) 
[-4.050] [-3.010] [-3.207] [-4.456] [-4.745] 

Constant − 29.1393*** − 61.2523** − 32.1571*** − 29.2054*** − 26.4985*** 
(4.5514) (26.4167) (3.1485) (2.4995) (2.5476) 
[-6.402] [-2.319] [-10.213] [-11.685] [-10.401] 

Observations 920 920 920 920 920 
Number of ID 40 40 40 40 40 

Note: Standard errors in ( ); t-statistics in [ ]; ***p < 0.01, **p < 0.05, *p < 0.1. 
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remained passive toward this objective. Many countries possess large 
deposits of resources that can facilitate the production and sustenance of 
renewable energy but have been unexplored or completely unexplored 
by these countries. Non-renewable energy consumption, which in-
creases carbon emissions is observed to be an important driver for en-
ergy generation and consumption among developing economies. For 
instance, according to Shahbaz et al. [32], many sub-Saharan African 
states are found to be heavily dependent on coal for electricity genera-
tion. Unfortunately, the African continent alone is estimated to generate 
over 1750 TWh of hydropower and 14,000 MW of geothermal energy 
sources. Yet only about 7% this capacity has been utilized [45]. Thus, 
the focus of countries should be to use green energy drive economic 
development and prosperity. Beyond hydroelectric power and 
geothermal sources of electric power, other environmentally friendly 
energy sources exist to augment these somewhat traditional energy 
generation options. A challenge to this realization is the unbalanced 
dynamics of energy politics in many developing economies, which is 
especially crucial because of issues of resource distribution, and use in 
developing countries. This burden is often borne by all and sundry, even 
in some cases a spill-over tends to extend the cost and burden to im-
mediate neighbours. Therefore, the effect of negative energy production 
options makes the issue of environmental degradation, pollutant emis-
sions and climate change challenge is affected by all. Thus, government 
policy and communication of these policy briefs ought to be effective to 
facilitate public understanding of environmental issues and concerns 
and understanding of the role of households toward the fight against 
greenhouse gas emissions. Governments and other stakeholders need to 
lend support to positive environmental goals such as afforestation and 
landscaping to radically reduce pollution volumes across the globe [49]. 
Moreover, the result of the significant role of energy intensity in 
reducing CO2 emissions should be maintained as s a vital consideration 
to ensure that, present and future energy demands are responsibly met in 
line with global sustainability targets. Specifically, this study observes 
that energy intensity drives pollution among the countries considered in 
this study. Thus, it can also be surmised that increased energy intensity 
suggests evidence of improper utilization of energy. Energy advances by 
R&D investment will lower energy intensity of energy industry and thus 
less carbon pollution economic experts need to promote research and 
development on enhancing energy usage and ecological sustainability. 
Moreover, R&D related investments will be a crucial means toward 
coping with the overreliance of fossil fuels. However, a final consider-
ation, is to facilitate the urgent need for policy and strategy to ensure 

Table-9 
Parameter estimates for energy intensity.   

(3.1) (3.2) 

Variables AMG (lnEnI with lnPrdCE) AMG (lnEnI with lnConCE) 

lnPrdCE 0.3157*** – 
(0.0662) – 
[4.766] – 

lnConCE – 0.1527*** 
– (0.0408) 
– [3.742] 

lnP − 1.0281*** − 0.8505*** 
(0.1909) (0.1547) 
[-5.386] [-5.498] 

lnPCI − 0.9607*** − 0.9016*** 
(0.0545) (0.0678) 
[-17.644] [-13.296] 

lnREn − 0.1893** − 0.2424** 
(0.0918) (0.0979) 
[-2.063] [-2.475] 

Constant 26.4521*** 22.5458*** 
(2.8945) (2.5231) 
[9.139] [8.936] 

Observations 920 920 
Number of ID 40 40 

Note: Standard errors in ( ); t-statistics in [ ]; ***p < 0.01, **p < 0.05, *p < 0.1. 

Table-10 
Dumitrescu and Hurlin (2012) Granger non-causality analysis.  

Null hypothesis W-bar Z-bar stat. 

Statistic statistic 90% critical 
value 

P- 
value 

Panel A: Production-based CO2 emissions 
lnP does not Granger-cause 

lnPrdCE 
22.1141 34.2281 37.6522 0.1600 

lnPrdCE does not Granger- 
cause lnP 

23.0465 36.0929*** 21.0511 0.0100 

lnPCI does not Granger- 
cause lnPrdCE 

8.2111 19.6413*** 8.8513 0.0000 

lnPrdCE does not Granger- 
cause lnPCI 

9.0554 8.1109 10.2222 0.2800 

lnPCI2 does not Granger- 
cause lnPrdCE 

8.1832 19.5531*** 9.9832 0.0000 

lnPrdCE does not Granger- 
cause lnPCI2 

9.0109 8.0217 12.1455 0.4400 

lnEnI does not Granger- 
cause lnPrdCE 

4.0195 13.5037*** 6.9559 0.0000 

lnPrdCE does not Granger- 
cause lnEnI 

3.1517 9.6226** 8.0681 0.0300 

lnREn does not Granger- 
cause lnPrdCE 

8.2713 6.5427 10.8211 0.4700 

lnPrdCE does not Granger- 
cause lnREn 

2.8539 8.2908 9.1047 0.1700 

Panel B: Consumption-based CO2 emissions 
lnP does not Granger-cause 

lnConCE 
19.5107 42.6304*** 21.1631 0.0000 

lnConCE does not Granger- 
cause lnP 

10.4907 19.3408*** 5.3533 0.0000 

lnPCI does not Granger- 
cause lnConCE 

14.4816 18.9633*** 12.2003 0.0000 

lnConCE does not Granger- 
cause lnPCI 

4.5133 7.9478* 7.6995 0.0800 

lnPCI2 does not Granger- 
cause lnConCE 

14.5584 19.1168*** 9.6426 0.0000 

lnConCE does not Granger- 
cause lnPCI2 

4.4705 7.8124 7.9515 0.1100 

lnEnI does not Granger- 
cause lnConCE 

3.6110 11.6768*** 7.6624 0.0000 

lnConCE does not Granger- 
cause lnEnI 

8.2884 6.5768 10.8821 0.3800 

lnREn does not Granger- 
cause lnConCE 

10.2981 10.5962*** 8.8317 0.0200 

lnConCE does not Granger- 
cause lnREn 

8.7940 7.5880 11.6965 0.3200 

Panel C: Nexus between energy intensity and Renewable Energy 
lnREn does not Granger- 

cause lnEnI 
3.0134 9.0042** 6.1638 0.0300 

lnEnI does not Granger- 
cause lnREn 

11.9623 13.9246*** 10.4541 0.0100 

Note: ***p < 0.01, **p < 0.05, *p < 0.1; Optimal number of lags (AIC lags tested: 
1 to 5). * p-values using bootstrap replications for 90% critical value. 

Fig. 3. Graphical analysis of framework.  
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climate and energy industries be supervised more strictly to become 
more ecologically responsible. This can be achieved through enforcing 
technical expansion and growth policies that lend themselves to 
actionable R&D and innovative initiatives. 

The validity of the EKC hypothesis among the selected countries in 
this study for production-based CO2 implies that these developing states 
require substantial efforts and action to minimize adverse effects of 
increased income levels on environment. Given the fact that the coun-
tries under consideration are all developing nations and are still strug-
gling with their growth paths, it is necessary to build institutional 
mechanisms required to develop and implement effective strategic de-
cisions and environment-relative regulations to achieve sustained en-
vironments without compromising their fragile economic development 
trajectories. However, along the path of the consumption-based analysis 
of carbon emissions, the analysis rejects the presence of EKC, this could 
be a source of concern for most of these developing states understudy. 
Thus, the move toward transitioning to clean energy sources like 
renewable energy is pertinent considering the implicit effects cleaner 
environments. Therefore, practitioners and other stakeholders must seek 
a shared meaning, and concerted efforts toward realizing the dynamic 
shift to cleaner energy sources and technologies by improving the share 
of energy mix for fossil-fuels to renewable energy sources. 
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Appendix-A: List of Sampled Developing Countries by Region  

S/ 
N 

AFRICA S/ 
N 

ASIA S/ 
N 

Latin America and the 
Caribbean 

1 Botswana 22 Bangladesh 32 Colombia 
2 Burkina Faso 23 India 33 Dominican Republic 
3 Cameroon 24 Indonesia 34 Ecuador 
4 Cote d’Ivoire 25 Jordan 35 El Salvador 
5 Egypt 26 Malaysia 36 Jamaica 
6 Ghana 27 Pakistan 37 Mexico 
7 Guinea 28 Philippines 38 Panama 
8 Kenya 29 Saudi 

Arabia 
39 Peru 

9 Madagascar 30 Thailand 40 Uruguay 
10 Malawi 31 Vietnam   
11 Morocco     
12 Mozambique     
13 Namibia     
14 Nigeria     
15 Senegal     
16 South Africa     
17 Tanzania     
18 Togo     
19 Tunisia     
20 Zambia     
21 Zimbabwe      
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