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1  |  INTRODUC TION

There is a preference for natural food products and functional food 
ingredients, which are believed to benefit human health and exist 
inherently in foods, instead of receiving compounds chemically syn-
thesized. Moreover, to strong immunity system is among people's 
highest priority in a post- pandemic era as the Covid- 19 pandemic 
caused the catastrophic effects. In particular, bioactive extracts or 
single functional food components that can prevent nutrition- related 
diseases have huge importance for human nutrition and promote 

the human immune system (Galanakis, 2021). In this context, finding 
alternative, cheap, natural, and sustainable food resources such as 
macroalgae, duckweed, and insects for bioactive compounds is one 
of the trend research topics.

Macroalgae are renewable sources that live in the marine eco-
system and are excellent for human nutrition, also have an important 
commercial potential as a functional ingredient in a variety of foods 
(Cofrades et al., 2017; García- Vaquero et al., 2017). In particular, 
proteins as one of the essential nutrients isolated from macroalgae 
have various bioactive properties such as antioxidant, anticancer, 
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Abstract
In this study, ultrasound- assisted enzymatic extraction was performed to extract pro-
teins from Gracilaria dura	for	the	first	time.	The	ultrasonic	applying	time	(30–	300 s),	
enzyme/substrate	 (E/S,	 0.5–	2.5),	 and	 extraction	 time	 (20–	28 h)	 on	 protein	 content	
(PC),	total	phenolic	content	(TPC),	and	antioxidant	activity	(AOA)	was	optimized	using	
response surface methodology. Techno- functional properties of protein extracts 
obtained	under	optimum	conditions	were	determined.	At	optimum	conditions	(ultra-
sonic	applying	time:	257.57 s,	E/S:	2.5,	extraction	time:	22.61 h),	PC,	TPC,	AOACUPRAC 
and	AOAABTS	were	 found	as	189.59 mg/g,	60.52 mg	GAE/g	and	55.66 mg	TE/g	and	
478.50 mg	TE/g	dw,	respectively.	The	water/oil	absorption	capacity,	foaming	capac-
ity/stability,	emulsifying	activity/stability	of	 the	protein	extracts	were	195 ± 0.08%,	
568 ± 0.10%,	12.5 ± 0.00%,	0%,	44 ± 0.00%,	and	75 ± 2.50%,	respectively.	In	conclu-
sion, G. dura protein extracts may have an important potential to improve antioxidant 
activity and functional properties of various food products due to high antioxidant 
activity and a good level of water/oil absorption capacity.
Novelty impact statement: Macroalgae Gracilaria dura proteins were successfully ex-
tracted with high extraction efficiency by extraction process performed with ultra-
sonication application and enzyme usage. The protein extracts from G. dura can be 
used to improve the techno- functional and antioxidative properties of various food 
products due to their acceptable water/oil absorption capacity and emulsifying prop-
erties and high antioxidant activity.
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antiviral, and antibacterial activities. Macroalgae- derived proteins 
have also techno- functional properties such as foaming or emulsify-
ing ability and they can be used as emulsifying agents, texture mod-
ifiers, and/or water/oil absorption enhancers by the food industry 
(Galanakis et al., 2021;	Michalak	&	Chojnacka,	2015).

Although	macroalgae	include	a	variety	of	high-	value	compounds,	
the extraction of macroalgae- derived proteins is complicated due to 
several variables. The most important of these is the presence of 
complex cell wall polysaccharides (e.g., alginate, carrageenan, cellu-
lose, hemicellulose) which can reduce the extraction effect (Bleakley 
&	Hayes,	2017;	Harnedy	&	FitzGerald,	2011; Kadam et al., 2013). 
In this context, in conventional extraction methods with low ex-
traction yields, organic solvents that cause negative effects on the 
environment	 are	 used	 (Bleakley	&	Hayes,	2017). Therefore, there 
is a strong interest in the development of environmentally friendly 
novel extraction techniques (e.g., ultrasound- assisted extraction, 
microwave- assisted extraction, supercritical fluid extraction, etc.) 
to extract bioactive compounds with higher extraction yield and 
lower	extraction	time	and	costs	 (Cravotto	&	Binello,	2016; Kadam 
et al., 2013; Ochoa- Rivas et al., 2017; Tiwari, 2015).	 Additionally,	
membrane separation techniques such as microfiltration, ultrafiltra-
tion, and reverse osmosis are one of the methods which show great 
promise	for	isolating	compounds	(Bleakley	&	Hayes,	2017).	Among	
these, ultrasound- assisted extraction leads to acoustic cavitation 
to	break	down	cell	wall	polymers	(Bleakley	&	Hayes,	2017). On the 
other part, in enzyme- assisted extraction, to dissolve polysaccharide 
cell walls, food- grade enzymes such as carbohydrase and protease 
enzymes are commonly utilized, which require little or no chemical 
solvents and also exhibit excellent catalytic efficiency, improve over-
all protein extraction yields. For instance, Naseri et al. (2020) used 
several	enzymes	such	as	Celluclast®,	Shearzyme®,	Alcalase®,	and	
Viscozyme® to extract protein from Palmaria palmata and reported 
that	protein	yield	 ranged	 from	35.5%	 to	41.6%.	Similarly,	Vásquez	
et al. (2019) investigated the effects of enzymatic and non- enzymatic 
methods on protein extraction from macroalgae Macrocystis pyrifera 
and Chondracanthus chamissoi. They found that the disruption of the 
cellulase- sensitive carbohydrate matrix increased the protein con-
tent	of	the	extract	(Vásquez	et	al.,	2019).

Macroalgae Gracilaria sp. has high protein content which varies 
between	5.6%	and	24.0%	(Francavilla	et	al.,	2013; Friedlander, 2008; 
Gressler et al., 2010; Wen et al., 2006). In the study of Sambhwani 
et al. (2020), the highest protein content of Gracilaria dura was de-
termined	as	23.0%	depending	on	seasonal	conditions.	To	the	best	of	
our knowledge, there is no research on the combined effect of ex-
traction time, enzyme/substrate ratio (E/S) and ultrasonic applying 
time on protein content (PC), total phenolic content (TPC), and an-
tioxidant	activity	(AOA)	of	protein	extracts	from	G. dura. Therefore, 
the aims of this study were to (i) determine the fatty acid, mineral, 
and carbohydrate profile of G. dura (ii), optimize the conditions of 
ultrasound- assisted enzymatic extraction of proteins from G. dura 
by using response surface methodology (RSM) (iii), investigate the 
effect	 of	 extraction	 conditions	 on	 PC,	 TPC,	 and	 AOA	 (iv),	 deter-
mine techno- functional properties and organic group with Fourier 

transform infrared (FT- IR) spectroscopy method of the proteins ex-
tracts obtained under optimum extraction conditions.

2  |  MATERIAL AND METHOD

2.1  |  Material

Gracilaria dura	was	collected	from	the	Aegean	coast	of	Turkey	(coor-
dinates:	40°1′35.90″	N	and	26°19′49.49″	E).	The	collected	macroal-
gae samples were washed with tap water and dried in a shaded area 
at ~30°C. The dried macroalgae were ground into powder particles 
using a laboratory- type grinder (Waring 8011 Eb Blender, Cole- 
Parmer Instrument Company) and sieved using a sieve with a mesh 
size	of	500 μm. The powdered G. dura (PG) with <500 μm particle 
diameter were packaged appropriately to avoid sunlight and oxygen, 
and	stored	at	−20°C	until	further	analysis.

2.2  |  Chemicals

Folin– Ciocalteu's phenol reagent was purchased from Merck 
(Merck).	 Hydrochloric	 acid,	 trichloroacetic	 acid	 (TCA),	 sodium	 hy-
droxide, gallic acid, potassium persulfate, bovine serum albumin, 
sodium carbonate, copper (II) chloride solution, neocuproine, ammo-
nium acetate buffer, sodium citrate buffer, sodium acetate buffer, (±)
- 6- hydroxy- 2,5,7,8- tetramethylchromane- 2- carboxylic acid (Trolox), 
2,2- azinobis 3- ethylbenzothiazoline- 6- sulfonic acid diammonium 
salt,	 methanol,	 and	 ethanol	 were	 procured	 from	 Sigma–	Aldrich	
(Sigma–	Aldrich	 Chemie).	 Hemicellulase	 enzyme	 (HSP	 50000)	 was	
purchased	from	Bakezyme.	All	of	the	solvents	and	chemicals	used	
were of the analytical grade.

2.3  |  Proximate composition and fatty acid, 
carbohydrates, and mineral profile analysis

The	 ash	 (923.03),	 lipid	 (920.85),	 crude	 protein	 (N × 6.25)	 (920.87),	
crude fiber (978.10), and moisture content (950.46) of PG were de-
termined	according	to	the	Association	of	Official	Analytical	Chemists	
methods	(AOAC,	2003). The phenol- sulfuric acid assay was used to 
determine soluble carbohydrate content (Dubois et al., 1956).

2.3.1  |  Fatty	acid	profile

Fatty	acid	methyl	esters	(FAMEs)	compositions	of	PG	were	deter-
mined	according	to	the	method	of	Uluata	et	al.	(2021).	The	FAMEs	
were	 analyzed	 using	 an	 Agilent	 7820A	 (Agilent	 Technologies	
Inc.) gas chromatography equipped with a capillary column 
(30 m × 0.25 mm	 i.d.,	 0.25 μm;	Agilent	 112-	8837),	 a	 flame	 ioniza-
tion detector (FID), and a 16- sample automatic liquid sampler. The 
injector and detector temperatures were maintained at 250°C and 
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280°C, respectively. The injection volume was 1 μl. The carrier gas 
hydrogen	 flow	 rate	was	40 ml/min,	 and	 the	 split	 ratio	was	1/50.	
The	retention	time	of	each	FAME	was	compared	against	the	stand-
ard	mixture	of	FAMEs	to	identify	the	FAME's	composition	of	the	
sample. Fatty acid composition results were expressed as a weight 
percentage.

2.3.2  |  Carbohydrates	profile

Carbohydrate profile analysis of PG was carried out according to the 
method of Pfetzing et al. (2000) with slight modifications. Mannitol, 
myo- inositol, and simple carbohydrates were quantified in PG 
using	high-	performance	anion-	exchange	chromatography	(HPAEC).	
Briefly, 10 mg of PG was mixed with 3- ml ultra- pure water (Millipore 
Milli- Q®) to extract sugars from G. dura.	After	shaking	the	suspen-
sion for 4 h at 80°C, aliquots of the supernatant were taken and kept 
at	−18°C	 for	 subsequent	analysis.	A	Dionex	 ICS-	5000	chromatog-
raphy	system	with	a	PA-	200	column	and	a	guard	column	was	used	
to	perform	HPAEC	 (Dionex	Corporation).	A	gradient	of	Solution	A	
(600 mM	NaOH)	and	Solution	B	 (100 mM	NaAc	 in	600 mM	NaOH	
solution) was used as mobile phases. The simple sugars of PG were 
separated	using	a	binary	gradient	method:	0%	B	for	3	min,	12%	B	for	
15 min,	0%	B	again	in	12 min,	and	so	on	for	a	total	of	30 min,	with	a	
flow	rate	of	0.40 ml/min	and	the	temperature	of	25°C.	For	detection,	
an electrochemical ED40 detector in integrated amperometric mode 
was used.

2.3.3  | Mineral	profile

The PG, which was subjected to microwave digestion and filtered, 
was taken to the stage of determination of heavy metal contents 
in the inductively coupled plasma mass spectrometry (ICP- MS). 
For this purpose, first, blank and standard solutions were prepared 
in	order	to	draw	a	calibration	curve.	Then,	2%	HNO3 solution, pre-
pared	from	65%	HNO3 (Suprapure) with ultrapure water, was used 
as	blank.	Afterward,	standard	concentrations	ranged	from	1	ppb	
to	 200 ppb	 were	 prepared	 from	 10 ppm	 pure	 standard	 that	 has	
equal concentrations of heavy metals, and the calibration curve 
was	 drawn	 by	 analyzing	 these	 standards	 (Ahamad	 et	 al.,	 2017; 
Pilarczyk et al., 2013).

2.4  |  Protein solubility

The protein solubility assay of PG was carried out according to 
the method of Morr et al. (1985). Briefly, 1 g of PG was mixed 
with	50 ml	of	0.1	N	NaCl	solution	and	the	pH	of	the	mixture	was	
adjusted to the desired value ranging from 2 to 13 (with a 1.0 
interval) using 0.1 N HCl and 0.1 N NaOH. The suspension was 
centrifuged at 3000× g for 10 min at 15°C. Following centrifuga-
tion, PC in the supernatant was determined by the Lowry method 

(Lowry et al., 1951).	The	protein	solubility	(%)	of	PG	was	calculated	
using the following Equation (1):

2.5  |  Zeta (ζ ) potential

The ζ- potential was measured as a function of pH (2.0– 13.0, with a 1.0 
interval) using a Nano- ZS (Zetasizer NanoZS90, Malvern Instruments). 
Briefly, 1 g of PG was prepared with distilled water and its pH was 
adjusted to the desired value using 0.1 N HCl and/or 0.1 N NaOH 
solutions. The ζ- potential was determined by measuring the direction 
and velocity of the droplets moving in the electric field applied. The 
Smoluchowski mathematical model was used by a software (Maplesoft) 
to convert the electrophoretic mobility measurements into ζ- potential 
values.	All	measurements	were	made	from	two	freshly	prepared	sam-
ples and were carried out with three readings per sample.

2.6  |  Ultrasound- assisted enzymatic 
protein extraction

In the extraction of proteins from G. dura, the combinations of 
ultrasound pretreatment and addition of a carbohydrase enzyme 
were performed according to the methods of Naseri et al. (2020) 
and Mæhre et al. (2016) with some modifications. Briefly, 0.5 g of 
PG	was	mixed	with	50 ml	of	citrate	buffer	solution	(0.1	N,	pH	4.5)	
and	sonicated	at	a	constant	frequency	of	53 kHz	and	65%	ampli-
tude during the experimental design periods using an ultrasound 
homogenizer	(Sonopuls	HD	2200,	Bandelin	Electronic	GmbH	&	Co.	
KG).	After	sonication,	the	hemicellulase	enzyme	was	added	to	the	
samples and kept in a shaking water bath (N- Biotek- 303, Biotek 
Co., Ltd.) at 55× g and 35°C during the extraction time according 
to the experimental design (Table 1).	At	the	end	of	extraction,	 it	
was kept in the water bath at 85°C for 10 min for enzyme inacti-
vation. Then, the pH of the mixture was adjusted to the pH value 
where protein solubility of G. dura	was	the	highest.	Afterward,	the	
samples were subjected to the second extraction by keeping them 
in the shaking water bath at 35°C for a certain period. Finally, the 
samples were centrifuged at 3000× g	 for	15 min	at	4°C,	 and	 the	
supernatant (or protein extracts from PG) was taken and kept in 
the	dark	at	−20°C	until	further	analysis.

2.7  |  Determination of protein content and 
extraction efficiency

The protein content of protein extracts from PG (PEPG) was deter-
mined	using	the	modified	Lowry	method	(TCA-	Lowry)	which	includes	
the	precipitation	of	the	proteins	from	the	samples	with	TCA	to	remove	
potential interfering substances (Moein et al., 2015). First, 1 ml of 
PEPG	was	added	to	3	ml	of	25%	TCA	solution	and	kept	in	the	shaking	

(1)
Protein solubility%=

Protein content of supernatant(mg∕ml)×50

Weight of sample(mg)×(protein content of sample(%)∕100)
×100
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water bath at 55× g	for	30 min	at	4°C.	Afterward,	the	supernatant	was	
removed by centrifugation at 3000× g	 for	 20 min.	 The	 process	was	
repeated	sequentially	by	adding	10%	TCA	and	5%	TCA	solutions	 to	
the pellets. Finally, 2 ml of 0.1 N NaOH solution was added to the 
remaining precipitate and the protein content of the extracts was 
measured spectrophotometrically according to the method of Lowry 
et al. (1951). Bovine serum albumin was used as the standard protein 
and protein content was expressed as mg/g in dry weight (dw).

The extraction efficiency was calculated using the following 
Equation (2)

2.8  |  Total phenolic content

The TPC of PEPG was determined according to Folin– Ciocalteu's 
method	 (Toor	&	 Savage,	2006).	 Briefly,	 200 μl of PEPG, 1.5 ml of 
Folin– Ciocalteu's reagent:H2O (1:10, v/v), and 1.2 ml of aqueous 
7.5%	Na2CO3 were mixed and allowed to stand at room tempera-
ture	in	the	dark	for	90 min.	The	absorbance	was	read	at	765 nm	using	
an	 ultraviolet–	visible	 spectrophotometer	 (Scilogex	 Sci-	UV1000	
Spectrophotometer, Scilogex). Gallic acid was used as standard and 
TPC was calculated using a linear equation from the calibrated curve. 
The	results	were	expressed	as	mg	gallic	acid	equivalent	(GAE)/g	dw.

2.9  |  Antioxidant activity

2.9.1  |  The	cupric	reducing	antioxidant	
capacity method

The	cupric	reducing	antioxidant	capacity	(CUPRAC)	assay	was	per-
formed	according	to	the	method	of	Apak	et	al.	(2005).	Briefly,100 μl 
of PEPG was mixed with 1 ml each of 10−2 N copper (II) chloride so-
lution,	7.5 × 10−3 N neocuproine solution, ammonium acetate buffer 
solution	 (pH	7.0),	and	distilled	water.	After	30 min	of	 incubation	at	

room temperature, the absorbance of the mixture was measured at 
450 nm	using	the	UV	spectrophotometer.	Results	were	expressed	as	
milligrams mg Trolox equivalent (TE)/g dw.

2.9.2  |  2,2-	azinobis	3-	ethylbenzothiazoline-	6-	
sulfonic acid diammonium salt method

2,2- azinobis 3- ethylbenzothiazoline- 6- sulfonic acid diammonium 
salt	 (ABTS)	 assay	 was	 performed	 according	 to	 Miller	 and	 Rice-	
Evans (1997).	The	ABTS	stock	solution	was	prepared	with	ABTS	and	

(2)Extraction efficiency% =
(The protein content of the extract after extraction) × (The content of extract after extraction)

(The content of macroalgal protein before extraction) × (The content of macroalgae before extraction)
× 100

TA B L E  1 Box–	Behnken	experimental	design	with	natural	and	coded	extraction	conditions	and	experimentally	obtained	values	of	all	
investigated responses

Run

Independent variables Responses

A: ultrasonic 
applying time (s)

B: enzyme/
substrate ratio

C: 
extraction 
time (h)

PC (mg protein/g 
extract, dw)

TPC (mg GAE/g 
extract, dw)

AOACUPRAC (mg 
TE/g extract, dw)

AOAABTS (mg TE/g 
extract, dw)

1 30 −1 0.5 −1 24 0 3.46 19.24 19.43 284.53

2 30 −1 1.5 0 20 −1 84.83 41.06 34.52 398.29

3 165 0 2.5 1 20 −1 163.54 63.70 59.43 417.48

4 300 1 2.5 1 24 0 212.57 57.96 37.45 455.88

5 300 1 1.5 0 28 1 53.31 62.72 49.38 397.58

6 165 0 2.5 1 28 1 110.06 69.45 56.70 478.63

7 165 0 1.5 0 24 0 107.72 40.21 29.35 401.84

8 165 0 1.5 0 24 0 102.16 41.24 31.62 583.85

9 300 1 0.5 −1 24 0 0.51 16.69 11.38 479.34

10 30 −1 1.5 0 28 1 82.07 35.44 40.01 414.64

11 300 1 1.5 0 20 −1 51.73 47.34 72.86 695.47

12 165 0 1.5 0 24 0 101.20 102.57 50.00 434.35

13 165 0 0.5 −1 20 −1 4.86 19.53 25.12 475.47

14 165 0 1.5 0 24 0 128.30 37.10 33.97 512.25

15 30 −1 2.5 1 24 0 160.91 87.73 116.94 432.91

16 165 0 1.5 0 24 0 92.13 40.20 66.62 538.94

17 165 0 0.5 −1 28 1 13.69 20.08 30.41 406.94

Abbreviations:	ABTS,	2,2-	azinobis	3-	ethylbenzothiazoline-	6-	sulfonic	acid	diammonium	salt;	AOA,	antioxidant	activity;	CUPRAC,	cupric	reducing	
antioxidant capacity; PC, protein content; TPC, total phenolic content.

 17454549, 2022, 8, D
ow

nloaded from
 https://ifst.onlinelibrary.w

iley.com
/doi/10.1111/jfpp.16803 by Istanbul G

elisim
 U

niversitesi, W
iley O

nline L
ibrary on [30/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 16BOZDEMIR et al.

potassium persulfate solutions and kept at room temperature in the 
dark	overnight.	The	ABTS	stock	solution	was	diluted	in	50 mM	po-
tassium phosphate buffer (pH 8.0) to an absorbance of 0.90 (±0.05) 
at	 734 nm	 to	 prepare	 the	 ABTS-	working	 solution.	 Then,	 100 μl of 
PEPG was mixed with 1 μl	 of	ABTS-	working	 solution	 and	 the	 ab-
sorbance	was	measured	at	734 nm	exactly	1	min	after	initial	mixing.	
Results were expressed as mg TE/g dw.

2.10  |  Techno- functional properties

2.10.1  | Water	absorption	capacity

Water	absorption	capacity	 (WAC)	was	performed	using	 the	method	
of Kumar et al. (2014). Briefly, 0.1 g of PEPG obtained under optimum 
extraction conditions was diluted with 10 ml distilled water and mixed 
for	30 s	by	a	vortex	mixer.	The	mixture	was	held	at	room	temperature	
for	30 min	and	centrifuged	at	3000× g	for	20 min.	The	supernatant	was	
removed and the centrifuge tube containing sediment was weighed. 
The	WAC	was	calculated	using	the	following	Equation (3):

where W0 is the weight of PEPG (g), W1 is the weight of the tube con-
taining PEPG (g), W2 is the weight of the tube after decantation of 
water (g).

2.10.2  |  Oil	absorption	capacity

Oil	 absorption	 capacity	 (OAC)	 was	 employed	 according	 to	 the	
method of Kumar et al. (2014). Briefly, 1.0 g of PEPG obtained under 
optimum extraction conditions was dispersed in 5 ml of sunflower 
oil and centrifuged at 3000× g	for	20 min,	the	supernatant	was	dis-
charged	and	the	tubes	were	weighed.	The	OAC	was	calculated	using	
the following Equation (4):

where O0 is the weight of PEPG (g), O1 is the weight of the tube con-
taining PEPG (g) and O2 weight of the tube after decantation of oil (g).

2.10.3  |  Emulsifying	activity	and	stability

Emulsifying	 activity	 (EA)	 and	 emulsifying	 stability	 (ES)	 were	 de-
termined using the method of Tan et al. (2014). Briefly, 0.1 g of 
PEPG obtained under optimum extraction conditions was diluted 
with 10 ml of distilled water and homogenized for 2 min at room 
temperature	 using	 a	 hand-	held	 homogenizer	 (MT-	30K	 MIULAB	
Handheld	Homogenizer,	Hangzhou	Miu	Instruments	Co.	Ltd.).	After	

the homogenization, 10 ml of olive oil was added to the mixture and 
homogenized	 again	 under	 the	 same	 conditions.	At	 the	 end	of	 the	
time, the mixture was centrifuged at 1200× g for 5 min. The height 
of the emulsion layer was recorded and the emulsion activity of the 
emulsion sample was calculated using the following Equation (5):

For the determination of ES, the samples were heated at 80°C for 
30 min,	then	centrifuged	at	1200× g for 5 min. The ES of the samples 
was calculated using the following Equation (6):

2.10.4  |  Foaming	capacity	and	stability

Foaming capacity (FC) and foaming stability (FS) assays of PEPG ex-
tracted under optimum extraction conditions were carried out ac-
cording to the method of Jarpa- Parra et al. (2014).	Briefly,	0.02 mg	of	
PEPG extracted under optimum extraction conditions was added to 
20 ml	of	distilled	water	and	whipped	for	2	min	using	the	handheld	ho-
mogenizer. The FC was calculated using the following Equation (7):

After	the	homogenization,	the	mixture	was	held	at	room	temperature	
for	30 min.	The	FS	was	calculated	using	the	following	Equation (8):

2.10.5  |  Fourier	transform	infrared	spectroscopy

Organic groups in PEPG obtained under optimum extraction con-
ditions were characterized using the FT- IR spectroscopy technique 
(Bruker	 Tensor	 II	 FTIR	 spectrometer	 equipped	 with	 the	 ATR	 dia-
mond	module	(Bruker	Optics).	All	the	spectra	were	an	average	of	18	
scans	from	4000	to	400 cm−1 at a resolution of 4 cm−1.

2.11  |  Experimental design and statistical analysis

Response surface methodology based on Box– Behnken Design 
(BBD) was used for the optimization of extraction conditions. The 
independent	variables	were	ultrasonic	applying	time	(30–	300 s),	E/S	
ratio	 (0.5–	2.5),	 and	extraction	 time	 (20–	28 h;	Table 1). The experi-
mental design consists of 17 experimental runs, including 12 facto-
rial points and five replicates at central points.

The response variables were fitted to a second- order polyno-
mial model to obtain the regression coefficients (β). The generalized 

(3)WAC(%) =
W2 −W1

W0

× 100

(4)OAC(%) =
O2 − O1

O0

× 100

(5)EA(%) =
Height of emulsified layer

Height of contents of tube
× 100

(6)ES(%) =
Height of remaining emulsified layer

Height of original emulsified layer
× 100

(7)
FC(%) =

Volume after whipping(ml) − Volume before whipping(ml)

Volume before whipping(ml)
× 100

(8)

FS(%) =
Volume after standing(ml) − Volume before whipping(ml)

Volume before whipping(ml)
× 100
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6 of 16  |     BOZDEMIR et al.

second- order polynomial model was used in the response surface 
analysis using the following Equation (9):

 The regression coefficient is defined as �0 for constant, � i for linear, 
� ii for quadratic, and � ij for interaction effect term. The analysis of 
variance	 (ANOVA)	 was	 performed	 to	 determine	 regression	 coeffi-
cients and statistical significance, as well as to evaluate model appro-
priateness. Statistical analysis was performed using Design Expert 7.1 
software (Stat- Ease, Inc.). The results were statistically tested at the 
significance level of p = 0.05. The coefficient of determination (R2) and 
model	weakness	were	used	to	assess	the	model's	suitability.	A	math-
ematical model was obtained to describe the influence of the single 
process parameter and/or interaction of multiple parameters on each 
investigated response.

Experimental	data	were	expressed	as	mean ± standard	deviation	
(SD). Statistical analysis was performed on data using a statistical 
package (Minitab, Version 17, Minitab Inc.). The differences between 
mean values were compared using the Tukey test. Differences at 
p ≤ 0.05	were	considered	to	be	significant.

3  |  RESULTS AND DISCUSSION

3.1  |  Proximate composition and profiles of fatty 
acid, carbohydrates, and minerals of PG

The proximate composition of PG was given in Table 2. The pro-
tein	 content	 of	 PG	was	 determined	 as	 11.97 ± 0.05%.	 Similar	 to	
in the present study, the protein content of some Gracilaria spe-
cies	ranged	from	5.6%	to	30.2%	(Chan	&	Matanjun,	2017; Gressler 
et al., 2010; Rodrigues et al., 2015; Valente et al., 2006). Soluble 
carbohydrate	and	crude	fiber	contents	of	PG	were	46.78 ± 5.09%	
and	16.77 ± 1.14%,	respectively	(Table 2). Similarly, total carbohy-
drate	content	was	found	to	be	46.6%	for	G. gracilis,	43.2%	for	G. 
turuturu by Rodrigues et al. (2015),	and	41.52%	for	G. changii by 
Chan and Matanjun (2017).	According	to	Xu	et	al.	(2015), carbohy-
drate content of Gracilaria	species	changed	between	15%	and	63%.	
On the contrary, Tabarsa et al. (2012) reported that the crude fiber 
of G. salicornia	was	10.4 ± 0.89%.	 In	 the	present	 study,	 the	solu-
ble carbohydrate profile of PG was determined as myo- inositol 
(1379.35 ± 214.57 mg/kg	 dw)	 and	 fructose	 (216.84 ± 66 mg/kg	
dw). However, glucose, saccharose, and mannitol were not de-
tected in the present study (Table 2).

In	 the	 study,	 the	 lipid	 content	 of	 PG	 (0.32 ± 0.06%,	 Table 2) 
was found to be similar to G. gracilis	(0.60%)	and	G. turuturu	(2.2%;	
Rodrigues et al., 2015). On the contrary, the lipid content of some 
Gracilaria	 species	 varied	 from	0.7%	 to	2.8%	 (Gressler	 et	 al.,	2010; 
McDermid	 &	 Stuercke,	 2003).	 According	 to	 literature,	 macroal-
gae	had	 low	 lipid	 content	 (less	 than	4%;	Manivannan	et	 al.,	2008; 
McDermid	&	Stuercke,	2003). In the present study, saturated fatty 
acids	 in	PG	were	 capric	 acid	 (decanoic	 acid)	C10:0	 (2.77 ± 0.22%),	

lauric	 acid	 (dodecanoic	 acid)	 C12:0	 (0.84 ± 0.00%),	 myristic	 acid	
C14:0	 (11.34 ± 0.29%),	 palmitic	 acid	 C16:0	 (69.73 ± 0.53%),	 stearic	
acid	C18:0	(3.88 ± 0.44%;	Table 2). The major fatty acid in PG was pal-
mitic	acid	C16:0	(69.73 ± 0.53%).	According	to	literature,	palmitic	acid	
is the most abundant fatty acid in Gracilaria species (Khotimchenko 
et al., 2002; Wen et al., 2006). Similarly, Gressler et al. (2010) stated 
that palmitic acid was found to be the major acid in G. domingen-
sis	(65.4%)	and	G. birdiae	(56.9%).	Moreover,	Rodrigues	et	al.	(2015) 

(9)
Y =�0+�1X1+�2X2+�3X3+�11X1

2+�22X2
2+�33X3

2+

�12X1X2+�13X1X3+�23X2X3+ϵ�r2

TA B L E  2 Proximate	composition	of	Gracilaria dura in wet and dry 
weight.	Data	were	given	as	mean	values ± standard	deviation	(n = 3)

Wet weight, % Dry weight, %

Carbohydrate 43.28 ± 4.71 46.78 ± 5.09

Protein 11.07 ± 0.05 11.97 ± 0.05

Lipid 0.29 ± 0.06 0.32 ± 0.06

Moisture 7.50 ± 0.50

Crude fiber 15.52 ± 1.06 16.77 ± 1.14

Total ash 22.43 ± 0.50 24.15 ± 0.50

Fatty	acid	profile	(%)

C10 2.56 ± 0.20 2.77 ± 0.22

C12 0.78 ± 0.00 0.84 ± 0.00

C14 10.49 ± 0.27 11.34 ± 0.29

C15- 1 0.98 ± 0.15 1.06 ± 0.16

C16 64.05 ± 0.49 69.73 ± 0.53

C16- 1 5.48 ± 0.47 5.92 ± 0.51

C18 3.59 ± 0.415 3.88 ± 0.44

C18- 1 cis 9.66 ± 0.08 10.44 ± 0.08

C18- 2 cis 1.12 ± 0.36 1.21 ± 0.38

C18- 3n6 1.52 ± 0.00 1.64 ± 0.00

Soluble carbohydrate profile (mg/kg)

Myo- inositol 1275.90 ± 198.48 1379.35 ± 214.57

Mannitol n.d. n.d.

Glucose n.d. n.d.

Fructose 200.58 ± 61.05 216.84 ± 66

Saccharose n.d. n.d.

Mineral profile (μg/kg)

Al 588.92 ± 7.63 636.67 ± 8.24

Mn 102.79 ± 0.99 111.12 ± 1.07

Fe 740.35 ± 8.78 800.37 ± 9.49

Ni 3.39 ± 0.05 3.66 ± 0.05

Cu 5.04 ± 0.14 5.45 ± 0.15

Zn 19.4 ± 0.34 20.97 ± 0.36

Se 0.91 ± 0.01 0.98 ± 0.01

Ag 4.18 ± 0.07 4.52 ± 0.07

Cd 0.04 ± 0.00 0.04 ± 0.00

Pb 1.04 ± 0.02 1.12 ± 0.02

Mg 2594.4 ± 30.06 2804.75 ± 32.50

K 7193.8 ± 67.90 7777.08 ± 73.40

Abbreviation:	n.d.,	not	detected.
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    |  7 of 16BOZDEMIR et al.

reported that the most abundant fatty acid in G. gracilis	 (52.54%)	
and G. turuturu	(35.88%)	was	palmitic	acid.	Unsaturated	fatty	acids	
in	 PG	 were	 pentadecenoic	 acid	 C15:1	 (1.06 ± 0.16%),	 palmitoleic	
acid	C16:1	 (5.92 ± 0.51%),	oleic	acid	C18:1	cis	 (ω-	9,	10.44 ± 0.08%),	
linoleic acid C18:2 cis (ω-	6,	1.21 ± 0.38%),	γ- linolenic acid C18:3n6 
(1.64 ± 0.00%;	Table 2). Similarly, Gracilaria species had unsaturated 
fatty	 acids	 such	 as	 C16:1	 (0.01 ± 0.0%),	 C18:1	 (0.05 ± 0.0%),	 and	
C18:2	(0.01 ± 0.0%;	Gressler	et	al.,	2010).

The	total	ash	content	of	PG	was	calculated	as	24.15%	in	dw.	In	the	
literature, the ash content of Gracilaria	species	ranged	from	22.7%	to	
53.4%	(Gressler	et	al.,	2010;	Norziah	&	Ching,	2000). In addition to, 
the	mineral	profile	of	PG	composed	of	Al	(636.67 ± 8.24 μg/kg), Mn 
(111.12 ± 1.07 μg/kg),	 Fe	 (800.37 ± 9.49 μg/kg),	 Ni	 (3.66 ± 0.05 μg/
kg),	Cu	(5.45 ± 0.15 μg/kg),	Zn	(20.97 ± 0.36 μg/kg),	Se	(0.98 ± 0.01 μg/
kg),	Ag	(4.52 ± 0.07 μg/kg),	Cd	(0.04 ± 0.00 μg/kg),	Pb	(1.12 ± 0.02 μg/
kg),	Mg	(2804.75 ± 32.50 μg/kg),	K	(7777.08 ± 73.40 μg/kg; Table 2). 
Tabarsa et al. (2012) indicated that potassium was the most abun-
dant essential element in red macroalgae and was found to be 
11,380.06 ± 73.45 μg/kg dw in G. salicornia. In the present study, the 
obtained data about the chemical composition of G. dura is generally 
closed to previous studies as explained in detail above. However, the 
chemical composition of macroalgae may change depending on the 
species,	seasons,	and	habitat	(Bilgin	&	Ertan,	2002).

3.2  |  Protein solubility and zeta potential

In this study, the effect of pH on net surface charges (zeta poten-
tial) and protein solubility of PG was investigated based on the zeta 
potential measurements (Figure 1).	 As	 seen	 in	 Figure 1, the zeta 
potential	 was	 found	 to	 range	 from	 −8.41 ± 0.71 mV	 at	 pH	 6.0	 to	
−20.73 ± 0.38 mV	 at	 pH 12.0.	 All	 zeta	 potential	 values	 of	 PG	were	
found to be as negative because of the negative charges of polysac-
charides in the extracts (Evans et al., 2013). In contrast, the cell wall 
of macroalgae is a double- layered structure composed of lipids and 
proteins. Proteins make up a small part of the structure while phos-
pholipids make up the majority. Phosphate groups on the outside of 

phospholipids can become negatively charged in seawater and these 
negative groups can interact with other positive groups. However, 
the negative charges can be much more numerous and affect the 
surface charge (Rosenhahn et al., 2009).

Protein solubility is correlated with surface charge and pH value. 
The	minimum	 solubility	 (18.87 ± 0.37%)	 of	Gracilaria dura proteins 
occurred	at	pH 4.0.	Similarly,	Böcker	et	al.	(2021) obtained the low-
est nitrogen solubility of Arthrospira platensis	at	pH 3.5.	In	the	pres-
ent work, the maximum solubility of Gracilaria dura was found as 
58.53 ± 4.26%	at	pH 13.0.	Likewise,	Guil-	Guerrero	et	al.	 (2004) re-
ported that the highest nitrogen solubility for Phaeodactylum tricor-
nutum	was	found	to	be	75%	at	pH 12.	On	the	contrary,	it	was	20%	at	
pH 12	for	Porphyridium cruentum due to the presence of a cell wall.

3.3  |  Model fitting

The	PC,	TPC,	and	AOA	were	determined	as	functions	of	linear,	quad-
ratic, and interaction terms of the independent variables including 
the ratio of E/S, ultrasonic applying time, and extraction time using 
BBD (Table 1).	Analysis	of	variance	and	coefficients	of	the	model	(R2) 
for each dependent variable are indicated in Table 3.

The R2 values were 0.93, 0.60, 0.61, and 0.74 for PC, TPC, 
AOACUPRAC,	 and	 AOAABTS, respectively (Table 3). Except for PC 
(>0.80),	TPC,	AOACUPRAC,	 and	AOAABTS have low R2 for the mod-
els. The high values of R2 indicated the fit of the model (Moorthy 
et al., 2015). The variation coefficient (CV) of the model can be low 
as an indication of good reproducibility of the investigated systems. 
However,	except	AOAABTS (CV =	15.15%);	PC	(CV	=	28.04%),	TPC	
(CV =	49.19%),	and	AOACUPRAC (CV =	52.01%)	showed	high	variation	
in their mean values. The lack of fit was not significant for PC, TPC, 
AOACUPRAC,	 and	 AOAABTS (p > 0.05).	 These	 results	 demonstrated	
that the model for protein content (p = 0.0028) can be used to opti-
mize the extraction parameters for the extraction of proteins from 
Gracilaria dura.

The	 linear	 effect	 of	 E/S	on	PC,	 TPC,	 and	AOACUPRAC was sta-
tistically significant (p < 0.05).	 Especially,	 its	 effect	 on	 PC	was	 ex-
tremely significant (p < 0.0001;	 Table 3). Conversely, ultrasonic 
applying time and extraction time had no significant effects on PC, 
TPC,	AOACUPRAC,	and	AOAABTS. However, the quadratic effect of ex-
traction time on PC was significant (p < 0.05).

3.4  |  Protein content of the extracts

As	 seen	 in	Table 1,	 the	 highest	 PC	was	 obtained	 as	 212.57 mg/g	
under the applied extraction conditions (ultrasonic applying time of 
165 s,	 E/S	of	2.5,	 and	extraction	 time	of	20 h).	 The	 interaction	ef-
fect of E/S and ultrasonic applying time at constant extraction time 
(24 h),	 is	 shown	 in	Figure 2a. The graph plot revealed that protein 
content of PEPG increased under the experimental conditions of 
ultrasonic applying time of upper ~98	 to	 300 s	 and	 E/S	 of	 ~2.20 
(Figure 2a). The linear effect of E/S on PC was statistically significant 

F I G U R E  1 Effect	of	pH	on	zeta	potential	(mV)	and	protein	
solubility of protein extract from Gracilaria dura.
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8 of 16  |     BOZDEMIR et al.

TA B L E  3 Analysis	of	variance	(ANOVA)	of	the	fitted	second-	order	polynomial	model

Source Sum of squares DF Mean square F- value p- value

PC

Model 55070.80 9 6118.98 10.36 0.0028*

Linear

β1 21.66 1 21.66 0.037 0.8535

β2 48761.86 1 48761.86 82.59 <0.0001*

β3 262.60 1 262.60 0.44 0.5262

Quadratic

β11 303.94 1 303.94 0.51 0.4963

β22 49.96 1 49.96 0.085 0.7796

β33 3743.94 1 3743.94 6.34 0.0399*

Interaction

β12 745.80 1 745.80 1.26 0.2981

β13 4.71 1 4.71 7.975E−003 0.9313

β23 970.88 1 970.88 1.64 0.2406

Residual 4133.08 7 590.44 — — 

Lack of fit 3402.82 3 1134.27 6.21 0.0550

Pure error 730.26 4 182.56 — — 

Cor total 59203.88 16 — — — 

R2 = 0.93; CV 
(%)	= 28.04

TPC

Model 5708.21 9 634.25 1.18 0.4212

Linear

β1 0.19 1 0.19 3.5639 0.9855

β2 5166.68 1 5166.68 65 0.0172*

β3 32.25 1 32.25 0.060 0.8132

Quadratic

β11 12.25 1 12.25 0.0230 0.8841

β22 111.93 1 111.93 21 0.6614

β33 64.74 1 64.74 0.12 0.7383

Interaction

β12 185.25 1 185.25 0.35 0.5749

β13 110.26 1 110.26 0.21 0.6638

β23 6.75 1 6.75 0.013 0.9138

Residual 3749.35 7 535.62 — — 

Lack of fit 576.90 3 192.30 0.24 0.8630

Pure error 3172.46 4 793.11 — — 

Cor total 9457.56 16 — — — 

R2 =	0.60;	CV	(%)	= 49.19

AOACUPRAC
Model 6101.17 9 677.91 1.24 0.3985

Linear

β1 198.32 1 198.32 0.36 0.5665

β2 4240.62 1 4240.62 7.74 0.0272*

β3 29.77 1 29.77 0.054 0.8224
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    |  9 of 16BOZDEMIR et al.

(p < 0.05;	Table 1). This might be because the algal cell wall was de-
stroyed by the used enzyme, thus more protein was released into 
the solvent medium. Similarly, Joubert and Fleurence (2008) inves-
tigated the effect of xylanase and cellulase enzymes and also en-
zyme concentration on the protein content of Palmaria palmata and 
reported that protein content increased as the amount of enzyme 
increased. Likewise, Harnedy and FitzGerald (2013) reported that 
the utilization of polysaccharidase to break down cell wall caused 
an increase in the extraction efficiency of proteins from macroalgae. 
Furthermore, Suwal et al. (2019) reported that the cellulase enzyme 
used	in	extraction	increased	the	protein	content	by	17%	in	Solieria 
chordalis.	According	to	Table 3, the quadratic effect of the extraction 

time was significant (p < 0.05).	Similar	results	(73.6 ± 1.2%)	were	ob-
tained	where	the	extraction	time	was	increased	from	2	to	18 h	for	
ultrasound- assisted extraction of Chlorella vulgaris and the longer ex-
traction time increased the extraction yield (Hildebrand et al., 2020).

3.5  |  Total phenolic content and 
antioxidant activity

The	 TPC	 of	 PEPG	 ranged	 from	 16.69 mg	 GAE/g	 to	 102.57 mg	
GAE/g	under	 the	 extraction	 conditions	 given	 in	Table 1. Similarly, 
Nursid et al. (2020)	obtained	TPC	as	23.37 mg	GAE/g	for	Gracillaria 

Source Sum of squares DF Mean square F- value p- value

Quadratic

β11 110.87 1 110.87 0.20 0.6665

β22 5.48 1 5.48 9.997E−003 0.9232

β33 12.86 1 12.86 0.023 0.8826

Interaction

β12 1276.09 1 1276.09 2.33 0.1709

β13 209.80 1 209.80 0.38 0.5557

β23 16.07 1 16.07 0.029 0.8689

Residual 3836.85 7 548.12 — — 

Lack of fit 2834.79 3 944.93 3.77 0.1161

Pure error 1002.06 4 250.52 — — 

Cor total 9938.02 16

R2 = 0.61; CV 
(%)	= 52.01

AOAABTS
Model 96761.92 9 10751.32 2.22 0.1529

Linear

β1 30987.54 1 30987.54 6.40 0.0393*

β2 2401.84 1 2401.84 0.50 0.5041*

β3 10434.58 1 10434.58 2.15 0.1856

Quadratic

β11 2550.03 1 2550.03 0.53 0.4916

β22 13428.48 1 13428.48 2.77 0.1398

β33 197.95 1 197.95 0.041 0.8455

Interaction

β12 7382.36 1 7382.36 1.52 0.2568

β13 24688.33 1 24688.33 5.10 0.0585

β23 4203.26 1 4203.26 0.87 0.3826

Residual 33904.47 7 4843.50 — — 

Lack of fit 11428.12 3 3809.37 0.68 0.6097

Pure error 22476.35 4 5619.09 — — 

Cor total 1.307E+005 16

R2 =	0.74;	CV	(%)	= 15.15

Abbreviations:	β1, ultrasonic applying time (s); β2, enzyme/substrate ratio; β3,	extraction	time	(h);	ABTS,	2,2-	azinobis	3-	ethylbenzothiazoline-	6-	sulfonic	
acid	diammonium	salt;	AOA,	antioxidant	activity;	CUPRAC,	cupric	reducing	antioxidant	capacity;	PC,	protein	content;	TPC,	total	phenolic	content.
*Significant at p ≤ 0.05.

TA B L E  3 (Continued)
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10 of 16  |     BOZDEMIR et al.

salicornia,	 24.97 mg	 GAE/g	 for	 Laurencia sp.,	 and	 24.38 mg	 GAE/g	
for Gelidium latifolium. In contrast, Neto et al. (2018) determined 
the TPC of Gracilaria	sp.	as	5.9 ± 0.03 mg	GAE/g.	Additionally,	Yildiz	
et al. (2011) determined TPC of Gracilaria bursa- pastoris	as	0.35 mg	
GAE/g	and	Zhang	et	al.	(2007) stated that the TPC of Gracilaria gra-
cilis	as	0.10 mg	GAE/g.

The	 AOACUPRAC	 and	 AOAABTS	 of	 PEPG	 ranged	 from	 11.15 mg	
TE/g	to	102.48 mg	TE/g	and	from	284.53 mg	TE/g	to	695.47 mg	TE/g	
under the extraction conditions given in Table 1.	Yuan	et	al.	(2018) re-
ported	the	highest	AOAABTS for Lessonia nigrecens	as	0.95 ± 0.01 mg	
TE/g	dw.	The	AOAFRAP	 (AOA-	ferric	reducing	antioxidant	power)	of	
Gracilaria gracilis and Laminaria digitata	 was	 found	 to	 be	 6.26 mg	
TE/g	and	3.99 mg	TE/g,	respectively	(Heffernan	et	al.,	2015). Kumar 
et al. (2020)	obtained	AOAFRAP	as	8.21 mg	TE/g	for	Sargassum wightii, 
6.90 mg	TE/g	for	Ulva rigida,	and	1.06 mg	TE/g	for	Gracilaria edulis. 
Nursid et al. (2020) reported that these differences in polyphenol 
content and antioxidant activity may be caused by following the sea-
son in which macroalgae were collected, harvest time, geographical 
location, and algae species.

The	linear	effect	of	E/S	on	TPC	and	AOACUPRAC of PEPG and the 
linear	effect	of	the	ultrasonic	applying	time	on	AOAABTS were statis-
tically significant (Table 3, p < 0.05).	Likewise,	Kadam	et	al.	(2015) re-
ported that ultrasound- assisted extraction increased the extraction 
of	phenolic	compounds.	Similar	to	TPC,	the	AOA	of	PEPG	increased	
with an increase in enzyme amount since polyphenolics have high 
antioxidant activity (p < 0.05;	 Ozdal	 et	 al.,	2013). Like PC, the ef-
fect of E/S was found to be high on TPC (p < 0.05),	 because	phe-
nolic	compounds	are	covalently	bound	to	proteins	(Acosta-	Estrada	
et al., 2014). Wijesinghe and Jeon (2012) stated that enzyme- 
assisted degradation of cell wall polysaccharides increases the re-
lease of phenolic compounds. Moreover, the total phenolic content 
of PEPG increased under the experimental conditions of E/S of ~1.5 
(Figure 2b). On the contrary, as seen in Figure 2c,	 AOACUPRAC of 
PEPG increased at E/S of ~2.2 to 2.5 and ultrasonic applying time of 
30–	60 s	with	constant	extraction	 time	 (24 h).	 In	addition,	AOAABTS 
of PEPG was the highest when ultrasonic applying time of ~235 to 
300 s,	and	extraction	time	of	~20	to	22 h	at	constant	E/S	(1.5)	were	
applied (Figure 2d).

F I G U R E  2 The	interaction	effects	between	ultrasonic	applying	time	and	enzyme/substrate	ratio	on	the	protein	content	of	the	protein	
extracts	at	constant	extraction	time	of	24 h	(a),	between	extraction	time	and	enzyme/substrate	ratio	on	total	phenolic	content	at	constant	
ultrasonic	applying	time	of	165 s	(b),	between	ultrasonic	applying	time	and	enzyme/substrate	ratio	on	antioxidant	activity	by	cupric	reducing	
antioxidant	capacity	(CUPRAC)	method	at	constant	extraction	time	of	24 h	(c)	and	between	ultrasonic	applying	time	and	extraction	time	
on	antioxidant	activity	by	2,2-	azinobis	3-	ethylbenzothiazoline-	6-	sulfonic	acid	diammonium	salt	(ABTS)	method	of	the	extracts	at	constant	
enzyme/substrate ratio of 1.50 (d).
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3.6  |  Extraction yield

In the present study, the extraction yield of PEPG extracted under 
optimum	extraction	conditions	(ultrasonic	applying	time	of	257.57 s,	
E/S	of	2.5,	and	extraction	time	of	22.61 h)	was	found	as	95 ± 4.95%.	
Similarly, Naseri et al. (2020) obtained the highest protein extrac-
tion yield for Palmaria palmata as >80%	with	alcalase	enzyme.	In	the	
study of Kadam et al. (2017), protein extraction yield of Ascophyllum 
nodosum	ranged	from	7.71%	to	59.76	depending	on	applied	different	
extraction processes. Suwal et al. (2019) reported that using a cell 
wall	degrading	enzyme	enhanced	extraction	yield	from	9%	to	37%	
for Palmaria palmata. Furthermore, the extraction yield was found 
to	be	74.6%	for	Macrocystis pyrifera	and	36.1%	for	Chondracanthus 
chamissoi	using	cellulase	enzyme	in	the	study	conducted	by	Vásquez	
et al. (2019). On the contrary, Barbarino and Lourenço (2005) re-
ported that the chemical composition of the species, as well as its 
morphological and structural properties, have a direct impact on 
their extraction yield.

3.7  |  Optimization and verification

Optimization procedures were carried out to predict the optimum 
level of independent variables to obtain maximum values for PC, 
TPC,	AOACUPRAC,	and	AOAABTS.	Under	the	optimum	conditions	(ul-
trasonic	applying	 time	of	257.57 s,	E/S	of	2.5,	and	extraction	 time	
of	22.61 h),	the	predicted	PC,	TPC,	AOACUPRAC,	and	AOAABTS values 
were	188.71 mg/g	dw,	64.33 mg	GAE/g	dw,	54.24 mg	TE/g	dw	and	
477.44 mg	TE/g	dw,	respectively	in	a	“desirability”	of	0.89.	The	pre-
dicted	and	mean	of	experimental	values	for	PC	(188.71 mg	protein/g	
dw	and	189.59 ± 22.80 mg	protein/g	dw),	TPC	(64.33 mg	GAE/g	dw	
and	64.23 ± 3.77 mg	GAE/g	dw),	AOACUPRAC	(54.24 mg	TE/g	dw	and	
55.66 ± 0.91 mg	 TE/g	 dw),	 and	 AOAABTS	 (477.44 mg	 TE/g	 dw	 and	
478.50 mg	TE/g	dw)	were	not	 statistically	different	 at	 the	5%	sig-
nificance level.

3.8  |  Techno- functional properties

3.8.1  | Water	and	oil	absorption	capacity

The techno- functional properties of PEPG obtained under op-
timum	 extraction	 conditions	 were	 determined.	 The	 WAC	 of	
a protein is a critical property in viscous foods (soup, dough, 
bakery product) to maintain mouthfeel, thickening, and vis-
cosity (Kandasamy et al., 2012).	 According	 to	 the	 results,	
the	 WAC	 of	 PEPG	 was	 calculated	 as	 195 ± 0.08%.	 Similarly,	
Kandasamy et al. (2012)	 found	 that	 the	WAC	 of	 Enteromorpha 
compressa, Enteromorpha tubulosa, and Enteromorpha linza were 
153 ± 0.07%,	132 ± 0.11%,	and	122 ± 0.06%,	respectively.	In	con-
trast, Kumar et al. (2014)	stated	that	WAC	of	Kappaphycus alva-
rezii	was	222 ± 0.04%.	Benjama	and	Masniyom	 (2012) reported 
that	the	WAC	of	Gracilaria fisheri and Gracilaria tenuistipita were 

553 ± 0.02%	and	897 ± 1.73%,	respectively.	Moreover,	Yücetepe	
et al. (2019)	reported	that	the	WAC	values	of	Spirulina platensis 
ranged	 from	335	 to	512%.	Conversely,	 the	WAC	of	protein	ex-
tracts from Chlorella vulgaris	 was	 determined	 as	 12.19 ± 3.84%	
in	 the	 study	 of	Yucetepe	 (2022).	On	 the	 contrary,	 the	WAC	of	
G. dura protein isolate was lower than those of soy protein iso-
late	 (447 ± 0.00%)	 and	 red	 kidney	 (225 ± 0.13%),	 while	 it	 was	
higher than those of some plant seed proteins such as chickpea 
(119 ± 0.01%)	 and	 lentil	 (133 ± 0.02%;	Table 4; Du et al., 2014; 
Kinsella, 1979; Siddiq et al., 2010).

The	OAC	of	proteins	is	an	important	functional	property,	es-
pecially	for	meat,	sausage,	and	mayonnaise	(Chandi	&	Sogi,	2007). 
The	OAC	 values	 of	G. dura proteins and selected foods rich in 
protein are given in Table 4.	The	OAC	of	PEPG	was	determined	as	
568 ± 0.04%.	In	the	present	study,	the	OAC	of	PEPG	was	higher	
than	those	of	some	macroalgae.	For	instance,	OAC	of	K. alvarezii 
was	found	to	be	129 ± 0.20%	by	Kumar	et	al.	(2014). Kandasamy 
et al. (2012)	investigated	the	OAC	of	several	macroalgae	includ-
ing E. compressa	 (134 ± 0.10%),	E. tubulosa	 (108 ± 0.04%),	E. linza 
(105 ± 0.07%).	Benjama	and	Masniyom	(2012)	reported	that	OAC	
of G. fisheri and G. tenuistipita	were	179 ± 0.07%	and	223 ± 0.15%,	
respectively.	 Furthermore,	 the	 OAC	 of	 PEPG	 was	 higher	 than	
soy	protein	 isolate	 (36 ± 0.2%),	whey	protein	 isolate	 (19 ± 0.1%),	
and	egg	protein	(21 ± 0.0%),	as	seen	in	Table 4 (Lam et al., 2017). 
These	 differences	 in	 values	 of	 OAC	 and	 WAC	 resulted	 from	
amino acid composition and protein conformation of protein, 
and extraction methods/parameters. In the present work, G. dura 
with	acceptable	WAC	and	OAC	values	can	be	considered	a	suit-
able candidate for food applications such as moisture holding or 
texture enhancer.

3.8.2  |  Foaming	and	emulsifying	properties

In	the	present	study,	the	FC	of	PEPG	was	12.5 ± 0.0%.	This	value	
was lower than the FC of E. compressa	(55.0 ± 2.6%),	E. tubulosa 
(31.9 ± 2.7%),	and	E. linza	 (33.3 ± 5.7%;	Kandasamy	et	al.,	2012) 
and K. alvarezii	 (38 ± 2.0%	 at	 pH 6.0,	 53.33 ± 2.31%	 at	 pH 4.0;	
Kumar et al., 2014). Similarly, the FC of PEPG was lower than those 
of	some	plant	proteins	such	as	soybean	protein	(65.7 ± 0.5%)	and	
whey	protein	(132%;	Ijarotimi	et	al.,	2018; Jambrak et al., 2008). 
The FC and FS values of G. dura proteins and selected foods 
rich in protein are given in Table 4. Furthermore, the proteins 
from G. dura did not exhibit foaming stability. Conversely, Kumar 
et al. (2014)	 found	 to	be	 as	16.7 ± 1.5%,	37.5 ± 2.0%,	4.4 ± 2.0,	
45.33 ± 1.15%	 for	 FS	 of	 E. tubulosa, E. compressa, E. linza, K. 
alvarezii, respectively. Extraction procedure, macroalgal geno-
type, foam formation process, and environmental conditions 
can	affect	the	FC	and	FS	of	proteins	(Makri	&	Doxastakis,	2006). 
Moreover, the foaming capacity of proteins is affected by solu-
bility, surface charge, and the balance between hydrophilic and 
hydrophobic	 amino	 acids	 (Gundogan	 &	 Karaca,	 2020; Zheng 
et al., 2020).
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The	EA	is	defined	as	the	capacity	of	the	protein	to	assist	in	the	
formation and stabilization of the formed emulsion. The ES, on the 
contrary, is defined as a protein's ability to stabilize an emulsion 
without affecting its structure (e.g., coalescence, creaming, aggrega-
tion, or precipitation) over a period of time (Boye et al., 2010; Karaca 
et al., 2011).	The	EA	and	ES	of	PEPG	were	found	to	be	44 ± 0.00%	
and	75 ± 2.50%,	respectively.	Likewise,	Kumar	et	al.	(2014) reported 
that the emulsification index of K. alvarezii protein was approximately 
60–	62%.	The	EA	and	ES	of	Spirulina platensis proteins were found 
to	 be	 40%–	45.98%	 and	 83.33%–	100%	 by	 Yücetepe	 et	 al.	 (2019). 
As	seen	in	Table 4,	EA	of	G. dura was lower than those of chickpea 
(61.14%),	lentil	(65.75%),	and	red	kidney	(55.00%),	while	higher	than	
that	of	soy	protein	isolate	(25.00%;	Du	et	al.,	2014; Kinsella, 1979; 
Siddiq et al., 2010). Lam et al. (2017) investigated the ES of sev-
eral	 pea	 cultivars	 including	 soy	 protein	 isolate	 (94.3%),	whey	 pro-
tein	 isolate	 (89.3%),	wheat	protein	 isolate	 (63.3%),	and	egg	protein	
(91.3%;	Table 4).	The	EA	and	ES	properties	might	vary	depending	
on the hydrophobicity, net surface charge, and solubility (Shevkani 
et al., 2015).

3.8.3  |  FT-	IR

The secondary structural composition of proteins is important in 
terms of their bioactive and functional properties. Their second-
ary	structures	can	be	explained	with	the	FT-	IR	technique	 (Kong	&	
Yu,	2007). The FT- IR spectra of PEPG are exhibited in Figure 3. The 
FT- IR spectrum of PEPG indicated absorption bands at ~1630 cm−1 
(amide I, C=O stretching as free carboxyl groups) and ~1508 cm−1 
(amide II, C– N stretching, and N– H bending. Similarly, Kong and 
Yu	 (2007) reported the amide II region at wavelengths of 1480– 
1585 cm−1 and Carbonaro et al. (2008) stated the amide I region 
at	the	wavelength	of	1600–	1700 cm−1.	Amid	I	and	II	bands	are	the	
main peaks indicating the presence of proteins in the structure 
(Withana- Gamage et al., 2011).	Amide	I	band	of	proteins	is	a	com-
plex structure, which carries multiple components such as α- helix, 
β- sheet, random ring, or β- turn (Liu et al., 2009). Peaks at the wave-
length of ~1287 cm−1 showed an amide III band (C– C, C– N, and 
C–	O	 stretching).	 de	 la	 Rosa-	Millán	 et	 al.	 (2018) stated that amide 
III demonstrates the existence of interactions between protein and 
other macromolecules such as carbohydrates. The extracts indi-
cated	 the	 amide	A	 region	 (O–	H	 stretching	 vibration)	 at	 the	wave-
length of ~3242 cm−1. Feyzi et al. (2018)	indicated	that	the	amide	A	
region	at	3200–	3500 cm−1 represents an interaction between pro-
tein and water molecules. The amide B region (asymmetric stretch 
vibration of C– H) was assigned a wavelength of ~2851 cm−1 and 
this region indicated the existence of neutral lipids, proteins, and 
carbohydrates (Withana- Gamage et al., 2011). Peaks at the wave-
length of ~1052 cm−1 were observed in the FT- IR spectrum and these 
peaks	indicated	the	existence	of	carbohydrates	in	PEPG.	According	
to Pietrzak and Miller (2005),	 peaks	 observed	 at	 1000–	1200 cm−1 
wavelength correspond to C– H stretching vibration caused by car-
bohydrates such as cellulose and starch.TA
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4  |  CONCLUSION

The extraction conditions to obtain protein extracts from G. dura were 
successfully optimized by RSM and the optimum conditions were as 
follows;	ultrasonic	applying	time	of	257.57 s,	enzyme/substrate	ratio	
of	2.5,	extraction	time	of	22.61 h.	The	protein	extracts	obtained	from	
G. dura showed higher total phenolic contents and antioxidant activ-
ity than those of the other macroalgal species described in the litera-
ture.	Additionally,	the	results	of	this	study	showed	that	G. dura protein 
extracts	had	more	acceptable	WAC,	OAC,	EA,	and	ES	than	those	of	
other macroalgal or plant proteins. On the contrary, the foaming prop-
erties of protein extracts from G. dura were lower than those of other 
macroalgae.	As	a	conclusion,	protein	extracts	from	G. dura, which is a 
low- cost and innovative source, may be employed as a functional food 
ingredient to boost antioxidant properties while also improving the 
techno- functional properties of food products. Therefore, in future 
studies, the effect of protein extracts from G. dura may be investigated 
on the techno- functional properties and antioxidant activity of foods 
enriched with algal protein extracts.
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