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Abstract: The current research sheds light on the nexus between environmental degradation as
proxied by carbon dioxide emissions (CO2), energy efficiency (EE), economic growth, manufacturing
value-added (MVA), and the interaction effect of EE and MVA in India. Using yearly data from 1980 to
2019, the current study employs dynamic auto-regressive distribution lag (DARDL) simulations and
Fourier Toda and Yamamoto causality techniques. The findings of DARDL reveal that as income and
MVA rise, environmental quality decreases, while EE improves environmental conditions in both the
long and short run. Surprisingly, the interaction term of EE and MVA has a detrimental influence on
environmental quality, meaning that India remains unable to provide energy savings technologies
to the manufacturing industry. Furthermore, the environmental Kuznets curve (EKC) hypothesis is
well-founded for India, as the long-run income coefficient is smaller than the short-run coefficient,
implying that India is in its scale stage of economy, where economic growth is prioritized over
environmental quality. The results of the causality technique reveal that CO2 emissions and EE have a
bidirectional association. Therefore, policymakers in India should embrace realistic industrialization
strategies combined with moderate decarbonization and energy efficiency initiatives under the
umbrella of sustainable industrial and economic growth.

Keywords: energy efficiency; dynamic ARDL; industrialization; INDCs; Make in India; carbon neutrality

1. Introduction

Arising from the recently held United Nations climate change conference COP26,
various countries around the world have made various pledges and national commitments
to attaining the desired goal of reducing global warming and achieving a clean environment,
which is part of the UN's Sustainable Development Goals (SDGs). The recent report by
the United Nations [1] on SDGs shows the inability and deficiency of emerging economies
in tackling the numerous problems faced with increasing global warming and carbon
emission levels. At the moment, developed economies are resorting to possible ways to
reduce the effects of greenhouse gas (GHGs) emissions in order to attain a sustainable
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environmental situation via the drive for clean energy. With COP26 fully ended, countries
around the globe have intensified their quest to attain the goals of the conference in the
area of energy efficiency. As one of the major players in the world, India has much to do in
its quest to achieve the demands of COP26. India is the world’s second most populated
country and the third largest emitter of GHGs, with 132 tonnes of carbon emissions and
equivalent in 2020, although represents a decrease for the first time in over four decades [2].
With a GDP growth rate of 6.7%, India is one of the world’s economic powerhouses [3].
Despite a COVID-19-related economic downturn in 2020 and 2021, India is predicted to
completely recover by 2025 [4].

However, recently the International Energy Agency (IEA) projected that India leads
the global energy stage regarding energy demand. Thus, India is projected to contribute
more than any other country to increasing global energy demand between now and 2040 [5].
Such a report from the IEA [6] seemingly poses a threat to the quest of India to attain the
prospects of freshwater availability and decreased greenhouse emissions while seriously
addressing energy efficiency (EE) and transition [7]. However, following COP26, India
remains on track to reduce emissions by 33 to 35% before 2030 [6]. India remains a major
hub for industrialization, and the carbon neutrality of various industries is crucial for India
as a country in order to continue to chart a course for a low carbon future and EE of its
industries, as predicted by the IEA. India is committed to meeting its Intended Nationally
Determined Contributions (INDCs) [8] by implementing a successful energy transition
from fossil fuels to renewable energy, particularly in the manufacturing and transportation
sector. Of course, India’s power demand is predicted to rise from 1700 TWh in 2021 to more
than 2200 TWh by 2030, and 5000 TWh by 2050 [9], necessitating a major commitment to
an EE initiative. Furthermore, India has set a goal of “Make in India” as a key national
initiative of the Indian government aimed at facilitating investment, fostering innovation,
enhancing skill development, protecting intellectual property, and constructing best-in-
class manufacturing infrastructure, all of which demand huge energy supply. Thus, the
current research tries to investigate whether India is on track to meet both its INDCs and
“Make in India” goals; however, there are significant uncertainties in the areas of closing
the global greenhouse gas gap of 1.5 degrees Celsius while achieving carbon neutrality
by 2030 [10,11].

Again, India has a pledged to install 40% of total electricity capacity from renewable
energy sources before 2030, a projection of 240–300 GW of wind and solar energy installa-
tions. Finally, India’s targets for forestry intend to create carbon sinks for over three billion
tonnes of carbon dioxide before 2030. Compared with the targets set by China and the
US, these intentions are ambitious, considering that both China and the US have a more
robust economy and a larger share of GDP. In this context, the current study examines the
progress of the implementation of the INDC and “Make in India” targets while taking into
account carbon neutrality and EE. India’s realizations and intentions are a step toward
achieving SDG 7, which is to achieve clean and cheap energy [7]. With India’s degree of
technical growth, it is capable of addressing EE and resolving energy security and pollution
challenges. The studies of Murshed at al. [12] and Langlois and Yank [13] have noted that
EE can serve as a policy target instrument for developing and developed countries aiming
towards carbon neutrality. Previous studies [7,14–18] expects that energy efficiency should
lead to dwindling carbon emissions; it is, however, perceived that the degree of impact
varies across different levels of development, such that clean energy generation in devel-
oped countries shows a convergence sign while developing countries are not able to attain
convergence due to absence of structural transformation [19]. Considering this scenario,
India stands a chance of achieving self-energy efficiency in terms of its energy needs.

The goal of this article is to look into the impact of EE and manufacturing value added
(MVA) in India in the context of the commitment of COP26 to achieve carbon neutrality.
This study, among others, intends to explore the INDC pledge and “Make in India” goals
using time series data from 1980 to 2019. The current study attempts to add to the existing
literature in the following ways. To the best of our knowledge, this is the first study to
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examine the nexus of EE and MVA on environmental quality in India while taking into
account their interacting impacts. Second, the current research aims to re-evaluate the
presence of the environmental Kuznets curve (EKC) hypothesis in India throughout the
most recent era, that is, 1980 to 2019. Finally, we use the novel dynamic autoregressive
distributed lag (DARDL) stimulations technique, which is thought to be more efficient,
impartial, and consistent with a small sample group. Fourth, we look at India’s two primary
goals at the same time, one from an economic standpoint (Make in India) and the other
from an environmental standpoint (INDCs). Finally, findings from our study are likely to
add to the current literature and expand the frontiers of knowledge among policymakers,
both in India and other nations, in the areas of energy efficiency, industrialization, carbon
neutrality, economic growth, and environmental quality.

The remainder of the research is organized as follows. The second section provides an
overview of the pertinent literature. The theoretical foundations and formulation of the
model used in this work are highlighted in Section 3. Section 4 explains the estimating
methodologies and data types utilized in the study, whereas Section 5 emphasizes and
discusses the resulting empirical findings. Finally, Section 6 concludes the study and
discusses its policy implications.

2. Review of Related Literature

The goal of literature reviews is to concentrate on previous research addressing the
explanatory variables used in the study. Although many studies have looked into the
link between the economy and the environment, there appears to be a paucity of specific
research on the relationship between EE, MVA, and GHG emissions. We look at three major
relationships between the specified variables and CO2 emissions.

2.1. Economic Growth and the Environment

The nexus between economic progress and CO2 emissions has been the central point
of discussion in the extant energy literature. Previous research has revealed an inverted
U-shaped link between CO2 emissions and economic growth when the quadratic term
of income is taken into account. Chen et al. [20] used the data from 2001 to 2015 of
30 OECD countries and found that income is the main reason for escalating CO2 emissions.
Balsalobre-Lorente et al. [21] verified the inverted U-shaped connection between CO2
emissions and economic growth for BRICS economies using fully modified ordinary least
squares (FMOLS) and dynamic ordinary least square (DOLS). Zhang et al. [22] confirmed
that economic growth has a positive impact on environmental degradation in Malaysia by
applying wavelet coherence.

However, a few studies have questioned the link between economic development and
CO2 emissions Using the Fourier ARDL procedure, Yilanci and Pata [23] found that the
EKC hypothesis is invalid for China. In a similar vein, the inverted U-shaped nexus of
economic progress and environment was not found to hold for 24 OECD countries [24]
and BRICS countries [25]. Other studies that failed to detect the presence of EKC include
Lopez-Menendez et al. [26] for 27 economies, Ozcan [27] for 12 Middle East nations, Mrabet
and Alsamara [28] for Qatar, Sarkodie and Strezov [29] for USA and Ghana, and more.

2.2. Manufacturing Value Added and Environmental Quality

Several empirical studies have explored the causal linkage between MVA and CO2
emissions. Abbasi et al. [30] found that MVA significantly boosts CO2 emissions in the
short term and increases environmental sustainability in the long run. Liu and Bae [31]
scrutinized the effect of industrialization on CO2 emissions in China using ARDL and
VECM. The study found that MVA increases CO2 emissions and long-run feedback Granger
causalities exist. Liu and Hao [32] verified the positive relationship between MVA and
CO2 emissions in 69 countries, employing vector error correction model (VECM), FMOLS,
and DOLS approaches. Prastiyo and Hardyastuti [33] examined data from 1970 to 2015 in
Indonesia and reported a bidirectional causality relationship between CO2 emissions and
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MVA. Raza and Hasan [34] estimated the positive impact of Bangladesh’s manufacturing
sector on CO2 emissions in the period 1980 to 2018. Several studies have reported mixed
findings when investigating the relationship between MVA and CO2 emissions. Exploring
data for a panel of 56 developing economies adapting EKC and STIRPAT approaches,
Avenyo and Tregenna [35] indicated that emissions are higher in medium- and high-
technology production than in low-technology manufacturing. Khan [36], using Beta
Decoupling Techniques, found that China’s primary industries reduced CO2 emissions
while a positive relationship persisted for secondary and tertiary industries.

2.3. Energy Efficiency and Environmental Quality

Energy efficiency (EE) is regarded as an indispensable solution to control GHG emis-
sions and facilitate countries’ efforts to attain SDG 7 and SDG 13 [1]. The role of EE in
a better environment has been investigated in a few studies. Improvements in EE have
the greatest impact on CO2 emissions reduction in developing countries, according to
Mirza et al. [7], while structural adjustments tend to increase CO2 emissions, as developing
countries are moving toward industries that create more pollution. Employing asymmetric
cointegration analysis and a non-linear autoregressive distributed lag (NARDL) model,
Akram et al. [37] reported that positive shocks to EE contribute to long-term CO2 emissions
reduction in the MINT nations. Özbuğday and Erbas [38] modeled the long-run effects
of EE on CO2 emissions using the CCE estimator for 36 countries, and showed that EE
significantly reduces CO2 emissions over time. Akram et al. [39] analyzed the effects of
EE on environmental degradation and verified the EKC hypothesis by employing data
from 66 developing nations from 1990 to 2014. They found that while EE reduces CO2
emissions at all quantiles, the 90th quantile has the greatest mitigation effect. A study
on 30 OECD economies by Tajudeen et al. [40] using both the STSM and LSDVC models
showed that improvements in EE were mostly responsible for decreased energy intensity at
the group level, whereas at the country level increases in EE played a mixed role. However,
several other multi-country and single-country studies have demonstrated a similar impact
of EE improvements on CO2 emissions, i.e., in EU countries [41], Nordic countries [42],
China [43], Nigeria [44], Sweden [45], and Romania [46].

Through this brief review of the literature, it can be seen that several researchers have
identified the nexus between environmental quality and its various determinants using a
variety of techniques. However, there is insufficient research explaining the effects of EE
and MVA on CO2 emissions. In addition, none of the previous studies have looked into
the interaction effect of energy efficiency and MVA in the context of India. Therefore, our
study seeks to bridge this gap by employing a novel dynamic ARDL simulation approach
to explain the influence of economic growth, MVA, and EE on CO2 emissions in India.
Moreover, in the current study we insert the interaction of EE and MVA into the empirical
model, which to the best of our knowledge represents the first such approach in any study.
The results of this study will allow for determination of the best mix of manufacturing
share and EE for long-term environmental quality.

3. Theoretical Foundation and Model Specification

This study follows the theoretical framework of the EKC hypothesis first developed in
the paper by Kuznets [47]. Environmental economists such as Grossman and Krueger [48]
and Panayotou [49] improved on this concept by studying the association between the
economy and environmental quality. According to this hypothesis, economic development,
as measured by Gross Domestic Product (GDP) per capita, is associated with an increase
in environmental deterioration, as measured by the level of certain types of air pollution
(emissions), until a point at which the association becomes negative [50]. The particular
threshold is thought to describe the level of economic affluence or prosperity that allows
economies to subsequently minimize pollution. According to this theoretical paradigm,
economic growth can be boosted by energy-intensive economic sectors and activities, which
are frequently polluting and destructive to the environment. Economic growth, according
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to the EKC hypothesis, has three stages, which affect an economy’s environmental quality:
the scale effect, the structural effect, and composite effects. The initial step consists of the
scale effect. The environment initially deteriorates in the first phase, then, after reaching a
critical threshold, technological innovation and increasing environmental consciousness
begin to enhance environmental quality [51].

Earlier studies have used CO2 emissions data as an indication of environmental
harm, designating the dependent variable for the empirical model, despite the fact that it
was not bound by any known assumptions. Here, we calculate the impact of per capita
income on environmental deterioration as assessed by CO2 emissions as well. We do
not employ the square of income per capita in our empirical model due to the possibility
of multicollinearity [52]. Although the EKC hypothesis remains valid when short-run
income elasticity is larger than long-run elasticity [53]; however, as allowing one regressor
may produce a spurious and biased result, other regressors, namely, MVA, EE, and their
interaction effects, were included in the model. India’s manufacturing sector is a crucial
portion of its economy, and occupies 13.10% of the total national GDP [54]. As a result,
recent significant growth in the industrial sector may have an impact on the country’s
environmental quality. The lower energy usage per unit of economic activity is captured by
the efficiency component. Therefore, it is crucial to include EE in the model. Moreover, the
interaction of MVA and EE is included in the empirical model in order to identify the best
mix to promote India’s long-term environmental quality. The resulting empirical model
can be described as follows:

lnnCO2 = α0 + α1lnGDP + α2lnMVA + α3lnEE + α4lnEE× lnMVA + εt (1)

where CO2 is carbon dioxide emissions, GDP is GDP per capita, MVA is manufacturing
value added, EE is energy efficiency and EE × MVA is the interaction effect of energy
efficiency and MVA.

4. Data Definition and Econometric Strategy
4.1. Data Description

The yearly data for India from 1980 to 2019 were used to determine the linkage
between EE, MVA, interaction impacts of EE and MVA, and environmental quality. The
energy intensity levels of a country can serve as a proxy for the EE variable. The amount
of energy used to generate one unit of economic output is defined as EE. As a result, a
lower ratio indicates that less energy is used to produce one unit of output, implying
higher EE. Following the previous literature, the share of primary electricity consumption
(PEC) to GDP was used to assess EE [55]. PEC was used to calculate a country’s overall
energy demand; this includes energy consumption by industry, losses during energy
transformation (for example, from oil or gas to electricity), energy distribution, and end-
user consumption (referred as total energy consumption). As a result, it is more justifiable
to utilize PEC rather than total energy consumption because total energy consumption only
includes end-user usage, overlooking losses during distribution. We assessed the quality
of the environment using CO2 emissions quantified in metric tons per capita. GDP per
capita in constant 2010 US dollars was used to reflect economic growth, while MVA was
reported as a percentage of GDP. The GDP and MVA data used in this study were from
the World Development Indicator (WDI) database, while CO2 and PEC data were from
the BP Statistical Review of World Energy. Table 1 presents the description and sources of
the variables under investigation. In order to standardize the data and eliminate varying
units of parameters, we transformed all variables into logarithmic form, as recommended
by the literature [56]. Put another way, converting data to logarithms makes it easier to
understand coefficients as elasticities [14].
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Table 1. Variable Specifications.

Variable Definition Source

CO2
Carbon dioxide emissions (metric tons
per capita)

BP Statistical Review of
World Energy

GDP Economic growth (real GDP per capita
constant 2010 US$) World Bank

PEC Primary electricity consumption (exajoules) BP Statistical Review of
World Energy

MVA Manufacturing value-added (% of GDP) World Bank

EE Energy efficiency level of primary energy
(constant 2010 US$/MJ) Authors’ calculation

4.2. Econometric Methodology

Following our investigation of environmental degradation in India, we proceeded to
explore the effects of GDP, MVA, EE, and MVA*EE on CO2 emissions using time series data.
Before conducting an analysis of time series data, we validated the data with a stationarity
check. This study employed Augmented Dickey–Fuller (ADF) [57] and Phillips–Perron
(PP) [58] for investigating the unit root properties of the data series.

Upon checking the unit root outcome, cointegration testing must be performed before
applying the DARDL simulation method. In order to confirm the existence of a long
association among the variables, we conducted F bound testing. The following bounds test
equation was formed in order to investigate the cointegration among the studied variables:

∆(lnCO2)t = α0 + α1lnCO2t−1 + α2lnGDPt−1 + α3lnMVAt−1 + α4lnEEt−1

+α5lnMVA ∗ EEt−1 +
p
∑

i=1
β1∆lnCO2t−i +

p
∑

i=1
β2∆lnGDPt−i

+
p
∑

i=1
β3∆lnMVAt−i +

p
∑

i=1
β4∆lnEEt−i +

p
∑

i=1
β5∆lnMVA ∗ EEt−i

+ut

(2)

where ∆ denotes the change operator, t − i represents the optimal lags chosen using the
Akaike information criterion (AIC), ut represents the error term, and p represents the lag
length. Furthermore, α and β represent long-run and short-run estimates, respectively.

The null hypothesis for the bounds test was H0: α1 = α2 = α3 = α4 = 0, which implies
that no variables cointegrate, whereas the existence of cointegration was specified by the
alternative hypothesis, H1: α1 6= α2 6= α3 6= α4 6= 0; thus, on the basis of the estimated
value of the F-statistic, H0 may be rejected or accepted. Furthermore, we compared the
F-statistic value to the critical values at 1%, 5%, and 10% significance levels. If the F-statistic
value surpasses the critical values, the long-run association can be ascertained [59].

The dynamic ARDL simulation technique devised by Jordan and Philips [60] was used
to estimate the long-run and short-run coefficients. The simulated DARDL approach can
generate graphs to predict counterfactual alterations in one explanatory variable and its
impact on the response variable while holding the other regressors unchanged. The series
should be integrated at I(1) and demonstrate mutual cointegration in order to perform the
DARDL technique [60]. This study employed 5000 simulations. The equational form of the
dynamic ARDL model, including the error correction factor, is written as:

∆(lnCO2)t = λ0 + θ0lnCO2t−1 + β1∆lnGDPt + θ1lnGDPt−1 + β2∆lnMVAt

+ θ2lnMVAt−1 + β3∆lnEEt + θ3lnEEt−1 + β4∆lnMVA ∗ EEt

+ θ4lnMVA ∗ EEt−1 + ξECTt−1+ut

(3)

In this research, model stability was checked using several model diagnostic tests,
such as cumulative sum (CUSUM) and square of CUSUM plots. The Breusch–Godfrey
Lagrange Multiplier (LM) test was used to find serial correlations, whereas the Jarque–
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Bera test was used to check for normality. We assessed heteroskedasticity using the
Breusch–Pagan–Godfrey tests. The Ramsey reset test was employed to determine whether
the model was presented correctly. In addition, we used traditional ARDL, FMOLS, and
Canonical Cointegrating Regression (CCR) models to verify the robustness of our dynamic
ARDL estimations.

The Toda and Yamamoto (TY) [61] causality method was employed in this investiga-
tion to search for causal links between the variables. A preliminary step in the TY causality
test is to estimate the vector autoregressive (VAR) model while taking the variables’ level
values into account. The ideal lag length (ρ) is then added to the series’ maximum inte-
gration order (dmax) in the projected model and the model is re-calculated. The Granger
causality test was enhanced by using Fourier functions to account for structural changes in
the data. Fourier functions were introduced to the TY causality test by Nazlioglu et al. [62],
who claimed that prior knowledge of the number, date, and type of breaks was not nec-
essary. Equation (5) was generated by combining the Fourier equation with the VAR
model in Equation (4). According to Equation (5), the null hypothesis suggests that there is
no causality [62]:

yt = α(t) + ϑ1yt−1 + . . . + ϑρ+dyt−(ρ+d) + εt (4)

yt = α0 + γ1 sin
(

2πkt
T

)
+ γ2 cos

(
2πkt

T

)
+ ϑ1yt−1 + . . . + ϑρ+dyt−(ρ+d) + εt (5)

5. Results and Discussions

The descriptive statistics for variables in our studies are provided in Table 2. The
mean value of lnEE is −2.67, which is the lowest number among the selected variables.
It can be seen that lnGDP and lnMVA have mean values of 6.76 and 2.77, respectively,
with standard deviations of 0.49 and 0.06, whereas lnCO2 has a mean value of −0.09 and
standard deviation of 0.42. All variables are positively skewed, with the exception of MVA,
which is negatively skewed, according to the skewness value. This means that the most
CO2, GDP, and EE values are clustered around the left tail of the distribution, whereas the
right tail is longer. Table 2 shows the correlation matrix of the variables, and it is clear that
there are no concerns with multicollinearity, which is a prime condition for moving further
with the regression analysis.

Table 2. Descriptive statistics.

lnCO2 lnGDP lnMVA lnEE

Mean −0.09 6.76 2.77 −2.67
Median −0.12 6.71 2.78 −2.69

Max. 0.59 7.67 2.88 −2.45
Min. −0.81 6.05 2.59 −2.83

Std. Dev. 0.42 0.49 0.06 0.11
Skewness 0.03 0.31 -0.79 0.52
Kurtosis 1.93 1.86 4.71 2.54

Observations 40 40 40 40

Correlation
lnCO2 1.00
lnGDP 0.89 1.00
lnMVA −0.49 −0.51 1.00

lnEE 0.76 0.84 −0.51 1.00

Before delving deeper into the time series analysis, each data series should be tested
for stationarity in order to avoid any erroneous outcomes. The results of the stationarity
tests are shown in Table 3; we used the traditional ADF and PP tests for this investigation.
Table 3 shows that all of the selected variables are non-stationary at the level of the usual
ADF and PP tests, except for the interaction of EE and MVA. After I(1), however, the chosen
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variables become stationary at a 1% significance level. As a result, these findings indicate
that there is no unit root problem; thus, the regression model can be run without fear of
spurious regression.

Table 3. Unit root test.

Variable Form
ADF (t-Statistics) PP (t-Statistics) Order of

IntegrationIntercept Trend + Intercept Intercept Trend + Intercept

lnCO2

Level −0.49
(0.881)

−2.79
(0.211)

−0.48
(0.885)

−1.94
(0.615)

I(1)

First Difference −2.64 *
(0.094)

−3.96 *
(0.083)

−6.15 ***
(0.000)

−6.08 ***
(0.000)

lnGDP
Level 3.07

(1.000)
−1.28
(0.878)

7.18
(1.000)

−1.21
(0.895)

I(1)

First Difference −4.82 ***
(0.000)

−6.04 ***
(0.000)

−4.82 ***
(0.000)

−11.59 ***
(0.000)

lnMVA
Level −0.78

(0.815)
−1.44
(0.833)

−0.99
(0.744)

−1.68
(0.741)

I(1)

First Difference −4.81 ***
(0.000)

−4.88 ***
(0.002)

−4.73 ***
(0.001)

−4.67 ***
(0.003)

lnEE
Level 0.88

(0.994)
−1.51
(0.811)

0.81
(0.993)

−1.51
(0.811)

I(1)

First Difference −6.42 ***
(0.000)

−7.08 ***
(0.000)

−6.41 ***
(0.000)

−7.04 ***
(0.000)

lnEE*lnMVA
Level 1.24

(0.998)
−0.71
(0.966)

1.48
(0.999)

−0.58
(0.975)

I(0)/I(1)

First Difference −6.31 ***
(0.000)

−7.03 ***
(0.000)

−6.42 ***
(0.000)

−6.99 ***
(0.000)

Note: The probability value is shown in parentheses. ***, and * denote a 1%, and 10% level of significance.

To use DARDL regression, it is first necessary to determine whether there is cointe-
gration among the chosen variables. To trace the existence of long-run co-integration, we
conducted the ARDL bounds testing approach followed by Pesaran et al. [63]. Table 4
shows the results of the co-integration process. Even at the 1% level of significance, the
F-statistics generated from the F-bounds test are embedded over the critical value of the
lower bound I(0) and upper bound I(1). This finding clearly demonstrates that the variables
examined in this study move together over the long run. As a consequence, this shows
that CO2 emissions and their causes, such as energy efficiency, economic growth, manufac-
turing value added, and the interaction impact of manufacturing value added and energy
efficiency, are co-integrated over the long term.

Table 4. F-bound test for co-integration.

Estimated Model lnCO2= ƒ (lnGDP, lnMVA, lnEE, lnEE*lnMVA)

Bound test F-statistics 11.46 ***

Critical value Lower bound I(0) Upper bound I(1)

1% 4.4 5.72
2.5% 3.89 5.07
5% 3.47 4.57
10% 3.03 4.06

Note: *** denotes a 1% level of significance.

The baseline regression of the DARDL simulations approach, shown in Table 5, demon-
strates the short-run and long-run linkage between India’s economic development, MVA,
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EE, and the interaction effect of MVA and EE on CO2 emissions. As the results show, GDP
per capita stimulates carbon dioxide emission in the both short and long term. With all
else constant, CO2 emissions jump 0.637% in regard to a 1% rise in per capita in the long
term, whereas CO2 emissions climbed by 0.829% in the short term. However, the elasticity
of both lnGDP and ∆lnGDP indicate that India’s CO2 emissions are increasing steadily
over time. According to estimations, GDP’s long-run elasticity is lower than its short-run
elasticity, meaning that economic expansion destroys environmental quality more quickly
in the short term. This validates the EKC notion in light of Narayan and Narayan [53].
Prior research, such as Rej et al. [64] for India, Awan et al. [65] for ten developing countries,
and Agboola et al. [66] for Turkey, has shown similar results, while Rej et al. [67] and
Islam et al. [51] have shown contrasting outcomes. The technique utilized, the dependent
variable analyzed, and the time span of the study might all account for these discrepancies
in results.

Table 5. Long-run and short-run coefficients from the dynamic ARDL model.

Variables Co-Efficient Std. Error t-Stat

lnGDP 0.637 *** 0.174 3.66
∆lnGDP 0.829 *** 0.125 6.63
lnMVA 0.373 ** 0.179 2.08

∆lnMVA 0.608 0.532 1.14
lnEE −1.489 *** 0.411 −3.62

∆lnEE −0.254 ** 0.113 −2.25
lnEE*lnMVA 0.208 ** 0.080 2.58

∆lnEE*lnMVA 0.045 * 0.023 1.90
Cons. 4.097 ** 1.665 2.46

ECT (-1) −0.590 *** 0.165 −3.57
R2 0.986 Adjusted R2 0.995

F-Statistics [Prob.] 7857.86 [0.000] Simulation 5000
Note: ***, ** and * denote a 1%, 5%, and 10% level of significance.

Despite the presence of EKC, income causes both short-term and long-term envi-
ronmental deterioration, illustrating the scale effect. This revelation can be ascribed to a
number of factors. India has one of the world’s fastest expanding economies, with heavy
use of fossil fuels and natural resources making it among the world’s greatest emitters of
carbon dioxide. In addition, India’s economic growth plan relies on carbon-intensive energy
resources, resulting in economic gains at the expense of environmental degradation [68].
India’s rapid expansion in the industrial sector, based on low labor wages, intensive re-
source usage, and exports, has essentially reached its limits, resulting in economic and
environmental imbalances [3]. However, our results indicate that environmental pollution
in India is dwindling over time, as the long-run negative impact is less severe. The Indian
government has taken various policy measures to promote an environmentally friendly
environment in line with its INDC pledge and the Paris Agreement [68]. Therefore, Indian
officials must emphasize and adopt energy-efficient technology in the development process
for green growth.

Manufacturing value added (MVA) as a percentage of GDP has a long-term positive
and significant relationship with CO2 emissions. In the long run, a 1% increase in MVA
raises CO2 emissions by 0.373%, and earlier research findings [30,31] corroborate these
findings. However, they negate the outcome of a previous study by Lin et al. [69], which
indicated a significant negative relationship between industrialization as a proportion
of GDP and emission of CO2. The operation of industry leads to the manufacturing of
chemicals, particularly sulphur dioxide (SO2) and nitrogen oxides (NOx), which are partic-
ularly toxic when inhaled and can generate acid rain. Furthermore, these particles undergo
chemical reactions, resulting in CO2 emissions which wreak havoc on the ecosystem [30].
Manufacturing, on the other hand, is a capital- and resource-intensive sector; however, In-
dia, as a highly industrialized country, lacks suitable environmentally friendly investment
and infrastructure development initiatives for this sector. Furthermore, capital received
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in the manufacturing sector does not result in any green investments for the industry’s
long-term success. MVA, on the other hand, does not have any negative effects on the
environment in the short term. This is due to the fact that developments in industrialization
and infrastructure do not have an instant impact, as they require time. As time progresses,
more land is acquired and more residues are generated by the expanding activities of the
industrial sector, which ultimately ends up obliterating the environmental quality.

Interestingly, EE has significant CO2 emission reduction implications: a 1% improve-
ment in energy efficiency decreases CO2 emissions by 1.489% in the long run and 0.254%
in the short run, ceteris paribus. This suggests that CO2 emissions are reduced as a result
of the methods, technologies, or instruments used in the course of energy activity. These
results are consistent with Mirza et al. [7] and Özbuğday and Erbas [12]. Energy efficiency
can reduce India’s reliance on fossil fuels while improving energy security, energy resource
utilization, and industrial performance by lowering operational expenses. Another factor
might be that energy efficiency in India’s manufacturing, construction, and transportation
sectors helps to alleviate CO2 emissions by saving energy. The Indian government’s Bureau
of Energy Efficiency (BEE), which is part of the Ministry of Power, has initiated a number
of measures to enhance EE and thereby reduce CO2 emissions. Beginning in 2006, the
BEE has run the Standards and Labelling scheme for equipment and appliances, allowing
consumers to make educated decisions regarding energy conservation. In addition, the
Energy Conservation Building Code (ECBC) was established in 2007. In 2013, the Indian
government announced the National Electric Mobility Mission Plan (NEMMP) 2020. Its
purpose is to increase national energy security by promoting the use of hybrid and electric
vehicles. An ambitious goal of 6–7 million hybrid and electric car sales per year has been
established for 2020 and beyond. The government wants to provide fiscal and monetary
incentives to kickstart this fledgling technology, and all of these steps can help India meet
its “net-zero” carbon goal by 2070.

However, the coefficient of lnEE*lnMVA is positive and significant in both the short
and long run, meaning that the interaction effect of MVA and EE stimulates CO2 emissions
in India. This finding provides the further insight that EE measures have not been conducive
to manufacturing sector in the pathway of decarbonizing the Indian economic engine.
Currently, the Government of India has placed emphasis on attracting capital investment
to the energy-intensive homegrown manufacturing sector in order to revitalize domestic
manufacturing under the umbrella of the ambitious “Make in India” initiative. Our findings
further imply that India is a long way from mandating the kind of strict EE measures
in the manufacturing sector that ultimately aid in the reduction of carbon emissions.
Our findings suggest that green energy plays a key role in lowering CO2 emissions, and
that EE reduces the amount of energy used in the manufacturing process, lowering CO2
emissions [70]. Finally, the error correction term (ECT) value (−0.590) is negative and
statistically significant, indicating that our model reaches its long-run equilibrium at a
rather quick 59% adjustment rate. The R2 (0.986) and adjusted R2 (0.995) values further
reveal our empirical model’s strong fitness.

While keeping the independent variables unaltered, the DARDL simulations illustrate
and predict the real regressor shifts and their influence on the dependent variables. The
influence on CO2 emissions of a 1% increase or decrease in explanatory factors such as GDP,
MVA, EE, and MVA*EE cab thus be forecasted. Figure 1 shows that a 1% increase or decline
in economic growth has a significant short-term influence on CO2 emissions in India. In the
long run, however, a positive 1% rise in economic activity in India degrades environmental
quality, while a 1% reduction in economic growth curbs CO2 emissions, hence boosting
India’s environmental quality. Following this, it can be deduced from Figure 2 that a 1%
increase or reduction in MVA will have substantial short-term and long-term effects on
CO2 emissions in India. Despite the fact that both scenarios have considerable effects on
CO2 emissions, according to the findings, environmental sustainability can be achieved
with a 1% reduction in MVA. However, because a decrease in manufacturing share might
slow economic growth, the Indian government must place a greater emphasis on the
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environmentally responsible manufacturing sector by adopting energy- and resource-
saving technologies.

Figure 1. Economic growth and environmental quality. The figure signifies a 1% increase or decline
in GDP per capita and its effect on CO2 emissions in India. The dots present the forecasted value,
whereas the deep blue to light blue lines show the confidence intervals of 75%, 90%, and 95%,
respectively. The time in years is represented by the X-axis, while the counterfactual change in
economic growth is shown by the Y-axis.

Figure 2. MVA and environmental quality. The above figure signifies a 1% increase or decrease in
MVA and its effect on CO2 emissions in India. The dots present the forecasted value, whereas the
deep blue to light blue lines show the confidence intervals of 75%, 90%, and 95%, respectively. The
time in years is represented by the X-axis, while the counterfactual change in the manufacturing
value added is shown by the Y-axis.

In addition, Figure 3 shows that a 1% increase in EE and a 1% decline in EE create
substantial changes in India’s CO2 emissions in both the short and long run. In the long
run, India can achieve a sustainable environment by promoting 1% EE. Although the
Indian government has taken various steps to encourage EE, these efforts need to be
sustained. This ensures environmental security and, in the long term, maintains a static
state. However, a 1% increase or reduction in the interaction of MVA and EE and its
influence on CO2 emissions produce intriguing graphs. In either situation, a 1% increase
or reduction has a significant impact on environmental quality in both the short and long
term. Figure 4a shows that a 1% improvement in both EE and industrial value added can
simultaneously raise CO2 emissions in India in a linear fashion from short to long term. In
contrast, Figure 4b illustrates that if the interaction of EE and MVA decreases by 1%, the
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quality of the environment improves with reducing CO2 emissions. As a result, officials
should consider the best mix of manufacturing share and EE for long-term environmental
quality to ensure that any additional share of the manufacturing sector does not lead to any
additional threat to the environment.

Figure 3. EE and environmental quality. The above figure signifies a 1% increase or decrease in EE
and its effect on CO2 emission in India. The dots present the forecasted value, whereas the deep blue
to light blue lines show the confidence interval of 75%, 90%, and 95%, respectively. The time in years
is represented by the X-axis, while the counterfactual change in the energy efficiency is shown by
the Y-axis.

Figure 4. Interaction effect of MVA and EE on environmental quality. The above diagram (a) shows a
1% increase in the interaction of MVA and EE, while (b) shows a 1% decrease in the interaction of
MVA and EE and its effect on CO2 emissions in India. The dots present the forecasted value, whereas
the deep blue to light blue lines show the confidence interval of 75%, 90%, and 95%, respectively. The
time in years is represented by the X-axis, while the counterfactual change in the interaction term of
MVA and EE is shown by the Y-axis.

We expanded our investigation by employing multiple diagnostic tests on the time-
series data. Table 6 summarizes the findings. To verify the normality and specification
of our empirical model, we used the Jarque–Bera normality and Ramsey RESET tests,
respectively. According to the results our model is perfectly normal and appropriately
defined. In order to identify serial autocorrelation, we used the Breusch–Godfrey LM
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test, and the results show that our model is devoid of serial autocorrelation. Furthermore,
we used the Breusch–Pagan–Godfrey test, which shows that our model is homoscedastic.
Finally, we used the CUSUM and CUSUMQ tests to ensure that our model was stable. The
generated plots are inside the 95% critical bound, indicating that our econometric model is
completely stable, as shown in Figure 5.

Table 6. Diagnostic tests for the ARDL model.

Diagnostic Test Null Hypothesis Statistics Decision

Breusch–Godfrey serial
correlation LM test H0: No auto correlation F-stat: 0.847

Prob: 0.519 No serial correlation

Jarque–Bera test H0: Normal distribution
of error terms

χ2: 0.699
Prob: 0.705

Error terms are
normally distributed

Breusch–Pagan–Godfrey test H0: Homoskedasticity F-stat: 1.055
Prob: 0.454 No heteroskedasticity

Ramsey RESET test H0: Model specification
is correct

F-stat: 2.962
Prob: 0.115

Model is correctly
specified

Figure 5. Plot of CUSUM and CUSUM of square test.

In our present work, we used the ARDL, FMOLS, and CCR approaches to check the
robustness of the DARDL coefficients. The results of these calculations are shown in Table 7.
The findings show that the variables’ sign and statistical significance levels are compatible
with the results of the DARDL estimates, as shown in Table 5. As a result, the DARDL
estimations’ robustness and accuracy can be validated with absolute assurance.

Table 7. Results of ARDL, FMOLS, and CCR.

Variable
ARDL FMOLS CCR

Coefficient t-Stat. Coefficient t-Stat. Coefficient t-Stat.

lnGDP 1.49 *** 11.76 1.03 *** 130.48 1.03 *** 151.92

lnMVA 3.01 ** 2.35 3.47 *** 4.35 3.54 *** 4.87

lnEE −4.49 *** −3.15 −4.76 *** −5.67 −4.79 *** −6.25

lnEE*lnMVA 1.15 ** 2.33 1.32 *** 4.32 1.32 *** 4.77
Note: *** denotes a 1% level of significance, ** denotes a 5% level of significance.

The findings of the Fourier bootstrap Toda–Yamamoto causality test are shown in
Table 8. According to these findings, CO2 emissions and EE have a bidirectional connec-
tion, while the significant unidirectional causality runs from: (i) GDP to carbon dioxide
emissions; (ii) MVA to GDP; (iii) EE to GDP; (iv) CO2 emissions to MVA; (v) MVA to
EE, without any feedback effects. The regression outcomes of GDP, a key factor of CO2
emissions in India, are supported by the unidirectional causality from GDP to CO2 emis-
sions. Rej et al. [64] made a similar discovery, while Alper et al. [71] found a unidirectional
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causation association between environmental deterioration and economic growth in India.
However, the directional relationship between CO2 emissions and EE further highlights
the importance of EE to the Indian economy as a measure of curbing the CO2 emissions
and improving environmental quality.

Table 8. Causality test results.

Cumulative Fourier Frequency TY TY

Causal Relation Wald Stat Assym p-Value BS p-Value Lags Frequency Wald Stat Assym p-Value BS p-Value Lags

lnMVA→ lnCO2 8.613 0.376 0.497 8 3 1.03 0.31 0.303 1
lnEE→ lnCO2 49.684 0.000 *** 0.017 ** 8 3 0.478 0.489 0.495 1

lnGDP→ lnCO2 36.181 0.000 *** 0.022 ** 8 3 0.306 0.58 0.568 1

lnCO2 → lnGDP 11.618 0.169 0.351 8 3 0.036 0.85 0.855 1
lnMVA→ lnGDP 23.401 0.003 *** 0.091 * 8 3 2.083 0.149 0.173 1

lnEE→ lnGDP 17.971 0.021 ** 0.16 8 3 0.092 0.762 0.767 1

lnCO2 → lnMVA 33.031 0.000 *** 0.053 * 8 3 0.013 0.908 0.908 1
lnGDP→ lnMVA 12.811 0.119 0.276 8 3 2.339 0.126 0.133 1
lnEE→ lnMVA 8.065 0.427 0.505 8 3 1.21 0.271 0.279 1

lnCO2 → lnEE 34.956 0.000 *** 0.043 ** 8 3 0.225 0.636 0.642 1
lnGDP→ lnEE 10.149 0.255 0.381 8 3 0.404 0.525 0.525 1
lnMVA→ lnEE 111.556 0.000 *** 0.001 *** 8 3 0.013 0.908 0.907 1

NOTE: TY: Toda and Yamamoto Causality test approach. Note: ***, **, and * denote a 1%, 5%, and 10% level of
significance. BS: Bootstrapped; Assym: Asymmetric.

6. Conclusions and Policy Recommendations

This study was carried out with the premise of attaining India’s two seemingly dif-
ferent goals, that is, of reaching its INDC commitment of restricting CO2 emission levels
by 33–35% with respect to the emission level in 2005 by 2030 while at the same time ac-
celerating its energy-intensive domestic manufacturing sector as an intrinsic part of the
ambitious “Make in India” initiative. This study’s aim was to examine whether these
two goals complement each other or if they are seemingly divergent in light of the goal
of attaining an environmentally friendly economy. In this context, the present study em-
ployed a systematic approach to examining the role of EE and MVA on the path to carbon
neutralization of the Indian economy over the time period 1980–2019 through the lens of
the EKC framework. The interaction term between EE and MVA was augmented within
this framework in order to examine whether the goals of “INDC” and “Make in India” can
be supportive of each other. We used the recently developed DARDL simulations model
to achieve our research objectives. We employed ADF and PP unit root tests to check the
stationarity properties of the variables and applied the cumulative Fourier frequency TY
approach to unveil the causal association between pairs of variables.

This research provides several fresh insights, and adds to the current body of knowl-
edge in a variety of ways. To begin, this analysis both demonstrates the long-term dynamics
among the variables under consideration for the data period 1980–2019 and confirms the
existence of the EKC hypothesis for India, as the short-term coefficient of GDP is larger
than the long-run coefficient. This study further demonstrates that MVA is associated
with the deterioration of environmental quality, posing a serious conflict between the two
ambitious goals of “Make in India” and “INDC”. Moreover, EE contributes to the reduction
of CO2 emissions, qualifying EE as one of the key contributors to the decarbonization
pathway. It is expected that the application of EE in the manufacturing sector can help
to reduce emissions. However, we found evidence of a positive coefficient of the interac-
tion term, which is an indication of the fact that India is not currently able to furnish the
manufacturing sector with EE measures that can aid in the reduction of carbon emissions,
which may eradicate the potential conflict between the two developmental goals of “Make
in India” and “INDC”. Our findings from the cumulative Fourier frequency TY show
that a bidirectional relationship exists between CO2 emissions and EE. The unidirectional
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causality runs from GDP to CO2 emissions, MVA to GDP and EE, CO2 emissions to MVA,
and EE to GDP.

In the light of these econometric findings, the resulting policy suggestions for India
are as follows: (i) as our research findings imply that energy efficiency measures in the
manufacturing sector remain underdeveloped, the Government of India should invest
a quantum of capital in the R&D sector and should initiate effective skill-development
programs in order to mandate strict energy efficiency measures in the manufacturing sector
and aid this sector to become a less polluting or non-polluting sector; (ii) India should
endorse strict environmental laws and ensure that all manufacturing industries abide by
these laws. This may act as a catalyst toward the decarbonization pathway of the Indian
economic growth engine; (iii) As present economic growth is evidenced to not be amenable
to environmental sustainability, Indian policymakers should be more focused on enhanced
utilization of zero carbon footprint renewable energy sources by initiating strong renewable
energy awareness programs and by alerting and educating people about the efficient usage
of electricity.

Despite the fact that this study explores an intriguing issue in the context of India’s
“net-zero” goal, it does have several shortcomings that additional research might solve.
Future studies have the opportunity to critically examine the impact of public–private
partnerships (PPPs) in energy, particularly renewables, on CO2 emission levels by using
disaggregated data in the context of India or other emerging economies. In addition, CO2
emissions may not fully capture environmental deterioration linked to water, forests, biodi-
versity, sanitation, and other environmental phenomena. As a result, future research should
focus on proxies that are more comprehensive, such as ecological footprint. Furthermore,
the outcomes of this study might be applied to other nations with comparable macroeco-
nomic characteristics, such as other South Asian countries (Bangladesh, Pakistan, etc.) and
other BRICS countries, as the data utilized in this study become more readily available.
This study can be expanded and the validity of our assumptions further evaluated by per-
forming similar the analyses in different regions of the globe. Comparable country-specific
studies might be carried out to test the credibility of the results recorded in this study if
appropriate data are available.
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