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ABSTRACT 
The purpose of this study is to offer a more efficient hybrid aerodynamic optimization method for 3-D wing 
configurations by using both genetic and artificial neural network. Artificial Neural Network (ANN) is used with 
a new approach in the aerodynamic optimization of a forward swept wing. The developed technique has been 
found much more robust than Genetic Algorithm (GA) only methods. For example, the new hybrid technique 
acquires the same fitness level as the one that GA only method can reach in 500 calculations, in about half time 
(about 250 calculations). The drag coefficient reduction is calculated %33 faster in the offered method. The 
neural network is embedded into the genetic algorithm along with augmented elitism to prevent possible bad 
members in the generations.  
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3-D AERODİNAMİK OPTİMİZASYON İÇİN HİBRİT BİR YÖNTEMİN (ANN ve GA) YENİ KULLANIMI 
ÜZERİNE 

 

ÖZET  
Bu çalışmanın amacı, genetik algoritma ve yapay sinir ağını kullanarak 3 boyutlu kanat konfigürasyonları için 
daha verimli ve etkin bir hibrid aerodinamik optimizasyon metodu sunmaktır. Yapay Sinir Ağı (ANN) ileri ok açılı 
kanadın aerodinamik optimizasyonunda yeni bir yaklaşımla kullanılmıştır. Geliştirilen tekniğin Genetik 
Algoritma (GA) yöntemlerinden çok daha etkin ve güçlü olduğu görülmüştür. Örneğin, yeni hibrid teknik, sadece 
GA kullanan yöntemin 500 akış çözümüyle ulaştığı seviyeye, yaklaşık yarı zamanda (250 hesaplamada) 
ulaşabilmektedir. Sürükleme katsayısında sağlanan azalma, önerilen yöntemde % 33 daha hızlı sağlanmaktadır. 
Yapay sinir ağı algoritması, olası kötü üyeleri önlemek için düzenlenmiş olan özel bir elitizm yöntemiyle birlikte 
GA içine eklenmiştir. 
 
Anahtar Kelimeler: Hibrid optimizasyon teknikleri, 3-B Aerodinamik optimizasyon, İleri ok açılı kanatlar 

 

 

1. INTRODUCTION 
 
Genetic algorithm (GA) is a non-gradient optimization 
method that mimics the evolution process in nature. 
Initial population of design variable sets is analyzed 
with a predetermined, problem dependent cost 
function. Then, crossover and mutation methodologies 
are applied to the initial population where best 
solutions of the initial population survive to create a 
new population. This process continues until a global 
extremum is found [1]. 

 
For years now, several studies related to GA are 
reported in the literature. To name a few, Hacıoğlu 
and Özkol [2] have developed a new technique for 2-
D airfoils design named as Vibrational Genetic 
Algorithm (VGA). Liu [3] proposed a new GA, to 
determine the best combination of design variables. 
Additionally, Hacıoğlu [4] proposed an Augmented 
Genetic Algorithm with Neural Network (AGANN), 
which increases the computational efficiency to a 
much higher level. He applied the technique to nozzle 
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shape design problem and showed its effectiveness in 
the results. 
 
Another new approach to the multi-objective 
constrained design of aerodynamic shapes is 
suggested by Epstein and Peigin [5]. The approach 
employs GA as an optimization tool in combination 
with a reduced-order-models method based on linked 
local databases obtained by full Navier–Stokes 
computations.  
 
Qazi and Linshu [6] present a new procedure for 
efficient conceptual design of complex systems with 
multidisciplinary and computationally intensive 
analysis using large number of design variables. 
Ludwig et al. [7] introduced a new information-
theoretic methodology for choosing variables and their 
time lags in a prediction setting, especially while the 
ANN is used in non-linear modeling. Kurtulus [8] 
investigated a neural network to model the unsteady 
aerodynamic force coefficients of flapping motion. 
The shape of the simulated force coefficients was in a 
good agreement with the numerical results. Huang et 
al [9] developed a robust optimization and applied to 
supercritical wing aerodynamic design. Their 
optimization design system consists of genetic 
optimization algorithm, improved back propagation 
(BP) neural network and deformation grid technology. 
Sun et al. [10] proposed an applicable airfoil / wing 
inverse design method by using Artifical Neural 
Network and airfoil / wing database, to fit the required 
aerodynamical features. 
 
FORTRAN is selected as the programming language. 
FORTRAN's wide usage in aerospace industry for 
decades, performance and conventionality for writing 
technical formulas makes FORTRAN an ideal 
candidate for this study. 
 
Onera M6, which is widely used in CFD applications, 
is modified as a Forward Swept Wing and used as the 
initial model. Afterwards, taper ratio and section of 
the wing are changed to create new members of 
generation. Finally, using Genetic Algorithm and 
Artificial Neural Networks, new alternatives and 
better members of population are obtained in order to 
optimize the wing. 
 
In this study, an efficient hybrid aerodynamic 
optimization method for 3-D wing configurations by 
using both genetic and artificial neural network is 
investigated. Artificial Neural Network (ANN) is used 
with a new approach in the aerodynamic optimization 
of a forward swept wing. The developed technique has 
been found much more robust than Genetic Algorithm 
(GA) only methods. 
 

2. ARTIFICIAL NEURAL NETWORK  
 
In the hybrid technique used in this study, a trained 
ANN operator produces a candidate solution at each 
step of the GA process by using the target fitness 
values. Thus, a training set for the ANN uses FSW 
geometries and flow parameters calculated by the 
Euler flow solver [11]. At the beginning, the response 
surface obtained from the ANN is not expected to be 
close enough to the target solution, because the GA 
population (the set of training data for the ANN) is 
probably far from the target values. For this reason, at 
the initial generations, ANN produces unsuitable 
candidate solution with respect to the desired 
parameters. However, this candidate may have better 
fitness value than those produced by the GA. In this 
case, the member predicted by the ANN can make the 
GA faster in the exploration of better individuals. That 
is, even if ANN does not give the desired candidate, it 
may be able to provide a better individual for the 
population. On the other hand, as the GA progresses 
and the individuals (set of training data for the ANN) 
get closer to the target, ANN can produce better 
alternative candidates and eventually can achieve the 
desired solution. Consequently, this positive 
interaction between the ANN and the GA can lead to 
relatively faster selection of the desired solution.  
 
In this research, as an ANN method, Radial Basis 
Function Networks (RBFN) technique is used. In the 
RBFN technique shown in Figure 1, training set made 
out of m samples as related to input data which have n 
parameters, is calculated by using the following 
equations. 
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At first m radial basis (h) are calculated for input data. 
Then weights wj are calculated between output layer 
and hidden layer based on output values (f). The 
number of individuals in training and the number of 
neurons in hidden phase are assumed the same.  
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Figure 1. Layers of the RBFN technique as ANN 
 
This means that the matrix [h] is m×m square matrix. 

The parameter   in the equations 1 is the radial 
function. It may be taken in different forms. It is used 
as Gauss form in this study: 
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Rs can be defined by user as real number. The weights 
wj are determined according to with the Equation 1c. 
Therefore it is possible to estimate output f(x) after 
determining u and h values by using the following 
formula: 
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The training of the RBFN is performed based on 
individuals of the genetic algorithm population. Hence 
n chromosomes of each individual become the x 
parameters of the input layer. The fitness values of the 
GA optimization process will be f parameters of the 
output layer. 
 
3. DEVELOPED HYBRID TECHNIQUE 
 
The ANN method is embedded into the GA 
optimization process along with augmented elitism.  
The augmented elitism is a precaution against the 
possibility of a bad member produced by the ANN 
procedure. In this case the best two members are 
taken from the previous population instead of the 
ANN member. However this is only a precaution and 
it is needed few times.  
 
In this optimization, the main aim is to minimize the 
inviscid drag force. However it is not the unique 
target, while minimizing the drag, the lift force and 
the thickness ratio are aimed to be held fixed. The 
taper ratio and the wing sections are taken as design 

variables. The outlines of hybrid optimization of FSW 
are shown in Figure 2. 
 

 

Figure 2 Main steps of the hybrid optimization 
process 

 
The algorithm evaluates design variables depending 
on the design constraints. The initial (or starting) 
population is produced by changing the initial wing 
section and taper ratio. Afterwards, these initial 
candidates are subjected to hybrid optimization 
operations. All members in each population (or 
generation) are evaluated according to fitness values. 
Each member is then subjected to crossover process in 
accordance with the fitness values. The selection 
probability of each candidate depends on these fitness 
values. After this, the mutation process is applied to 
randomly alter some members. Maximum fitness 
values are calculated in Figure 3. 
 

 

Figure 3 Maximum fitness values during the hybrid 
optimization. 

Each generation consists of ten members and their 
surface plot is given in Figure 4. As it can be seen on 
the figure, fitness values increase with each generation 
and reach the peak at the final (50th) generation 
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Figure 4 Fitness values within each generation during the hybrid optimization. 
 

Because of elitism applied to genetic processes the 
maximum fitness value can not be less than previous 
step. So that the best member found in each 
generation can not be worse than the previous 
generation. Improvement in the drag coefficient is 
shown in the Figure 4. 
 

 

Figure 5 Development of the drag coefficient 
calculated for the best members in each generation. 

 
As it can be seen from the graph, the inviscid drag 
calculated in each step has decreased around 20% 
without a significant change in the thickness and the 
lift values in 500 calculations. An Euler flow solver 
[11] is used to compute the flow parameters around 
FSWs. 
 
In the Figure 6 pressure coefficient contours of the 
initial wing are shown on the left hand side, while the 
best wing obtained at the step 50 (50th generation) is 
seen on the right. The pressure coefficient distribution 
for the initial model is shown in Figure 7. 
 

X

YZ

 

Figure 6 The coefficient of pressure contour starting 
forward swept wing (left) and the best wing at step 50 

(right) 

 

Figure 7 Pressure coefficient plot for the root 
sections. 

 
The difference between wing sections is also very 
less because of the thickness ratio constraint. This 
fairly limits the variations in the genetic process. 
Initial and best wing sections are shown in the Figure 
7.  
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Figure 8 The airfoils of the starting and best FSW 
 
4. COMPARISON OF HYBRID 
OPTIMIZATION TO THE PREVIOUS 
GENETIC OPTIMIZATION 
 
In this section, some critical findings of the hybrid 
optimization technique are to be compared to the 
classical GA results [12-14]. This comparison gives 
relatively significant results. Comparison of 
maximum fitness value development of the hybrid 
(ANN-GA) and GA optimization processes is shown 
in Figure 9. As it can easily be seen on this Figure, 
increase rate in the maximum fitness value of hybrid 
optimization is greater than the GA optimization. The 
hybrid technique reaches the same value, in about 
half time. Because the optimized model in this study 
is 3 dimensional wing geometry, most of the 
calculation time is spent for the flow calculation. 
Each flow solution takes approximately half an hour 
or an hour depending on the mesh density and CPU 
capacity. There are 10 flow calculations in each 
generation. However the genetic optimization and 
ANN operations take maximum a few minutes. 
Because of this, instead of CPU time which depends 
on CPU type and mesh density, reduction in the 
number generations that GA reaches a high maximum 
fitness value, is preferred.  
 

 

Figure 9 Maximum fitness value development 
comparison 

 

Figure 10 shows the differences between drag 
coefficient progresses of ANN-GA and GA 
optimizations. Comparison of taper ratio 
developments in ANN-GA and GA optimizations is 
shown in Figure 11. 

 

Figure 10 Drag coefficient calculated in each step 

 

Figure 11 Taper ratio developments in GA and 
hybrid (ANNGA) optimizations 

 
As it can be seen from the Figure 11, in the previous 
GA optimization, it has been observed that the taper 
ratio tries to increase. However in the hybrid method 
taper ratio stays almost at the same level. 
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5. CONCLUSION AND EVALUATION 
 
By using the developed hybrid method, the drag 
coefficient reduction is performed 33% faster than the 
classical technique. While the hybrid technique 
reaches a specific fitness value in about 250 
calculations, GA only method can obtain the same 
fitness value in 500 calculations. 
Improvement in the drag force is realized without any 
significant change in the lift coefficient and the 
thickness ratio. After 50 generations, the fluctuations 
in the lift coefficient and in the thickness ratio are 
both about 3%. It is possible to keep these differences 
in a smaller margin by increasing the corresponding 
weighting constants in the fitness function. 
Nevertheless it should be noticed that large increment 
in these weighting constants would result in more 
calculation time. 
 
The augmented elitism, which is used in this study, is 
a precaution against any possible bad member 
coming from the ANN operator. That is taking the 
best two members from the previous population 
instead of the ANN produced member.  
 
The inviscid drag calculated in each step is decreased 
by 19% without a significant change in the wing 
thickness and the lift force values in 500 calculations.  
It has been found that this hybrid technique, 
developed in this study, is robust and converges 
faster. It has the capability of eliminating unsuitable 
wing geometries in the produced populations. The 
ANN method improves the classical GA, makes it go 
faster and capable of better selection. 
 
This study has shown that the ANN technique is 
working in reducing the process time especially for 
the 3-D aerodynamic optimization. Normally the 3-D 
flow calculations take much time and the GA 
methods require many calculations for different 3-D 
geometries. From this point, the ANN techniques can 
be useful especially for 3-D genetic optimizations. 
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