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Abstract In this study, the combined effects of two-parameter elastic foundation and thermal environment on
the buckling behaviors of carbon nanotube (CNT) patterned composite conical shells in the framework of the
shear deformation theory (SDT) are investigated. It is assumed that the nanocomposite conical shell is freely
supported at its ends and that the material properties are temperature dependent. The derivation of fundamental
equations of CNT-patterned truncated conical shells on elastic foundations is based on the Donnell shell theory.
The Galerkin method is applied to the basic equations to find the expressions for the critical temperature (CT)
and axial buckling loads of CNT-patterned truncated conical shells on elastic foundations and in thermal
environments. In the presence of elastic foundations and thermal environments, it is estimated how the effects
of CNT patterns, the volume fractions, and the characteristics of conical shells on the buckling load within
SDT change by comparing them with the classical shell theory (CST).

1 Introduction

The rapid development of nanotechnology in recent years has facilitated the production of nanotubes and
greatly expanded their applications. Carbon nanotubes produced by Iijima are used in various industries and
are used in new materials with great potential for future use [1–3]. One of the most important applications
for CNTs with superior properties is as a reinforcing element in conventional composites. The mechanical,
thermal and electrical properties of composites reinforced with carbon nanotubes are significantly improved,
and the resistance and strength of structural elements are also significantly increased [4–13]. These require-
ments increase the attention of researchers to the problems of stability of nanocomposite structures containing
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carbon nanotubeswith smooth and inhomogeneous profiles under various loads and thermal environments. The
stability of composite cylindrical shells reinforced with functionally graded CNTs in thermal environments
was first discussed in the study by Shen [14]. After this study, some studies of the loss of stability of cylindrical
and conical shells containing CNTs in thermal environments were carried out [15–21].

CNT-containing composites are increasingly used not only in the aerospace industry, but also in various
engineering applications due to their many unique advantages, such as higher hardness and lighter weight, cor-
rosion resistance and long service life compared to metals. Composite structures containing carbon nanotubes
with a uniform and functional distribution are also used in civil and engineering construction, nuclear power
plants, oil pipelines and other fields, so they come into contact with various types of soil. One such soil model
is the Pasternak soil model or the two-parameter elastic foundation model [22]. A special case of this model is
the well-known Winkler soil model, which consists of parallel springs that are not in contact with each other.
Sun andHuang [23] adapted the Pasternak-type soil model for conical shells.With the help of thesemodels, the
behavior of the building element is investigated in various environments. When modeling structural elements
containing carbon nanotubes, it is necessary to jointly investigate the influence of an elastic foundation, thermal
environment, and reinforcement on the buckling load, whichmakes materials functionally differentiated. In the
literature, there are some studies on the interaction of structural elements containing CNTs with soil in thermal
environments, and most of those used cylindrical shells and panels or used numerical methods [24–30].

Since the volumetric content of composites reinforcedwith carbon nanotubes is distributed as a gradient, the
transverse shear modulus of the construction is much lower than the effective elastic modulus in the direction
of the fiber, it is more susceptible to transverse shear, and should be considered. These factors necessitate
generalization of the previously known shear deformation theories [31–34] to the problems of CNT reinforced
structural elements. The application of shear deformation theory to the thermal stability problems of conical
shells composed of functionally graded materials was first performed by Sofiyev [35].

A review of the literature shows that the stability characteristics of polymer conical shellswithCNTpatterns
resting on a two-parameter elastic foundation within SDT have not been sufficiently studied in the thermal
environment. The aim of present study will be to eliminate this deficiency.

2 Theoretical development

Consider that a truncated conical shell with slant length l, thickness h, small and large bases circle radii b and
a, and half-peak angle α made of polymer with a CNT pattern is resting on the elastic foundation, which uses
a two-parameter elastic foundation model proposed by Pasternak [22] and developed by Sun and Huang [23]
for conical shells (Fig. 1). In this model, the pressure on the bottom surface of the cone is expressed by the
following expression [23]:

N � Kww − Kp

(
∂2w

∂S2
+
1

S

∂w

∂S
+

1

S2
∂2w

∂θ21

)
(1)

Fig. 1 Truncated conical shell made of polymer with the CNT pattern on an elastic foundation
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Fig. 2 CNT distribution throughout the thickness of the polymer cone

where θ1 � θ sin α, N is the surface pressure, and Kw and Kp are the normal elastic modulus and shear
modulus of the foundation, namely theWinkler foundation parameter and the Pasternak foundation parameter.

The truncated conical shell is referenced to a coordinate system (O Sθ z) in which S and θ are along the
meridional and circumferential directions of the cone and z is in the direction of the inward normal to the
reference surface. The displacements corresponding to the coordinate axes are denoted by u, v, andw, and the
rotations of the normal to the reference surface are denoted by χ1 and χ2 with respect to θ and S, respectively.

It was easily obtained in the practice by Kwon et al. [13] that the material properties of functionally graded
nanocomposites are linear functions of the volume fraction of CNTs through the thickness. As in Shen [14],
uniform (U) and three shapes of V -, O-, and X-patterns can be considered:

Vcnt (z1) �
⎧⎨
⎩
V ∗
cnt for U pattern

(1 + 2z1)V ∗
cnt for O pattern

4|z1|V ∗
cnt for X pattern

(2)

where z1 � z/h and the following definition applies:

V ∗
cnt � mcnt/[mcnt (1 − ρcnt/ρm) + ρcnt/ρm] (3)

in which mcn is a mass fraction of CNTs. The CNT distribution throughout the thickness of the polymer cone
is shown in Fig. 2.

We assume that the material properties of CNTs and polymer are temperature dependent [14]:

E11(z1, T ) � η1Vcnt (z1)E
cnt
11 (T ) + VmEm,

η2

E22(z1, T )
� Vcnt (z1)

Ecnt
22 (T )

+
Vm

Em(T )
,

η3

G12(z1)
� Vcnt (z1)

Gcnt
12 (T )

+
Vm

Gm(T )
,

G13(z1, T ) � G12(z1, T ), G23(z1, T ) � 1.2G12(z1, T ), ν12 � V ∗
cntν

cnt
11 + Vmνm,

ρ � V ∗
cntρ

cnt + Vmρm, V cnt (z1) + Vm � 1 (4)

where V represents the volume fraction, superscript CNT andm represent the corresponding property for CNT
and matrix, respectively, the efficiency parameters are indicated by ηi (i � 1, 2, 3), and the elasticity moduli
and Poisson’s ratios of the polymer (or matrix) and CNTs are denoted by Em(T ), νm and Ecnt

kk (T ), (k � 1, 2),
Gcnt

12 (T ), νcnt12 , respectively.
The thermal expansion coefficients in the S and θ directions are given by [14]

α11(z1, T ) � αcn
11(T )Vcnt (z1)E

cn
11(T ) + VmEm(T )αm(T )

Vcnt (z1)Ecn
11(T ) + VmEm(T )

,

α22(z1, T ) � (1 + νcnt12 )αcnt
22 (T )Vcnt (z1) + (1 + νm)Vmαm(T ) − ν12α11(z1, T ) (5)

where αcnt
11 (T ), αcnt

22 (T ), and αm(T ) are thermal expansion coefficients.
In the framework of SDT [31], considering the cone-foundation interaction and thermal effects, the gov-

erning equations of CNT-patterned conical shells [36, 37] can be derived in terms of w, χ1, χ2, and the stress
function F , defined by the relations

(TS, Tθ , TSθ ) � h

(
1

S2
∂2F

∂θ21
+
1

S

∂F

∂S
,
∂2F

∂S2
, − 1

S

∂2F

∂S∂θ1
+

1

S2
∂F

∂θ1

)
. (6)

The basic equations can be expressed as (See, Appendix 1)

h

[
c12

∂4F

∂S4
+
c11 − c31

S2
∂4F
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+
3c31 − c21 − 3c11

S3
∂3F

∂S∂θ21
+
c11 + c12 − c22

S

∂3F

∂S3
+
2c21
S3

∂F
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+
c22 − c12 − c11 − c21

S2
∂2F

∂S2
+
3(c21 + c11 − c31)

S4
∂2F

∂θ21

]
− c13

∂4w

∂S4
+
3c14 + 3c32 + c24

S3
∂3w

∂S∂θ21

− c14 + c32
S2

∂4w

∂S2∂θ21
− c13 + c14 − c23

S

∂3w

∂S3
+
c13 + c14 − c23 + c24

S2
∂2w

∂S2
− 3(c14 + c24 + c32)

S4
∂2w

∂θ21

− 2c24
S3

∂w

∂S
+ c15

∂3χ1

∂S3
+
c15 − c25

S

∂2χ1

∂S2
+
c35
S2

∂3χ1

∂S∂θ21
− I3

∂χ1

∂S
− c15 − c25

S2
∂χ1

∂S
− c35

S3
∂2χ1

∂θ21

+
c38 + c18

S

∂3χ2

∂S2∂θ1
− c28 + c18 + c38

S2
∂2χ2

∂S∂θ1
+
2c28
S3

∂χ2

∂θ1
� 0, (7)

h

[
c21
S3

∂4F

∂θ41
+
c22 − c31

S

∂4F

∂S2∂θ21
+
c21
S2

∂3F

∂S∂θ21

]
− c32 + c23

S

∂4w

∂S2∂θ21
− c24
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∂S∂θ21
− c24

S3
∂4w

∂θ41

+
c25 + c35

S

∂3χ1
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+
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+
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+
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h

S tan α

∂2F

∂S2
+ T 0

S
∂2w

∂S2
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(
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∂S2
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1

S
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1
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)
+ I3

(
∂χ1
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S

)
+
I4
S

∂χ2
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� 0 (10)

where T 0
S is the pre buckling force, Ik(k � 3, 4), and bi j and ci j (i � 1, 2, 3, j � 1, 2, ...8) are the temperature-

dependent parameters given inAppendix 2. It should be noted that in the set of Eqs. (7)–(10) the thermalmoment
due to the temperature gradient along the wall thickness is not considered.

In the next step, two different boundary-value problems will be discussed.

a. The material properties of nanocomposite cylindrical shells are independent of temperature and are under
the thermal load. In this case, the membrane form of the equilibrium equations turns into the following
expressions [25]:

T 0
S � −	 � −

h/2∫
−h/2

�H11(z1, T )α11(z1, T ) + H12(z1, T )α22(z1, T )�
Tdz, T 0
θ � 0, T 0

Sθ � 0, (11)

b. The material properties of nanocomposite cylindrical shells are dependent of temperature and under axial
compressive load. In this case, the membrane form of the equilibrium equations turns into the following
expressions [25]:

T 0
S � −T, T 0

θ � 0, T 0
Sθ � 0 (12)

where 	 is the thermal parameter, T is the axial compressive load, and 
T � T1 − T0 is the temperature
rise from a certain reference temperature T0, at which there are no thermal strains, and Hi j (i, j � 1, 2) are
defined in Appendix 1.
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3 Solution method

For the freely supported ends, the coordinates of the conical shell are transformed from (S, θ1) to (x, θ1)
by the following relation: x � ln(S/S2). Considering this transformation, the approximation functions for
the solution of the fundamental equations of CNT-reinforced conical shells satisfying the freely supported
boundary conditions can be sought as follows [35]:

F � A1S2 e
(ξ+1)x sin (β1x) cos(β2θ1), w � A2e

ξ xsin (β1x) cos(β2θ1),

χ1 � A3e
ξ xcos (β1x) cos(β2θ1), χ2 � A4e

ξ xsin (β1x) sin (β2θ1), (13)

where Ai (i � 1, 2, . . . , 4) are unknown amplitudes, β1 � mπ
x0

and β2 � n
sin θ

in which (m, n) is the buckling

mode, x0 � ln S1
S2
, and ξ is the unknown parameter which determined the minimum conditions of the critical

temperature and axial buckling load.
After placing the approximate functions (13) into the system of Eqs. (7)–(11), the determinant of the matrix

consisting of coefficients of the algebraic equations obtained after the application of the Galerkin method is
set to zero, and the following expression is obtained for the critical temperature of CNT-patterned cones on
elastic foundations within SDT:

T Tbucwp
sdt � u41ϑ1 + u43ϑ3 + u44ϑ4 + ϑ2(uW + uP )

	0ϑ2uT
(14)

where

	0 �
h/2∫

−h/2

�H11(z1, T )α11(z1, T ) + H12(z1, T )α22(z1, T )�dz, (15)

ϑ1 � −
∣∣∣∣∣∣
u12 u13 u14
u22 u23 u24
u32 u33 u34

∣∣∣∣∣∣, ϑ2 �
∣∣∣∣∣∣
u11 u13 u14
u21 u23 u24
u31 u33 u34

∣∣∣∣∣∣, ϑ3 � −
∣∣∣∣∣∣
u11 u12 u14
u21 u22 u24
u31 u32 u34

∣∣∣∣∣∣, ϑ4 �
∣∣∣∣∣∣
u11 u12 u13
u21 u22 u23
u31 u32 u33

∣∣∣∣∣∣ (16)

in which the details of the coefficients uij(i, j � 1, 2, ..., 4) and uT , uw, uP are given in Appendix 2. In
expression (14), the material properties of the nanocomposites are independent of temperature.

Considering (12) instead of (11), the following expression is obtained for the axial buckling load of CNT-
patterned conical shells on elastic foundations and in the thermal environment:

T axbucwp
sdt � u41ϑ1 + u43ϑ3 + u44ϑ4 + ϑ2(uW + uP )

ϑ2uT Emh
. (17)

The nondimensional axial buckling load (NABL) of CNT-patterned conical shells resting on elastic foun-
dations and in the thermal environment is defined as:

T axbucwp
1sdt � T axbucwp

sdt

Emh
. (18)

Assuming that the unit normal is perpendicular to the mid-surface before and after deformation, the expres-
sions (14) and (18) transform into the expressions for CT and NABL of CNT-patterned conical shells on elastic
foundations based on the CST and are denoted as T Tbucwp

cst and T axbucwp
cst , respectively, in the special cases.

When the half apex-angle approaches zero (α → 0), the expressions for CT and NABL of CNT-patterned
cylindrical shells on elastic foundations based on the SDT are obtained from expressions (14) and (18),
respectively, in the special cases.

When Kw and Kp in the expressions (14) and (18) are considered equal to zero at the same time, the
expressions for CT and NABL of unconstrained conical shells by CNT patterns are obtained in the special
cases.

The minimum values of CT and NABL for nanocomposite cones on elastic foundations in the framework
of STD are found by minimizing (14) and (18) depending on the parameters m, n, and ξ . The minimum values
of CT and NABL for freely supported nanocomposite cones in the framework of STD and CST are achieved
at approximately ξ � 2.1.
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Table 1 Comparison of the axial buckling load of cylindrical shells with U- and X-patterns within SDT in thermal environments

T axbucsdt
Shen � 2πRcyl T axbuc

sdt (in kN), (m, n)

U X U X
T (K) Shen [14] Present study

300 122.25 148.06 122.026 (2,4) 148.958 (1,3)
500 97.56 113.56 97.739 (2,4) 113.021 (1,3)
700 68.96 76.49 69.910 (1,3) 76.185 (1,3)

4 Numerical results and discussion

4.1 Comparison studies

The magnitudes of the axial buckling load of unconstrained shear deformable cylindrical shells modeled with
U- and X-type CNTs are listed in Table 1 for comparison with the results of Shen [14] in thermal environments.
Since the axial buckling load in the thermal environment is used as T axbucsdt

Shen � 2πRcylT axbuc
sdt in Ref. [14],

the expression (17) in our study is multiplied by 2πRcyl at Kw � Kp � 0, α → 0◦. In comparison, poly
(methylmethacrylate) called PMMA is chosen for thematrix and (10, 10) CNTs as reinforcement. Thematerial
properties of PMMA are: Ym(T ) � (3.52 − 0.0034T ) GPa, νm � 0.34, αm(T ) � 45(1 + 0.0005
T ) ×
10−6/K, where T � T0 +
T and T � 300 K (room temperature). In such a way, αm � 45×10−6/K, Ym �
2.5 GPa at T � 300 K. The posteriori specified shape functions are defined as: fi (z) � z − 4

3 z
3, (i � 1, 2)

[31]. The variation of the thermomechanical properties of CNT with temperature is expressed by the following
cubic functions [14]:

Ecnt
11 (T ) � (6.3998 − 4.338417 × 10−3 × T + 7.43 × 10−6 × T 2 − 4.458333 × 10−9 × T 3) × 1012,

Ecnt
22 (T ) � (8.02155 − 5.420375 × 10−3 × T + 9.275 × 10−6 × T 2 − 5.5625 × 10−9 × T 3) × 1012,

Gcnt
12 (T ) � (1.4075 + 3.476208 × 10−3 × T − 6.965 × 10−6 × T 2 + 4.479167 × 10−9 × T 3) × 1012,

αcnt
11 (T ) � (−1.12515 + 0.02291688 × T − 2.887 × 10−5 × T 2 + 1.13625 × 10−8 × T 3) × 10−6,

αcnt
22 (T ) � (5.43715 − 9.984625 × 10−4 × T + 2.9 × 10−7 × T 2 + 1.25 × 10−11 × T 3) × 10−6.

The efficiency parameters are given as [13]:

η1� 0.137, η2� 1.022, η3� 0.7η2 at V ∗
cnt� 0.12; η1� 0.142, η2� 1.626, η3� 0.7η2 at V ∗

cnt� 0.17;

η1� 0.141, η2� 1.585, η3� 0.7η2 at V ∗
cnt� 0.28.

The geometrical characteristics of CNT and cylinders are: Lcnt � 9.26 nm, Rcnt � 0.68 nm, hcnt �
0.067 nm, νcnt12 � 0.175, and Rcyl � 0.06(m), h � 0.002 (m),lcyl � 0.1987(m), V ∗

cnt � 0.17 [14].
As can be seen from Table 1, the minimum values of the axial buckling load of the U and X-patterned CNT

cylindrical shells within SDT obtained in our study at T � 300, 500, and 700 (K) are in very good agreement
with the results of Shen [14]. The numbers in parentheses (m, n) are the wave numbers corresponding to the
minimum values of the axial buckling load in thermal environments. The minimum value of axial compressive
buckling load for cylindrical shells is obtained at ξ � 0.

4.2 Thermo-elastic buckling analysis

In this Subsection, numerical results are presented for CNT-patterned conical shells exposed to uniform tem-
perature or axial compressive load. For specific analyses, PMMA as matrix and (10, 10) SWCNTs as rein-
forcement were chosen, whose material properties were presented in the previous comparison. The following

symbols are used as T Tbucwp
1cst � T Tbucwp

cst /103, T Tbucwp
1sdt � T Tbucwp

sdt /103, T
axbucwp
1cst � 10T axbucwp

1cst and

T
axbucwp
1sdt � 10T axbucwp

1sdt .
The variation of the values of the critical temperature and corresponding modes (m, n) of CNT-patterned

cones with the material properties independent of temperature versus the coefficients of two-parameter soil
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Table 2 Variation of the minimum values of the critical temperature and corresponding thermal buckling modes (m, n) versus
the Kw(in N/m3) and Kp (in N/m)

Kw � Kw/108, K P � KP/104

Kw K p T Tcrwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
T Tcrwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
T Tcrwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
U O X

0 0 0.587 (1,4) 0.486 (1,4) 0.432 (1,4) 0.366 (1,4) 0.811 (1,4) 0.602 (1,5)
1.5 0 0.617 (1,4) 0.517 (1,4) 0.463 (1,4) 0.396 (1,4) 0.841 (1,4) 0.632 (1,5)

2 0.670 (1,4) 0.570 (1,4) 0.515 (1,4) 0.449 (1,4) 0.894 (1,4) 0.688 (1,4)
2.25 0.677 (1,4) 0.576 (1,4) 0.522 (1,4) 0.456 (1,4) 0.900 (1,4) 0.694 (1,4)
2.5 0.683 (1,4) 0.583 (1,4) 0.528 (1,4) 0.462 (1,4) 0.907 (1,4) 0.701 (1,4)
2.75 0.690 (1,4) 0.589 (1,4) 0.535 (1,4) 0.469 (1,4) 0.913 (1,4) 0.708 (1,4)

1.75 0 0.622 (1,4) 0.522 (1,4) 0.468 (1,4) 0.401 (1,4) 0.846 (1,4) 0.638 (1,5)
2 0.675 (1,4) 0.575 (1,4) 0.520 (1,4) 0.454 (1,4) 0.899 (1,4) 0.693 (1,4)
2.25 0.682 (1,4) 0.581 (1,4) 0.527 (1,4) 0.461 (1,4) 0.905 (1,4) 0.699 (1,4)
2.5 0.688 (1,4) 0.588 (1,4) 0.533 (1,4) 0.467 (1,4) 0.912 (1,4) 0.706 (1,4)
2.75 0.695 (1,4) 0.595 (1,4) 0.540 (1,4) 0.474 (1,4) 0.919 (1,4) 0.713 (1,4)

2 0 0.627 (1,4) 0.527 (1,4) 0.473 (1,4) 0.406 (1,4) 0.851 (1,4) 0.643 (1,5)
2 0.680 (1,4) 0.580 (1,4) 0.525 (1,4) 0.459 (1,4) 0.904 (1,4) 0.698 (1,4)
2.25 0.687 (1,4) 0.586 (1,4) 0.532 (1,4) 0.466 (1,4) 0.910 (1,4) 0.704 (1,4)
2.5 0.694 (1,4) 0.593 (1,4) 0.539 (1,4) 0.472 (1,4) 0.917 (1,4) 0.711 (1,4)
2.75 0.700 (1,4) 0.600 (1,4) 0.545 (1,4) 0.479 (1,4) 0.924 (1,4) 0.718 (1,4)

2.25 0 0.633 (1,4) 0.532 (1,4) 0.478 (1,4) 0.411 (1,4) 0.856 (1,4) 0.648 (1,5)
2 0.685 (1,4) 0.585 (1,4) 0.530 (1,4) 0.464 (1,4) 0.909 (1,4) 0.703 (1,4)
2.25 0.692 (1,4) 0.591 (1,4) 0.537 (1,4) 0.471 (1,4) 0.915 (1,4) 0.710 (1,4)
2.5 0.699 (1,4) 0.598 (1,4) 0.544 (1,4) 0.477 (1,4) 0.922 (1,4) 0.716 (1,4)
2.75 0.705 (1,4) 0.605 (1,4) 0.550 (1,4) 0.484 (1,4) 0.929 (1,4) 0.723 (1,4)

Kw, and KP are presented in Table 2. As can be seen from Table 2, the values of the CT increase as the soil
coefficients Kw(in N/m3) and Kp (in N/m) increase separately and together. The following data are used:
T � 300 (K), l/b � 1, b/h � 20, α � 25◦, V ∗

cnt � 0.12, h � 0.002m, Kw � Kw/108, K P � KP/104.
In the presence of ground, the effect of transverse shear deformations (TSDs) on the critical temperature is
reduced compared to unconstrainedCNT-patterned conical shells.While TSDs effect decreasesmore slowly for
theWinkler foundation or Kw �� 0, Kp � 0, this decrease is more pronounced for the Pasternak foundation or
(Kw, Kp) �� (0, 0). For example, excluding the influence of the foundation, i.e., (Kw, Kp) � (0, 0), the effects
of TSDs on the CT are 17.21%, 15.28% and 25.77% for composite conical shells with U-, O- and X-patterns,
respectively, while if (Kw, Kp) � (1.5 × 108, 0), those effects are slightly reduced for each of the templates
U,O, and X and are, respectively, 16.21%, 14.47%, and 24.85%, and if (Kw, Kp) � (2.25×108, 2.75×104),
those effects are 14.18%, 12%, and 22.17%, respectively.

In the presence of ground, the effect of templates on the CT is reduced compared to unconstrained CNT-
patterned conical shells. While it decreases slowly for Kw �� 0, Kp � 0, this decrease is more pronounced
for (Kw, Kp) �� (0, 0). For example, excluding the influence of the foundation, i.e., (Kw, Kp) � (0, 0), the
effects of O- and X-templates on the CT are (− 24.69%) and (+ 23.87%), respectively, while those effects
are slightly reduced for each of O- and X-templates and are, respectively, (− 23.4%) and (+ 22.4%), if
(Kw, Kp) � (1.5 × 108, 0), moreover those effects are (− 20%) and (+ 19.5%), respectively, if (Kw, Kp) �
(2.25 × 108, 2.75 × 104). In the presence of Pasternak and Winkler foundations, TSDs reduce the influence
of the O-shape on the critical temperature by about 1.5–2% compared to the CST, while in the X-shape it is
reduced by about 12–15%.

Tables 3 and 4 and Figs. 3 and 4 show the changes of the nondimensional axial buckling load of CNT-
patterned truncated conical shells in the presence and absence of elastic foundations in thermal environments
depending on the increase of the half-peak angle α based on SDT and CST. The following data are used
in the creation of Tables 3 and 4, and Figs. 3 and 4: l � b, b � 20h, V ∗

cnt � 0.12, h � 2(mm),
Kw � 1.5× 108(N/m3), Kp � 2.75× 104(N/m), T � 300, 400, 500, and 600 (K). In the framework of both
theories, as the α increases from 10° to 45°, the magnitudes of the NABL of nanocomposite conical shells with
and without elastic foundations decrease, while this decrease becomes more pronounced with the increasing
of the temperature.
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Table 3 Variation of the magnitudes of T axbucwp
1cst , T axbucwp

1sdt and corresponding axial buckling modes for CNT-patterned cones
on the elastic foundation in thermal environments versus the angle α

T
axbucwp
1cst (m, n) T

axbucwp
1sdt (m, n) T

axbucwp
1cst (m, n) T

axbucwp
1sdt (m, n) T

axbucwp
1cst (m, n) T

axbucwp
1sdt (m, n)

α U O X

T � 300 (K),Kw � 1.5 × 108(N/m3), Kp � 2.75 × 104(N/m)
10o 1.202 (1,4) 1.004 (1,4) 0.941 (1,4) 0.809 (1,4) 1.583 (1,4) 1.195 (1,4)
20o 1.122 (1,4) 0.948 (1,4) 0.874 (1,4) 0.759 (1,4) 1.486 (1,4) 1.136 (1,4)
30o 1.038 (1,4) 0.899 (1,4) 0.805 (1,4) 0.713 (1,4) 1.381 (1,4) 1.086 (1,4)
40o 0.957 (1,4) 0.853 (1,4) 0.738 (1,4) 0.670 (1,4) 1.280 (1,4) 1.041 (1,4)
45o 0.918 (1,4) 0.832 (1,4) 0.707 (1,4) 0.650 (1,4) 1.233 (1,4) 1.020 (1,4)
T � 400 (K)
10o 1.154 (1,4) 0.942 (1,4) 0.898 (1,4) 0.764 (1,4) 1.526 (1,3) 1.116 (1,4)
20o 1.080 (1,4) 0.892 (1,4) 0.836 (1,4) 0.719 (1,4) 1.438 (1,4) 1.064 (1,4)
30o 1.001 (1,4) 0.848 (1,4) 0.772 (1,4) 0.677 (1,4) 1.339 (1,4) 1.020 (1,4)
40o 0.925 (1,4) 0.808 (1,4) 0.710 (1,4) 0.639 (1,4) 1.244 (1,4) 0.981 (1,4)
45o 0.888 (1,4) 0.789 (1,4) 0.682 (1,4) 0.621 (1,4) 1.197 (1,3) 0.962 (1,4)
T � 500 (K)
10o 1.107 (1,3) 0.879 (1,4) 0.859 (1,4) 0.719 (1,4) 1.476 (1,3) 1.034 (1,4)
20o 1.043 (1,4) 0.835 (1,4) 0.802 (1,4) 0.678 (1,4) 1.397 (1,3) 0.988 (1,4)
30o 0.969 (1,4) 0.796 (1,4) 0.743 (1,4) 0.641 (1,4) 1.305 (1,4) 0.950 (1,4)
40o 0.897 (1,4) 0.762 (1,4) 0.686 (1,4) 0.608(1,4) 1.212 (1,4) 0.917 (1,4)
45o 0.861 (1,3) 0.746 (1,4) 0.659 (1,3) 0.593 (1,4) 1.168 (1,3) 0.901 (1,4)
T � 600 (K)
10o 1.061 (1,3) 0.809 (1,4) 0.815 (1,3) 0.670 (1,4) 1.429 (1,3) 0.943 (1,4)
20o 1.003 (1,3) 0.772 (1,4) 0.768 (1,3) 0.634 (1,4) 1.354 (1,3) 0.903 (1,4)
30o 0.936 (1,3) 0.739 (1,4) 0.714 (1,4) 0.602 (1,4) 1.269 (1,3) 0.886 (1,3)
40o 0.868 (1,3) 0.710 (1,4) 0.660 (1,3) 0.574 (1,4) 1.182 (1,3) 0.844 (1,4)
45o 0.836 (1,3) 0.697 (1,4) 0.634 (1,3) 0.561 (1,4) 1.141 (1,3) 0.832 (1,4)

Table 4 Variation of the magnitudes of T axbuc
1cst , T axbuc

1sdt and corresponding axial buckling modes for CNT-patterned cones without
elastic foundation in thermal environments versus the angle α

T
axbuc
1cst (m, n) T

axbuc
1sdt (m, n) T

axbuc
1cst (m, n) T

axbuc
1sdt (m, n) T

axbuc
1cst (m, n) T

axbuc
1sdt (m, n)

α U O X

T � 300 (K), Kw � Kp � 0
10o 1.024 (1,4) 0.825 (1,4) 0.763 (1,4) 0.631 (1,4) 1.405 (1,4) 1.017 (1,4)
20o 0.956 (1,4) 0.782 (1,4) 0.708 (1,4) 0.593 (1,4) 1.319 (1,4) 0.970 (1,4)
30o 0.881 (1,4) 0.739 (1,5) 0.648 (1,4) 0.556 (1,4) 1.224 (1,4) 0.921 (1,5)
40o 0.807 (1,4) 0.698 (1,5) 0.589 (1,4) 0.520 (1,4) 1.131 (1,4) 0.880 (1,5)
45o 0.772 (1,4) 0.681 (1,5) 0.561 (1,4) 0.504 (1,4) 1.087 (1,4) 0.862 (1,5)
T � 400 (K)
10o 0.976 (1,4) 0.764 (1,4) 0.720 (1,4) 0.586 (1,4) 1.351 (1,4) 0.938 (1,4)
20o 0.914 (1,4) 0.726 (1,4) 0.670 (1,4) 0.552 (1,4) 1.271 (1,4) 0.897 (1,4)
30o 0.844 (1,4) 0.687 (1,5) 0.615 (1,4) 0.520 (1,4) 1.182 (1,4) 0.853 (1,5)
40o 0.776 (1,4) 0.652 (1,5) 0.561 (1,4) 0.489 (1,4) 1.095 (1,4) 0.818 (1,5)
45o 0.743 (1,4) 0.637 (1,5) 0.535 (1,4) 0.475 (1,4) 1.053 (1,4) 0.803 (1,5)
T � 500 (K)
10o 0.934 (1,4) 0.701 (1,4) 0.681 (1,4) 0.540 (1,4) 1.305 (1,4) 0.856 (1,4)
20o 0.877 (1,4) 0.668 (1,4) 0.636 (1,4) 0.511 (1,4) 1.231 (1,4) 0.820 (1,5)
30o 0.812 (1,4) 0.634 (1,5) 0.586 (1,4) 0.484 (1,5) 1.148 (1,4) 0.783 (1,5)
40o 0.749 (1,4) 0.605 (1,5) 0.536 (1,4) 0.457 (1,5) 1.065 (1,4) 0.754 (1,5)
45o 0.719 (1,4) 0.592 (1,5) 0.513 (1,4) 0.446 (1,5) 1.027 (1,4) 0.742 (1,5)
T � 600 (K)
10o 0.894 (1,4) 0.632 (1,4) 0.643 (1,4) 0.492 (1,4) 1.263 (1,4) 0.765 (1,4)
20o 0.841 (1,4) 0.605 (1,5) 0.602 (1,4) 0.468 (1,4) 1.194 (1,4) 0.733 (1,5)
30o 0.782 (1,4) 0.575 (1,5) 0.557 (1,4) 0.443 (1,5) 1.116 (1,4) 0.704 (1,5)
40o 0.724 (1,4) 0.552 (1,5) 0.513 (1,4) 0.421 (1,5) 1.039 (1,4) 0.681 (1,5)
45o 0.697 (1,4) 0.542 (1,5) 0.491 (1,4) 0.412 (1,5) 1.003 (1,4) 0.672 (1,5)
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Fig. 3 Variation of NABLs for CNT-patterned conical shells with and without Pasternak elastic foundation versus the half-peak
angle α with T � 300 and 600 (K) based on the SDT

Fig. 4 Variation of NABLs for CNT-patterned conical shells with and without Pasternak elastic foundation versus the half-peak
angle α with T � 300 and 600 (K) based on the CST

With an increase in α from 10° to 45°, the effect of TSDs on the values of the NABL decreases. In addition,
although the influence of the soil reduces the influence of TSDs on the axial buckling load, on the contrary, the
presence of the thermal environment makes it much more pronounced (see Figs. 3 and 4). For example, when
T � 300 (K) and α increases from 10° to 45°, the influences of TSDs on the NABL for U-, O- and X-templates
reduce from 16.47%, 14.03%, and 24.51% up to 9.37%, 8.06%, and 17.27%, respectively. At T � 600(K) and
α increasing from 10° to 45°, the effect of transverse shear deformations on the NABL decreases from 23.75%,
17.79%, and 34.01% up to 16.63%, 11.51%, and 27.08% for U-, O-, and X-configurations, respectively.
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Fig. 5 Variation of NABLs of CNT-patterned conical shells with and without elastic foundations versus the b/h ratio within SDT
at T � 400 (K)

It is noticed that the effects of O- and X-shapes on the NABL increase in comparison with the uniform
distribution of CNTs when the half-peak angle increases. Furthermore, the ground effect reduces the influence
of patterns on the magnitudes of axial buckling load, while the effect of thermal environment reduces the
influence of the patterns. For example, when T � 300(K) and α increases from 10° to 45°, the effects of O-
and X -patterns on the NABL compared to the uniform distribution are increasing from (− 19.42%) and (+
19.02%) up to (− 21.88%) and (+ 22.6%), respectively, within the SDT. If T � 600(K) and α increases from
10° to 45°, the effects of O- and X-patterns on the NABL are increased from (− 17.18%) and (+ 16.56%) up
to (− 19.51%) and (+ 19.37%), respectively. In addition, considering the TSDs reduce the pattern effects on
the NABL compared to the CST. As the half-peak angle α increases, the influence of the elastic foundation on
the NABL of CNT-patterned conical shells within SDT increases, although not significantly (by around 1%).

The variations of the NABL of CNT-patterned cones with the temperature-dependent material properties
(T � 400 K) versus the b/h ratio for (Kw, Kp) � (1.5 × 108, 2.25 × 104), (Kw, Kp) � (1.5 × 108, 0), and
(Kw, Kp) � (0, 0) based on SDT and CST are illustrated in Figs. 5 and 6, respectively. Other data are given
as: l/b � 1, V ∗

cnt � 0.12, h � 0.002 m and T � 400(K). In the presence of Pasternak and Winkler soils, the
influence of TSDs on the NABLs with the increasing b/h ratio decreases significantly for all patterns, whereas
it is more evident for the cone with the U-pattern. For instance, in the presence of Pasternak soil, the effects
of TSDs on the NABLs in U-, O-, and X-patterned cones for b/h � 20 are 16.76%, 13.65%, and 25.44%,
respectively, while for b/h � 35 those decrease up to 1.66%, 3.45%, and 4.33%, respectively. It is seen that
those effects are more pronounced by around 0.58–2.25% in the presence of Winkler foundation and around
2–3% in the absence of the foundation.

In the grounded and ungrounded cases, as the b/h ratio increases, the influences of O- and X -patterns
on NABLs are significantly reduced compared to the U-pattern in the framework of SDT, while those are
more pronounced in the context of CST. For instance, in the framework of SDT and in the presence of the
Pasternak foundation, the effects of O- and X-patterns on the NABL are (− 20.26%) and (+ 20.14%) for b/h
� 20 and those are (− 14.89%) and (+ 15.91%) for b/h � 35. It has been determined that those effects are
more pronounced by around 2–4% in the presence of the Winkler soil and by around 4–12% in the absence
of the soil. In the framework of both theories, the foundation effect on the NABL increases strongly with the
increase in the b/h ratio. Consider the TSD makes the ground effect on the NABL more pronounced than the
CST, and it increases when the b/h ratio increases. It is revealed that the most significant effect of Pasternak
and Winkler soils on the NABL is in the O-patterned cones. The small changes of the b/h ratio significantly
increase the influence of the soils on the NABL.

The variation of the critical temperature of CNT-patterned conical shells (material properties independent
of the temperature) with and without elastic foundations versus the V ∗

cnt is given in Table 5. The data used
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Fig. 6 Variation of NABLs of CNT-patterned conical shells with and without elastic foundations versus the b/h within CST at
T � 400 (K)

Table 5 Variation of the critical temperature and corresponding modes (m, n) of CNT-patterned conical shells with and without
elastic foundations versus the V ∗

cnt

T T crwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
T Tcrwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
T Tcrwp
1cst

(m, n)
T Tcrwp
1sdt

(m, n)
U O X

V ∗
cnt (Kw, KP ) � (1.5 × 108, 2.75 × 104)

0.12 1.080 (1,4) 0.923 (1,4) 0.840 (1,4) 0.736 (1,4) 1.434 (1,4) 1.110 (1,4)
0.17 1.545 (1,4) 1.342 (1,4) 1.192 (1,4) 1.051 (1,4) 2.071 (1,4) 1.636 (1,4)
0.28 2.236 (1,4) 1.798 (1,4) 1.686 (1,4) 1.440 (1,4) 3.116 (1,4) 2.159 (1,4)
V ∗
cnt (Kw, KP ) � (0, 0)

0.12 0.919 (1,4) 0.761 (1,4) 0.678 (1,4) 0.574 (1,4) 1.272 (1,4) 0.945 (1,5)
0.17 1.384 (1,4) 1.181 (1,4) 1.031 (1,4) 0.890 (1,4) 1.910 (1,4) 1.474 (1,5)
0.28 2.074 (1,4) 1.633 (1,5) 1.525 (1,4) 1.279 (1,4) 2.955 (1,4) 1.990 (1,5)

in numerical calculations are: T � 300 (K), l/b � 1, b/h � 20, Kw � 1.5 × 108(N/m3), KP � 2.75 ×
104 (N/m), h � 0.002(m), α � 25◦. The influence of TSDs on the CT for CNT-patterned cones is significant
but irregular as V ∗

cnt increases. For example, while the effect of TSDs on the CT for cones with and without
elastic foundations first increases and then decreases in all patterns. The highest effect of TSDs on the CT is
found to be 32.66% in the X-patterned cone without elastic foundation at V ∗

cnt � 0.28, while in the presence
of the foundation it is 1.95% less. In the presence of the ground, when O- and X-patterns are compared with
the U-pattern, the lowest effect on the CT within SDT is (-19.91%) for V ∗

cnt � 0.28 in the O-pattern, while the
largest effect occurs in the X-pattern with (+ 21.91%) for V ∗

cnt � 0.17 in the framework of SDT. It is observed
that the effect of soil on the CT decreases significantly when the volume fraction increases in the framework
of both theories. For example, in the framework of SDT, at V ∗

cnt � 0.12, 0.17, and 0.28, the ground effects
on the CT of the O-patterned cones are 28.22%, 18.09%, and 12.59%, respectively, while those effects on
the CT of the X-patterned cones are 17.46%, 10.99%, and 8.49%, respectively. In addition, it is determined
that the effect of the foundation on the CT is about 2–5% more pronounced within SDT than the effect in the
framework of CST.
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5 Conclusions

Buckling of CNT-patterned conical shells under mechanical and thermal loads is carried out within SDT
on the elastic foundations and in thermal environments. By using Donnell shell theory, basic equations of
CNT-patterned truncated conical shells with temperature-dependent material properties are derived, and then
analytical expressions are found for the axial buckling load and critical temperature of CNT-patterned conical
shells under freely supported boundary conditions in elastic and thermal environments, using the Galerkin
method. After confirming the accuracy of the obtained expressions with comparisons, the influences of the
elastic foundation and thermal environment on the buckling behaviors are evaluated by changing the CNT
patterns, volume fraction index, and parameters of the cone.

Appendix 1

The shear deformation theory proposed by Ambartsumian is built on the following assumptions [31]:

e33 � 0, σ13 � d f1
dz

χ1(S, θ1), σ23 � d f2
dz

χ2(S, θ1). (19)

In the presence of a temperature field, the constitutive relations of CNT-patterned conical shells are formed
as follows within SDT [15, 35]:⎡

⎢⎢⎢⎢⎢⎣

τ11

τ22

τ12

τ13

τ23

⎤
⎥⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
H11(z1, T ) H12(z1, T ) 0 0 0
H21(z1, T ) H22(z1, T ) 0 0 0
0 0 H66(z1, T ) 0 0
0 0 0 H44(z1, T ) 0
0 0 0 0 H55(z1, T )

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

e11
e22
γ12

γ13

γ23

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

τ11T

τ22T

0

0

0

⎤
⎥⎥⎥⎥⎥⎦ (20)

where τi j and eii , γi j (i � 1, 2, j � 2, 3) are stresses and strains, respectively, and Hi j (i, j � 1, 2, . . . , 6) are
defined as:

H11(z1, T ) � E11(z1, T )

1 − ν12ν21
, H12(z1, T ) � ν21E11(z1, T )

1 − ν12ν21
, H21(z1, T ) � ν12E22(z1, T )

1 − ν12ν21
,

H22(z1, T ) � E22(z1, T )

1 − ν12ν21
, H44(z1, T ) � G23(z1, T ), H55(z1, T ) � G13(z1, T ),

H66(z1, T ) � G12(z1, T ) (21)

in which the thermal stresses τ11T and τ22T are defined as

τ11T � −H11(z1, T )α11(z1, T )T (z1), τ22T � −H22(z1, T )α22(z1, T )T (z1). (22)

By using relations (19) and (20), the components of the strain field (e11, e22, γ12) at an arbitrary point of the
CNT-patterned conical shells can be expressed as those of its mid-surface (e011, e022, γ012) and its curvature
changes as follows:

⎡
⎣ e11
e22
γ12

⎤
⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e011 − z
∂2w

∂ S2
+ I1(z, T )

∂χ1

∂S

e022 − z

S2
∂2w

∂θ21
+
1

S

∂w

∂S
+
I2(z, T )

S

∂χ2

∂θ1

γ012 − 2z

(
1

S

∂2w

∂S∂θ1
− 1

S2
∂w

∂θ1

)
+
I2(z, T )

S

∂χ1

∂θ1
+ I1(z, T )

∂χ2

∂S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(23)

where

I1(z, T ) �
z∫

0

d f1
dz

1

G13(z1, T )
dz, I2(z, T ) �

z∫
0

d f2
dz

1

G23(z1, T )
dz. (24)



Influences of elastic foundations and thermal environments on the buckling of shells 697

The forces Ti j (i, j � 1, 2), Qi (i � 1, 2) and moments Mi j (i, j � 1, 2) are obtained by integrating (20)
through the thickness of CNT-reinforced cones [36, 37]:

(
Ti j , Qi , Mi j

) �
h/2∫

−h/2

(
τi j , τi3, τi j z

)
dz, (i, j � 1, 2), (25)

Thermal forces T T
11, T

T
22 and moments MT

11, MT
22 are expressed as follows:

T T
11 �

h/2∫
−h/2

[H11(z1, T )α11(z1, T ) + H12(z1, T )α22(z1, T )]
T dz,

T T
22 �

h/2∫
−h/2

[H21(z1, T )α11(z1, T ) + H22(z1, T )α22(z1, T )]
T dz,

MT
11 �

h/2∫
−h/2

[H11(z1, T )α11(z1, T ) + H12(z1, T )α22(z1, T )]
T zdz,

MT
22 �

h/2∫
−h/2

[H21(z1, T )α11(z1, T ) + H22(z1, T )α22(z1, T )]
T zdz. (26)

Appendix 2

The coefficients bi j , ci j (1, 2, . . . , 4) and I j ( j � 3, 4) in Eqs. (7)–(10) are expressed as

c11 � q111b11 + q112b21, c12 � q111b12 + q112b22, c13 � q111b13 + q112b23 + q211,

c14 � q111b14 + q112b24 + q212, c15 � q111b15 + q112b25 + q115, c18 � q111b18 + q112b28 + q118,

c21 � q121b11 + q122b21, c22 � q121b12 + q122b22, c23 � q121b13 + q122b23 + q221,

c24 � q121b14 + q122b24 + q222, c25 � q121b15 + q122b25 + q125, c28 � q121b18 + q122b28 + q128,

c31 � q166b31, c32 � q166b32 + 2q266, c35 � q135 − q166b35, c38 � q138 − q166b38,

b11 � q022



, b12 � −q012



, b13 � q012q
1
21 − q111q

0
22



, b14 � q012q

1
22 − q112q

0
22



,

b15 � q025q
0
12 − q015q

0
22



, b18 � q028q

0
12 − q018q

0
22



, b21 � −q021



; b22 � q011



,

b23 � q111q
0
21 − q121q

0
11



, b24 � q112q

0
21 − q122q

0
11



, b25 � q015q

0
21 − q025q

0
11



, b31 � 1

q066
,

b28 � q018q
0
21 − q028q

0
11



, 
 � q011q

0
22 − q012q

0
21, b32 � −2q166

q066
, b35 � q035

q066
, b38 � q038

q066
,

I3 �
h/2∫

−h/2

d f1(z)

dz
dz, I4 �

h/2∫
−h/2

d f2(z)

dz
dz (27)

in which qkmi j (m � 1, 2) are described by

qk111 �
h/2∫

−h/2

H11(z1, T )zk1dz, qk112 �
h/2∫

−h/2

H12(z1, T )zk1dz �
h/2∫

−h/2

H21(z1, T )zk1dz � qk121,
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qk122 �
h/2∫

−h/2

H22(z1, T )zk1dz, qk166 �
h/2∫

−h/2

H66(z1, T )zk1dz ; k1 � 0, 1, 2,

qk215 �
h/2∫

−h/2

zk2 I1(z, T )H11(z1, T )dz, qk218 �
h/2∫

−h/2

zk2 I2(z, T )H12(z1, T )dz,

qk225 �
h/2∫

−h/2

zk2 I1(z, T )H21(z1, T )dz, qk228 �
h/2∫

−h/2

zk2 I2(z, T )H22(z1, T )dz,

qk235 �
h/2∫

−h/2

zk2 I1(z, T )H66(z1, T )dz, qk238 �
h/2∫

−h/2

zk2 I2(z, T )H66(z1, T )dz, k2 � 0, 1. (28)

Appendix 3

The coefficients ui j (i, j � 1, 2, . . . , 4) and uT , uW , uP are described by

u11 � −2δ−1

S32

{
c12

[
3(ξ − 1)(ξ + 1)3 + 2β2

1 (ξ + 4)(ξ + 1) − β4
1

] − (c11 − c31)β
2
2

(
ξ2 − ξ − 2 + β2

1

)}
− δ−1

S32

{
3(2c31 + c21 − 3c11)β

2
2 + (c11 − 5c12 − c22)

[
(ξ + 1)2(4ξ − 5) + β2

1 (4ξ + 7)
]

+2(7c12 + 4c22 − 4c11 − c21)
[(

ξ2 − ξ − 2
)
+ β2

1

] − 9(c11 − c12 − c22 + c21)
}
,

u12 � −2δ−2

S42

{−c13
[
(3ξ − 4)ξ3 + 2ξ(ξ + 2)β2

1 − β4
1

]
+ (c14 + c32)β

2
2

[
ξ(ξ − 2) + β2

1

]
+ (4c14 + 4c32 + c24)β

2
2 + (c23 + 5c13 − c14)

(
2ξ3 + 2ξβ2

1 − 3ξ2 + β2
1

)
+(4c14 − 4c23 − 7c13 + c24)

[
ξ(ξ − 2) + β2

1

] − 3(c14 + c24 + c32)β
2
2 − 3(c23 + c13 − c14 − c24)

}
,

u13 � δ−1

β1S32

{
c35

[
(2ξ − 1)ξ + 2β2

1

]
β2
2 − c15

[
(2ξ − 1)ξ3 + 3ξβ2

1 − 2β4
1

]
+ 2c15 + c25)

× (
β2
1 − ξ2 + 2ξ3 + 2ξβ2

1

) − 2c25
[
(2ξ − 1)ξ + 2β2

1

]}
− δ+1

β1S32

{−I3
[
ξ(1 + 2ξ) + 2β2

1

]
S22 + c35(2ξ + 1)β2

2

}
,

u14 � δ−1β2

β2
1 S

3
2

{−2(c38 + c18)β
2
1

[
(ξ − 1)ξ + β2

1

] − (c28 + 2c18 + 2c38)β
2
1 + 4c28β

2
1

}
,

u21 � 2β2
2δ0

S22

[
c21β

2
2 + (c22 − c31)

(
ξ2 − 1 + β2

1

) − c31 + c22 − c21
]
,

u22 � −2β2
2δ−1

S32

{−2(c32 + c23)
[
(ξ − 1)ξ + β2

1

] − 2c24β
2
2 − c32 − c23 + c24

}
,

u23 � β2
2

{
δ−1(c25 + c35)

[
(2ξ − 1)ξ + 2β2

1

]
S32β1

+
2c35δ0
β1S22

}
,

u24 � −2β2

S22

{[
c38

(
β2
1 + ξ2

)
+ c28β

2
2

]
δ0 + I4δ+2

}
,

u31 � 2δ−1

S32

{
b11β

4
2 + (b31 + b21 + b12)β

2
2

(
ξ2 − 1 + β2

1

)
+ (2b31 + 3b21 + b12)β

2
2 − (b31 + 2b21 + 2b11)β

2
2

+ b22
[
β4
1 − (ξ + 1)3(3ξ − 1) − 2(ξ + 3)(ξ + 1)β2

1

]
+ (4b22 + b12 − b21)

(
2β2

1ξ − 1 + 3ξ2 + 3β2
1 + 2ξ3

)
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−(5b22 + 3b12 − 3b21 − b11)
(
β2
1 + ξ2 − 1

)
+ 2(b11 + b21 − b22 − b12)

}
,

u32 � −δ−1

S42

{−2b14β
4
2 + 2(b32 − b13 − b24)

(
ξ2 − ξ + β2

1

) − (b13 − 2b32 + 3b24)β
2
2 − 2(b32 − 2b24 − 2b14)β

2
2

− 2b23
[
(2 − 3ξ)ξ3 − 2β2

1ξ(ξ + 1) + β4
1

] − (b13 − b24 + 4b23)
(
4ξ3 − 3ξ2 + 4β2

1ξ + β2
1

)
−2(b14 − 3b13 + 3b24 − 5b23)

[
ξ2 − ξ + β2

1

]
+ (b14 − 3b13 + 3b24 − 5b23)

}
+
2δ0(β2

1 + ξ2)

S32
cot α,

u33 � 2δ0
(
β2
1 + ξ2

)
β1S32

[
(b35 + b15)β

2
2 − b25

(
ξ2 − β2

1

) − (b25 + b15)ξ − b15
]
,

u34 � 2δ0
S32

[
b18β2 − b18β

3
2 − (b38 + b28)β2

(
β2
1 + ξ2

)]
,

u41 � −2δ0
(
β2
1 + ξ2

)
S22

cot α, u43 � −δ+1 I3
β1S2

[
(2ξ + 1)(1 + ξ ) + 2β2

1

]
,

u44 � 2I4δ+1β2

β1S2
, uT � −2(ξ2 + β2

1 )δ0
S22

, uW � −2δ+2Kw, uP � −2δ0
(
ξ2 + β2

1 + β2
2

)
S22

Kp (29)

where

δi � β2
1

[
1 − e−(2ξ+i)x0

]
[
(2ξ + i)2 + 4β2

1

]
(2ξ + i)

; i � −2;−1; 0; 1; 2. (30)
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