
ORIGINAL ARTICLE

An efficient binary chimp optimization algorithm for feature selection
in biomedical data classification

Elnaz Pashaei1 • Elham Pashaei2

Received: 9 July 2021 / Accepted: 21 November 2021 / Published online: 17 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Accurate classification of high-dimensional biomedical data highly depends on the efficient recognition of the data’s main

features which can be used to assist diagnose related diseases. However, due to the existence of a large number of irrelevant

or redundant features in biomedical data, classification approaches struggle to correctly identify patterns in data without a

feature selection algorithm. Feature selection approaches seek to eliminate irrelevant and redundant features to maintain or

enhance classification accuracy. In this paper, a new wrapper feature selection method is proposed based on the chimp

optimization algorithm (ChOA) for biomedical data classification. The ChOA is a newly proposed metaheuristic algorithm

whose capability for solving feature selection problems has not been investigated yet. Two binary variants of the ChoA are

introduced for the feature selection problem. In the first approach, two transfer functions (S-shaped and V-shaped) are used

to convert the continuous version of ChoA to binary. In addition to the transfer function, the crossover operator is utilized

in the second approach to improve the ChOA’s exploratory behavior. To validate the efficiency of the proposed

approaches, five publicly available high-dimensional biomedical datasets, and a few datasets from different domains such

as life, text, and image are employed. The proposed approaches were then compared with six well-known wrapper-based

feature selection methods, including multi-objective genetic algorithm (GA), particle swarm optimization (PSO), Bat

algorithm (BA), ant colony optimization (ACO), firefly algorithm (FA), and flower pollination (FP) algorithm, as well as

two standard filter-based feature selection methods using three different classifiers. The experimental results demonstrate

that the proposed approaches can effectively remove the least significant features and improve classification accuracy. The

suggested wrapper feature selection techniques also outperform the GA, PSO, BA, ACO, FA, FP, and other existing

methods in the terms of the number of selected genes, and classification accuracy in most cases.
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1 Introduction

Biological data, such as microarrays, are one of the most

essential analytical tools for medical researchers and

biologists. Microarray data analysis allows for more

accurate diagnosis and prognosis of patient diseases, as

well as better clinical decision-making. The main chal-

lenging issues associated with microarray data are the curse

of dimensionality and complex interaction between fea-

tures. Microarray data consist of a small number of patient

samples with a large number of features (genes), most of

which are redundant and irrelevant. The presence of irrel-

evant and redundant features in biological datasets might

obscure the important ones, causing many learning algo-

rithms to perform poorly. To overcome this challenge,

feature selection (FS) is required [1]. FS is typically con-

sidered as a preprocessing mechanism that aims to choose a

subset of significant features to alleviate overfitting,

improve the accuracy and interpretability of the learned

model, speed up the learning process, and reduce dataset

storage memory requirements [2]. From a biological
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perspective, FS helps molecular biologists to identify the

molecular mechanism driving cancer gene expression,

interpret the underlying pattern of data to discover new

therapeutic targets for those selected features, and reduce

clinical costs [3, 4].

The FS process involves two main stages: feature-subset

search and feature-subset assessment. In the first stage, a

search strategy is needed to explore the search space to find

the optimal feature subset, and a learning algorithm is

required in the second stage to assess the quality of the

selected feature subset [5]. A wide variety of FS methods

for classification issues have been proposed, which can be

divided into three classes: wrapper-based, filter-based, and

hybrid approaches. Filter-based approaches focus solely on

the interior characteristics of training data to rank features

and are independent of any learning algorithm. Wrapper-

based techniques, on the one hand, rely on a specialized

learning algorithm (classifier) to determine the optimal set

of features. The wrapper approaches typically outperform

filter approaches in terms of classification performance, but

require high computational time, especially for high-di-

mensional data due to the frequent use of learning algo-

rithms in their search strategy. The filter-based methods are

less time-consuming than the wrapper-based method since

no learning algorithm is involved in their search stage.

However, the filter-based models suffer in terms of accu-

racy because they are not iterative models and their search

strategy only comprises a single iteration, making them get

stuck in local optima easily [6]. A combination of these

two approaches has also been proposed as hybrid models to

combine their strengths.

Recently swarm intelligence (SI)-based optimization

methods have gained a lot of interest due to their high

performance in tackling FS problems. Some of most pop-

ular SI-based FS methods are Whale optimization algo-

rithm (WOA) [1], ant colony optimization (ACO) [7], bat

algorithm (BA) [3, 8], artificial bee colony (ABC) [9, 10],

particle swarm optimization (PSO) [11], biogeography

based optimization (BBO) [12], genetic algorithm (GA)

[13–15], harmony search algorithm (HSA) [16], flower

pollination (FP) algorithm [17], grasshopper optimization

algorithm (GOA) [18], firefly algorithm (FA) [19], and

binary dragonfly (BDF) algorithm [20]. However, because

of the intricate interactions between features in biomedical

data, the large feature search space, and the stochastic

nature of the approaches, most of these algorithms are

susceptible to the stagnation problem and may suffer from

degraded performance [3, 5, 21]. Therefore, the door is still

open for more improvement, and a strong search method

capable of exploring the search space more complete,

eluding local minima, and exploiting the global optimum

more reliably is demanded to better address the FS

problem.

The Chimp Optimization Algorithm (ChOA) [22] is a

recent SI algorithm that mimics the chimps’ intelligent

group hunting (IGH) behavior and their social diversity.

For hunting prey, chimps are separated into four groups

and undertake four different actions: dividing, chasing,

blocking, and attacking. These four groups of the chimps

and several operators such as diverse intelligence and

sexual motivation were mathematically modeled to create

ChOA with high exploration and exploitation ability. The

ChOA has been successfully used to train neural network

(NN) [23] parameters, and a hybrid version [24] and a

modified version of ChOA [25] have also been presented.

However, to the best of our knowledge, the effectiveness of

ChOA has not been investigated in the feature selection

problem.

In this paper, two new wrapper feature selection

approaches based on ChOA are proposed to identify the

optimal feature subset for biomedical data classification. In

addition to using the main operators of the ChOA, some

modifications need to be done on the algorithm in order to

solve FS problems since the original version of the ChOA

was created to address continuous problems. This paper

primarily proposes two binary ChOA (BChOA) variants:

• In the first version, two transfer functions (S-shaped and

V-shaped) are suggested to map the continuous data

into binary ones.

• In the second version, the crossover operator is

integrated with BChOA (BChOA-C) to empower the

algorithm’s exploration capabilities.

The fundamental idea is to assign a binary structure to

each chimp in the population that indicates whether or not a

feature belongs in the final list of features. As a fitness

function, the accuracy of two learning algorithms, Naı̈ve

Bayes (NB) [26, 27] andK-nearest neighbor (K-NN) [26, 28]

is used in the proposed algorithms. The learning algorithm is

trained with the given features and tenfold cross-validation

(CV) is used to evaluate each chimp (candidate solution).

Extensive experiments were carried out on five popular

microarray datasets (large-scale biological data), as well as

various small biological, text, and image datasets. For per-

formance evaluation, the proposed approaches are compared

with six previous binary optimization algorithms: PSO, BA,

ACO, GA, FA, FP, and other well-regard filtering approa-

ches. The conducted experiments demonstrate that the pro-

posed approaches have better performance compared to the

above-mentioned algorithms and several current state-of-

the-art methods in the term of accuracy and number of

selected features. Furthermore, the results show that incor-

porating a crossover operator into the BChOA improves the

classification accuracy of the model.

The rest of the paper is structured as follows. Section 2

presents a review of recent literature on the FS techniques
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in biomedical data classification. Section 3 provides all the

details about the ChOA. The suggested binary ChOA for

feature selection is discussed in Sect. 4. The details of the

conducted experiments and achieved results on well-known

datasets are given in Sect. 5. The conclusion and future

work are presented in Sect. 6.

2 Related works

FS is an NP-hard search problem [29] that aims to find the

optimal number of features (attributes) from the original

dataset without sacrificing the performance of the classifi-

cation. Based on the number of features in the original

dataset, the complexity of the problem grows exponen-

tially. Therefore, metaheuristic search (MHS) algorithms

have been employed to improve the obtained result and the

computational time in large problems. There have been

several attempts to review the FS methods [30, 31]. In this

section, we briefly review various FS approaches which

can be categorized into three classes: filter, wrapper (MHS-

Based), and hybrid models.

The filter technique ranks each feature based on its

discriminating power between different classes without

considering any learning algorithm. In filter methods,

various criteria are utilized to find the features’ importance

such as information theory, cross-entropy, symmetrical

uncertainty, correlation, similarity, and statistical mea-

sures. Examples include Information Gain (IG) [32],

Markov blanket [33], Correlation-based FS (CFS) [11],

Fast Correlation Based Filter (FCBF)[34], Fisher score

[35], Relief-F [36], Chi-square [37], Random Forest

Ranking (RFR) [38], simplified silhouette filter (SSF) [39],

Condition Mutual Information Maximization (CMIM) [40],

Double Input Symmetrical Relevance (DISR) [41], and

Minimum Redundancy Maximum Relevance (mRMR)

[42]. The mRMR is a popular filter method in biological

data that seeks features with the greatest relevance to the

class and the least redundancy between them [8, 43].

The filter methods usually carry out on microarray

datasets as a preprocessing step, to reduce the dataset’s

high dimensionality by removing redundant and irrelevant

features within a reasonable time. The obtained dataset is

then fed to wrapper algorithms to find the optimal feature

subset. The hybrid model, which is extensively employed

in biological data, is based on the idea of sequentially

applying both a filter and a wrapper technique. Since the

hybrid model supplies a reduced feature set to the wrapper

technique, an extended search of feature subsets is avoided

[6].

The wrapper technique utilizes a learning algorithm as a

fitness function to evaluate the quality of the feature subset.

The wrapper model is an iterative search procedure in

which the learning algorithm’s accuracy is employed to

direct search space at each iteration. Various learning

algorithms such as Support Vector Machine (SVM) [44],

Decision Tree (DT) [45], Artificial Neural Network (ANN)

[46], K-NN [47], and NB [48] have been used in wrapper-

based FS method for better classification of biomedical

data. Generally, wrapper-based methods can be divided

into two categories: greedy and random search approaches.

Examples of greedy methods include sequential forward

selection (SFS) [49], backward selection (SBS) [50], and

hill-climbing algorithm [8] in which a single feature is

added or removed iteratively in a greedy manner. The

random search approaches are mainly based on MHS

algorithms. MHS algorithms are nature-inspired optimiza-

tion algorithm (NIOA) that use randomness in their search

strategy to explore a large portion of the search space.

The majority of NIOA’s have been introduced for con-

tinuous search space and they should be converted to

binary form to solve discrete optimization problems like FS

[51]. Several transfer functions (TFs) have been utilized for

these purposes within the NIOAs such as S-shaped [52],

V-shaped [53], U-shaped [54], and X-shaped [55]. The TFs

play a key role in the efficiency of binary NIOAs.

Different binary NIOAs have been proposed for FS so

far using these TFs, which can be classified into four

groups: evolution-based, SI-based, physics-based, and

human-related approaches. The most popular evolution-

based FS algorithm is a binary genetic algorithm (GA)

[13, 14, 26, 38] that simulates Darwinian evolution con-

cepts. Some of the most popular physical-based FS meth-

ods which mimic the physical concept in the world are

binary black hole algorithm [43, 56–58], simulated

annealing (SA) [59, 60], and gravitational search algorithm

(GSA) [61]. The examples of human-based approaches in

FS of biomedical data include Teaching Learning-based

optimization (TLBO) algorithm [59], the BrainStorm

Optimization (BSO) algorithm [62], and the JAYA algo-

rithm [63] which are inspired by human behaviors in

society. SI-based algorithms (SIA) are inspired by animals’

behavior in herds, flocks, colonies, or schools. SIAs have

shown to be quite competitive with the other three types of

NIOAs, and have several advantages over them, such as

fewer parameters, fewer operators, and the ability to

remember search space [22]. Some of the well-known

suggested binary SIA for FS are PSO [2, 11], GOA [64],

ABC algorithm [9, 10, 65], BA [3], Krill Herd algorithm

(BKH) [32], Gray Wolf Optimizer (GWO) [21], Bacterial

Foraging Optimization (BFO) algorithm [66], cuckoo

search algorithm [67], and Moth Fame Optimization

(MFO) algorithm [68]. The following is an analysis of

some of the selected literature.

Wang et al. [33] proposed to integrate the Markov

blanket filter technique into wrapper-based SFS for feature
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selection of biomedical data. This model speeds up the FS

process by reducing the number of candidate features for

the wrapper evaluation. K-NN, NB, and DT classifiers

were used in this study as the fitness function for feature

subset evaluation.

Dashtban and Balafar [26] introduced a hybrid evolu-

tionary algorithm called an intelligent dynamic genetic

algorithm (IDGA) for the FS of microarray data. First,

Fisher score was used to reduce dimensionality and provide

statistically significant features to the next step. Then, the

IDGA method was applied to find the optimal feature

subset. Moreover, three classifiers, namely SVM, NB, and

K-NN, were utilized to measure the performance of IDGA.

Later on, Zhou et al. [14] developed a problem-specific

non-dominated sorting genetic algorithm (PS-NSGA), as a

multi-objective FS algorithm for high-dimensional data

classification. The suggested algorithm included a non-

dominated sorting with a preference for accuracy, a rapid

bit mutation operator, a mutation-retry operator, and a

combination operator to solve the FS issue efficiently.

Their study reported the proposed PS-NSGA approach

achieves better classification performance and smaller

feature subsets in comparison to existing evolutionary and

traditional feature selection methods.

Shukla et al. [59] introduced a new hybrid wrapper

strategy for determining the optimal feature subsets to

predict cancerous-genes., based on the combination of

TLBO with the SA algorithm called TLBOSA. First, CFS

was utilized to filter the redundant feature from the bio-

logical datasets. Then, TLBOSA was used to identify the

subset of the most informative features. Also, a new TF

was proposed to convert the continuous version of

TLBOSA to binary. It was found that TLBOSA outper-

forms other wrappers in terms of classification accuracy

and a small subset of features.

An improved binary krill herd (MBKH) algorithm for

FS has been developed by Zhang et al. [32]. The study

utilized the IG filter method as a preprocessing step to rank

and remove redundant features. Then, MBKH was applied

to find out the best feature subset. In the suggested method,

the hyperbolic tangent function was employed as the

transfer function, and the chaos memory weight factor was

introduced into the movement operators of the MBKH

algorithm to enhance its local and global search abilities. A

new hybrid filter-wrapper strategy was proposed in [21], in

which robust mRMR (rmRMR) was used as a filter

approach to choose the top-ranked features, and modified

GWO (MGWO) with SVM evaluator was utilized as a

wrapper approach to seeking the best subset of features. To

increase the diversity of the population in the MGWO,

TRIZ-inspired optimization operators were introduced in

the original GWO, which result in a practical and effective

FS tool to select the most informative features.

Although several binary NIOAs for FS have been pre-

sented, due to the stochastic nature of the NIOAs according

to the No-Lunch theorem, there is still room for more

improvements. This is one of the key inspirations for this

study, in which two novel binary versions of ChOA, are

developed and compared to current well-known discrete

NIOAs in the literature for FS of high-dimensional

biomedical data.

3 Chimp optimization algorithm

ChOA is a new SI-based optimization algorithm that was

proposed by Khishe and Mosavi in 2020 [22]. The basic

idea for ChOA comes from the chimps’ intelligence and

sexual motivation in their group haunting, which differs

from that of other social hunters. Due to its simplicity, local

optima avoidance, high convergence speed, and low com-

putational overhead, this approach has been widely used to

determine the best possible solutions for complex opti-

mization problems [24, 25].

Chimps’ hunting behavior is divided into two phases:

exploration and exploitation. The exploration entails

moving, blocking, and chasing the prey which leads to

discovering a wider region of the search space globally,

while exploitation entails attacking the prey that provides

local search potential across the promising areas discov-

ered during the exploration process. To implement the

steps of hunting, four groups of chimps are used: driver,

chaser, barrier, and attacker. Each chimp in the population

represents a candidate solution in the search space, and

attacker, barrier, chaser, and driver chimps represent the

best (leader), second best, third best, and fourth-best

solutions, respectively. At each iteration, after determining

the position of the attacker (xattacker), barrier (xbarrier), chaser

(xchaser), and driver (xdriver) chimps (i.e., the four best

chimps), the rest of the chimps (xchimp) are forced to update

their positions according to the locations of these four best

chimps using the following equations:

x1 t þ 1ð Þ ¼ xattacker tð Þ � A1: Dattackerð Þ; Dattacker

¼ C1:xattacker � m:xchimp tð Þ
�
�

�
�

x2 t þ 1ð Þ ¼ xbarrier tð Þ � A2: Dbarrierð Þ; Dbarrier

¼ C2:xbarrier � m:xchimp tð Þ
�
�

�
�

x3 t þ 1ð Þ ¼ xchaser tð Þ � A3: Dchaserð Þ; Dchaser

¼ C3:xchaser � m:xchimp tð Þ
�
�

�
�

x4 t þ 1ð Þ ¼ xdriver tð Þ � A4: Ddriverð Þ; Ddriver

¼ C4:xdriver � m:xchimp tð Þ
�
�

�
�

ð1Þ

xchimp t þ 1ð Þ ¼ x1 þ x2 þ x3 þ x4
4

ð2Þ
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where t is the current iteration’s number, xchimpðtÞ implies

the location of each solution in iteration t. A and C indicate

coefficient vectors that are formulated in Eqs. (3) and (4).

A1 ¼ 2:f :r11 � f ; C1 ¼ 2:r12

A2 ¼ 2:f :r21 � f ; C2 ¼ 2:r22

A3 ¼ 2:f :r31 � f ; C3 ¼ 2:r32

A4 ¼ 2:f :r41 � f ; C4 ¼ 2:r42

ð3Þ

f ¼ 2� t � 2

T

� �

ð4Þ

where f decreases linearly from 2 to 0, and T indicates the

maximum number of iterations. r1 and r2 are random

scaled factors within [0,1] which are calculated as follows:

c1g1 ¼ 1:95� 2 � t14
T

1
3

 !

; r11 ¼ c1g1 � randðÞ;

c2g1 ¼
2 � t13
T

1
3

þ 0:5; r12 ¼ c2g1 � randðÞ

c1g2 ¼ 1:95� 2 � t13
T

1
4

 !

; r21 ¼ c1g1 � randðÞ;

c2g2 ¼ 2 � t3

T3

� �

þ 0:5; r22 ¼ c2g1 � randðÞ

c1g3 ¼ �3 � t3

T3

� �

þ 1:5; r31 ¼ c1g3 � randðÞ;

c2g3 ¼
2 � t13
T

1
3

þ 0:5; r32 ¼ c2g3 � randðÞ

c1g4 ¼ �2 � t3

T3

� �

þ 1:5; r41 ¼ c1g4 � randðÞ;

c2g4 ¼ 2 � t3

T3

� �

þ 0:5; r42 ¼ c2g4 � randðÞ:

ð5Þ

where randðÞ stands for uniform distribution with a scale of

0 to 1. In Eq. (1) m indicates a chaotic value between 0 and

1 derived from one of the chaotic maps mentioned below:

Quadratic : xiþ1 ¼ m ¼ x2i � c; c ¼ 1

Gauss=mouse : xiþ1 ¼ m ¼
1; xi ¼ 0

1

mod xi; 1ð Þ ; otherwise

8

<

:

Logistic : xiþ1 ¼ m ¼ axi 1� xið Þ; a ¼ 4

Singer : xiþ1 ¼ m ¼ l�
7:86xi � 23:31x2iþ

28:75x3i � 13:302875x4i

 !

; l

¼ 1:07

ð6Þ

Bernoulli : xiþ1 ¼ m ¼ 2xi mod1ð Þ

Tent : xiþ1 ¼ m ¼
xi
0:7

; xi\0:7

10

3
1�&xið Þ; 0:7� xi

8

><

>:

According to Eqs. (1) and (2), the chimps update their

positions according to the population’s best locations

where D is the distance between the chimp (xchimp) and a

prey. The A and C values are adjusted to monitor the areas

where a solution can be found near the best solution. The m

value represents the influence of the chimps’ sexual moti-

vation, which causes them to behave erratically in the final

stages of the hunting process, releasing their hunting

responsibilities and desperately attempting to obtain meat.

Chimps use this chaotic behavior in the final stage of

ChOA to overcome local optima stagnation and slow

convergence speed issues when solving complex problems.

To update the chimps’ position during optimization a

probability of%50 is assumed to select between the chaotic

model and the normal position updating process. The fol-

lowing equation expresses the model:

xchimp t þ 1ð Þ ¼ f xð Þ ¼
x1 þ x2 þ x3 þ x4

4
; if ðp\0:5Þ

m; if p� 0:5ð Þ

(

ð7Þ

where p is a random number in [0,1].

The ChOA’s pseudo-code is shown in Fig. 1. The

algorithm starts by creating a randomly generated popula-

tion and setting the positions of the attacker (xattacker),

barrier (xbarrier), chaser (xchaser), and driver (xdriver) to zero

vector. The algorithm repeats the steps below until it

reaches a termination criterion. First, each solution in the

population is evaluated using a fitness function. Second,

the algorithm updates the positions of the attacker, barrier,

chaser, driver, and their scores. Third, the algorithm

updates the values of f , r1; r2, and m coefficients using

Eqs. (4) to (6). Third, using the values of r1; r2; and f

parameters, the values of the main coefficients of A and C

are determined by Eq. (3). Finally, Eqs. (1), (2), and (7) are

used to update the chimps’ positions. As a result, the best

possible solution, i.e., the attacker’s position, is returned.

4 The proposed ChOA-based wrapper FS
methods

The ChOA has been originally defined to operate in a

continuous solution space and has succeeded in tackling a

variety of continuous problems. However, the capability of

the ChOA in solving binary high-dimensional problems,

such as FS has not yet been investigated. This paper aims

to generalize the ChOA to discrete settings, and two new
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binary variants of ChOA are proposed to address the FS

problem. In the first approach, two different TFs, including

S-shaped and V-shaped [52], are utilized in ChOA

(BChOA) to convert continuous search space to a binary

one. In the second approach, in addition to TFs, the posi-

tion of the best solution in BChOA is updated using the

crossover operator (BChOA-C) which improves the

exploration ability of the algorithm.

Figure 2 explores the methodology of the proposed

ChOA-based wrapper FS algorithms. Below steps have

been followed to execute the suggested BChOA-C

algorithm.

Step 1 The original dataset is utilized to create a

population of chimps. Each chimp in the swarm is

regarded as a candidate feature subset. The mRMR

method is used to filter out noisy and redundant genes

before population initialization on microarray datasets.

Fig. 1 Pseudo-code of the ChOA

cFig. 2 Flowchart of the suggested ChOA-based feature selection

wrapper approaches for biomedical data classification. (A) First

approach: the standard binary version of ChOA (BChOA). (B) Second
approach: an improved version of the BChOA, in which BChOA is

hybridized with the crossover operator (BChOA-C)

6432 Neural Computing and Applications (2022) 34:6427–6451

123



Neural Computing and Applications (2022) 34:6427–6451 6433

123



Step 2 The ChOA is performed. The population is

evaluated using a fitness function by employing a

classifier.

Step 3 After assigning fitness values to each solution, the

four best solutions are selected from the population.

Step 4 The single-point crossover operator is performed

between the best and other chimps of the population, and

the better offspring is selected as the new position of

attacker chimp.

Step 5 The algorithm updates the main coefficients (f , m,

C, A, and D), and the rest of the chimps are forced to

update their location according to the best chimp

position.

Step 6 TFs are used to determine the probability of

altering the elements of position vectors. Either Eqs. (9–

10) or Eqs. (11–12) are used to update the elements of

position vectors in BChOA. Thus, the movements are

restricted to 0 and 1 values.

Step 7 The algorithm repeats the above steps until it

reaches the value of the maximum iteration.

Step 8 If the termination condition is satisfied, the

algorithm will stop and return the best solution, i.e.,

position of the attacker chimp, in the current population.

Step 9 The algorithm returns to step 2 if the termination

condition is not met.
Fig. 3 Binary representation of candidate solutions

Fig. 4 Pseudo-code of the

suggested BChOA for FS
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Each of the following subsections describes a compo-

nent of the proposed methods in detail.

4.1 Solution representation

In general, to apply the ChOA as a wrapper-based FS

technique, the search space should be modeled by candi-

date feature subsets or binary solutions. Each candidate

solution (chimp) is represented by a one-dimensional bin-

ary vector of d elements, pos ¼ f1; f2; . . .; fdð Þ, where d

indicates the problem dimension (i.e., the number of all

features in the original dataset). In the solution vector, each

bit fj has a value of ‘‘1’’ or ‘‘0.’’ The value 1 indicates that

the corresponding feature will be maintained, whereas 0

indicates that it will be discarded. The binary representa-

tion of a ChOA’s solution can be seen in Fig. 3.

ChOA initially starts with a set of randomly generated

binary solutions or candidate feature subsets. They can be

seen as the position of chimps in search space. Only fea-

tures coded in ones will be considered in the evaluation.

The algorithm utilizes an objective (fitness) function to

evaluate the effectiveness of each solution during the

search.

4.2 Fitness function

The fitness function is an important factor to consider when

designing any NIOA. Finding the optimal feature subset is

a difficult task in the wrapper-based FS methods since it

aims to find a subset with the highest accuracy and fewest

number of features. The solution is better if it has fewer

features and has a higher classification accuracy. An effi-

cient fitness function should take into account these two

conflicting objectives and strike a balance between them

[3]. In this study, the suggested fitness function combines

the number of selected features in the solution with the

solution’s classification accuracy in order to assign a fitness

value to each subset using the following equation:

Fitness ¼ a� acc Dð Þ þ b� dj j � Rj j
dj j ð8Þ

where acc Dð Þ represents the prediction accuracy of a

classifier on the training dataset (D) with subset features.

The fitness function employs a classifier to evaluate solu-

tions (feature subsets). In wrapper-based FS methods, the

process of learning a classifier is concurrent with FS. Two

widely used classifiers, NB and K-NN (K = 5) [26] are

adopted for the fitness evaluation of solutions using tenfold

CV. dj j indicates the total number of features in the original

dataset, and Rj j stands for the number of selected features

in the solution. The parameters a and b determine the

effects of the accuracy and number of selected features on

the fitness value, respectively. a is in the interval of 0; 1½ �

and b ¼ 1� að Þ. In this work, a was set to 0.8, since the

classification accuracy of the solution is more important

than the number of selected features.

It is worth reminding that after finding the best subset,

leave-one-out- cross-validation (LOOCV) is used to report

the final performance of the proposed binary ChOA on

biomedical datasets.

4.3 Binary ChOA with transfer functions

The classical ChOA algorithm for continuous problems

proceeds in discrete time considering n chimps

p1; p2; . . .; pn, in which each chimp pi has a position in step

t, posti 2 Rd. In discrete problems, however, the search

space contains binary position vectors posti 2 0; 1f gd. Four
best solutions estimate the prey’s location, and other

chimps in the search space update their positions within the

prey’s vicinity. The main challenge in the design of binary

ChOA is that how the algorithm’s movement Eq. (7) in real

space can be interpreted in discrete domains. The most

straightforward technique to convert a continuous search

space to a binary one is to use a transfer function. TFs force

the chimps to move in a binary space by restricting their

movements to 0 and 1 values. The ChOA has been adjusted

to fit into the FS problem by employing two distinct TFs

from two different families: S-shaped and V-shaped [52].

First, a hyperbolic tangent sigmoid (tansig) TF is

employed in ChOA to convert the continuous algorithm to

a binary version. It is utilized to modify chimps’ position

based on the following rules:

Tf posti;d½ �

� �

¼ 2

1þ e
�2�post

i;d½ �
� 1 ð9Þ

postþ1
i;d½ � ¼

1; Tf ðposti;d½ �Þ[ 0:6
0; otherwise

�

ð10Þ

where postþ1
i;d½ � represents the bit value of dth dimension of

ith chimp (position) in the next iteration (t þ 1). The tansig

Fig. 5 The crossover process
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function generates a value in the range �1; 1½ � that specifies
the likelihood of changing the elements of a position from

0 to 1 and vice versa. The value of the dth element in the

ith position vector is set to 0 or 1 based on Eq. (10). The

tansig function belongs to the S-shaped transfer function

category, and it has been used in the proposed binary

ChOA since it has the highest experimental performance

among existing S-shaped TFs.

The TF plays a key role in the efficiency of a binary

algorithm. TFs strike a balance between exploration and

exploitation to reach an appropriate solution. It was shown

that the choice of TFs could significantly affect the

obtained results of the binary algorithm [53]. The high

performance of the V-shaped family of TFs has already

been proven in the literature for binary algorithms [51, 52].

So also the rules of a V-shaped function are explored in

ChOA to generate the next binary positions. The function is

defined as follows:

Fig. 6 Pseudo-code of the suggested BChOA-C for FS
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Table 2 Key to comparative methods

Type Abbreviation Explanation Reference

proposed ChOA-based wrapper

feature selection methods

BChOA-ST Binary Chimp Optimization Algorithm using S-shaped Transfer function –

BChOA-VT Binary Chimp Optimization Algorithm using V-shaped Transfer function

BChOA-C Binary Chimp Optimization Algorithm with Crossover operator

BChOA-VT-

C

Binary Chimp Optimization Algorithm with Crossover operator using

V-shaped Transfer function

Classifiers KNN k-Nearest Neighbor classifier [28]

NB Naı̈ve Bayes classifier [27]

RBFNet Radial Basis function-based Neural Network classifier [70]

Validation approaches LOOCV Leave-One-Out Cross-Validation [71]

K-fold CV K-fold Cross-Validation (k = 10 in this study)

Filter-based feature selection

methods

CFS Correlation-based Feature Selection [11]

FCBF Fast Correlation-Based Filter for feature selection [34]

mRMR Maximum Relevance Minimum Redundancy algorithm [42]

Wrapper-based feature selection

methods

Flower

Pollution

Flower Pollution (FP) optimization algorithm-based feature selection [17]

FireFly Firefly optimization algorithm (FFA) for feature selection [19]

ACO Ant Colony Optimization-based feature selection [7]

Bat binary Bat algorithm for feature selection [3]

PSO binary Particle Swarm Optimization algorithm [2]

Hybrid-based feature selection

methods

IG-MBKH Information Gain and a Modified Binary Krill Herd Algorithm [32]

rMRMR-

MGWO

Robust Maximum Relevance Minimum Redundancy filter and Modified

Gray Wolf Optimizer with TRIZ-inspired operators wrapper

[21]

SFS-MB Wrapper-based Sequential Forward Selection with Markov Blanket [33]

TLBOSA-

SVM

Teaching Learning-Based Optimization, Simulated Annealing, and Support

Vector Machine

[59]

F-Score-

IDGA-F-

SVM

Fisher score filter, Intelligent Dynamic Genetic Algorithm (IDGA)

wrapper, and Support Vector Machine classifier

[26]

VLPSO-LS-

KNN

Variable-Length Particle Swarm Optimization with Local Search and

k-nearest neighbor classifier

[2]

BCO-KNN Bacterial Colony Optimization and k-nearest neighbor classifier [66]

PS-NSGA Problem-Specific Non-dominated Sorting Genetic Algorithm and k-nearest

neighbor classifier

[14]

Table 1 Main characteristics of

the image, text, and biological

datasets

Data set #Features #Samples #Classes Domain

Chess 36 3196(1669,1527) 2 Text

dbworld 242 64 (35, 29) 2 Text

Lymphography 18 148 (2,81,61,4) 4 Life

Lung cancer 56 32(9,13,10) 3 Life

Yale 1024 165 15 Face Image

SRBCT 2308 83 (29, 11, 18, 25) 4 Microarray

Prostate cancer 10,509 102 (50, 52) 2 Microarray

Leukemia 7129 72 (25, 47) 2 Microarray

Brain Tumor_1 5920 90 (60, 10, 10, 4, 6) 5 Microarray

11_Tumors 12,533 174 (26, 8, 26, 23, 12, 11, 7, 27, 6, 14, 14) 11 Microarray
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Tf posti;d½ �

� �

¼
posti;d½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ posti;d½ �

� �2
r

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

ð11Þ

postþ1
i;d½ � ¼

:posti;d½ �; Tf ðposti;d½ �Þ[ r

posti;d½ �; Tf ðposti;d½ �Þ � r

�

ð12Þ

where :POS i; d½ � is the complement operator of POS i; d½ �
and r is a random number in U	 0; 1ð Þ. The value of r has
a significant impact on whether or not the single bit value

of posti;d½ � is filliped for the next position. The flowchart of

the ChOA with transfer functions is demonstrated in

Fig. 2A, and Fig. 4 illustrates the general steps of the

proposed Binary ChOA for FS (See lines 20 and 21).

It is worth noting that generally a filter-based FS method

is applied to biomedical datasets (i.e., microarrays data) as

a preprocessing step to provide strong initial data for the

wrapper-based FS approach [43]. The search space of the

wrapper-based FS approach involves a set of all possible

feature subsets (2d), and the size of the set grow expo-

nentially as the number of features (d) increases. So, filter-

based FS methods are utilized to effectively alleviate the

complexities of the big search space. In this study, mRMR

filter approach [42] was first used to reduce the dimen-

sionality of feature space in the microarray dataset, and the

features with the highest rank are selected to build a new

dataset. Then, the wrapper approach is performed to seek

the most informative feature subset.

4.4 Binary ChOA with crossover scheme

The crossover operator is integrated into BChOA to offer a

new wrapper technique called BChOA-C, which boosts the

proposed BChOA performance. The BAOA produces good

results on a variety of microarray datasets, but in some

datasets, it gets stuck at a sub-optimal solution. So,

BChOA’s behavior with crossover operator is being

examined to improve BChOA exploring capability. The

BChOA-C performs the crossover operator just after

determining the four best solutions in the population. The

crossover operation is done between the best solution

xattacker and current solution POS i;½ � as shown in Eq. (13).

p1; p2½ � ¼ Crossoverðxattacker; POS i;½ �Þ ð13Þ

This paper uses the single-point crossover, in which the

two xattacker and POS i;½ � mating vectors are severed at a

random pivot point. Figure 5 shows an example of this

technique. The binary bits are exchanged between two

solutions as seen in Fig. 5, causing sudden changes in both

solutions. Crossover has the potential to change the global

best solution and to avoid the algorithm from getting stuck

in local optima. In the meantime, the fitness values of the

two offsprings produced by the crossover operator are

compared with the best solution. The algorithm selects the

best offspring as a new candidate solution. If the offspring

has a higher fitness value than xattacker, the position of

xattacker should be replaced and set to the offspring. Fig-

ure 2B shows the flowchart of the proposed BChOA-C

with transfer functions and crossover operator, and Fig. 6

represents the pseudo-code of the algorithm.

5 Experimental result

5.1 Experimental setup

The R programming language was used to implement the

suggested approaches. To evaluate the efficacy of the

proposed BChOA-based techniques, five small-sized data-

sets in the text, life, and image domains, as well as five

high-dimensional public microarray datasets with different

types of diseases, were employed. The small datasets are

obtained from the University of California, Irvine (UCI)

Machine Learning Repository and https://jundongl.github.

io/scikit-feature/datasets.html. The standard microarray

gene expression datasets involving two binary and three

multi-class datasets can be downloaded from https://data.

mendeley.com/datasets/fhx5zgx2zj/1. Table 1 shows the

characteristics of datasets used in this work. To find the

optimal reduct, two wrapper FS techniques based on NB

Table 3 Percentage of average performance using KNN, NB, and RBFNet classifiers on five microarray datasets

Data set KNN NB RBFNet

ACC Se Sp Fumes ACC Se Sp Fumes ACC Se Sp Fumes

SRBCT 83.13 83.1 83.8 83.1 98.7 98.8 98.8 98.8 92.77 92.8 93.7 92.8

Prostate Tumor 84.3 84.3 84.8 84.3 62.7 62.7 66.8 59.9 67.64 67.6 67.8 67.5

Leukemia 87.5 87.4 87.5 87.3 98.6 98.6 98.6 98.6 97.22 97.2 97.3 97.2

Brain Tumor_1 86.6 86.7 86.9 97.0 87.7 86.0 87.8 88.0 81.11 81.1 31.5 79.4

11_Tumors 75.8 75.9 76.6 75.2 89.08 89.1 90.7 89.2 84.48 84.5 86.5 84.5

Bold values represent the best results
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with Gaussian kernel and KNN classifiers (K = 5) are

utilized.

Tenfold CV is used for the assessment of candidate

solutions in the suggested methods. The experiments were

carried out in two stages. Five high-dimensional microar-

ray datasets (SRBCT, Prostate cancer, Leukemia, Brain

Tumor_1, 11_Tumors) were utilized in the first phase to

evaluate the suggested methodologies, and several small

datasets in the text, life, and image domains were employed

in the second phase. The trials were run on an Intel system

with a Core i5 CPU running at 2.2 GHz and 8 GB of RAM.

Both the population size and the maximum iteration

parameter were set to 50. BChOA-based approaches are

compared to state-of-the-art FS algorithms and other

NIOAs, based on average classification accuracy and fea-

ture count from 20 independent runs.

The Weka program [69] (https://www.cs.waikato.ac.nz/

ml/weka/), which is an open-source machine learning

platform, was utilized for comparison. Table 2 summarizes

all the proposed models and the comparative studies

examined.

5.2 Results for microarray datasets

This study employs three commonly used classification

algorithms; KNN with k = 5, NB, and radial basis function

(RBF) neural networks (RBFNet). The performance of

these classifiers on five microarray datasets is shown in

Table 4 Classification accuracy using selected genes by filter-based gene selection methods

50 top genes 100 top genes

Classifier Methods SRBCT Prostate

Tumor

Leukemia Brain

Tumor_1

11_Tumors SRBCT Prostate

Tumor

Leukemia Brain

Tumor_1

11_Tumors

KNN mRMR 100 94.11 94.44 87.77 87.93 100 92.15 95.83 90 88.50

CMIM 95.1 90.19 87.50 87.77 85.05 100 91.17 88.88 87.77 85.05

Chi-

square

98.7 94.11 93.05 77.77 81.60 100 90.19 97.22 87.77 82.18

Relief-F 100 94.11 98.61 84.44 72.98 100 93.13 98.61 85.55 86.78

DISR 100 90.19 94.44 82.22 83.90 100 91.17 94.44 85.55 88.50

NB mRMR 100 90.19 97.22 86.66 86.78 100 89.21 95.83 88.88 89.65

CMIM 95.1 89.21 98.61 84.44 85.01 100 87.25 97.22 83.33 86.78

Chi-

square

87.5 92.15 97.22 85.55 79.88 100 90.19 97.22 86.66 86.20

Relief-F 100 94.11 95.83 85.55 81.03 100 94.11 97.22 82.22 85.05

DISR 100 88.23 94.44 85.55 87.35 100 87.25 95.83 85.55 86.78

RBFNet mRMR 100 88.23 97.22 90.00 87.35 100 88.23 94.44 86.66 87.35

CMIM 97.59 85.29 97.22 88.55 82.18 100 90.19 100 84.44 88.50

Chi-

square

100 94.11 95.83 86.66 81.60 100 89.21 95.83 86.66 86.20

Relief-F 100 93.17 95.83 83.33 81.03 100 92.15 95.83 86.66 89.65

DISR 100 92.15 94.44 86.66 82.18 100 92.15 95.83 85.55 82.18

Fig. 7 Average classification accuracy of KNN, NB, and RBFNet classifiers for 50 and 100 top genes selected by different filter-based FS

algorithms
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Table 3. Based on Table 3, we conclude that all three

classifiers perform well. Various filter-based algorithms,

such as mRMR, CMIM, Chi-square, Relief-F, and DISR,

were compared to validate the effectiveness of the rec-

ommended approach. The Min–Max technique was used to

standardize the microarray expression data before applying

filter-based methods. The average classification accuracy

of KNN, NB, and RBFNet classifiers for 50 and 100 top

genes selected by the above-mentioned filter-based FS

algorithms are shown in Table 4 and Fig. 7. Based on

Table 4 and Fig. 7, we can infer that the classification

performance of the mRMR method with three classifiers is

the best. Therefore, mRMR is used to select relevant top

genes before employing the NIOA-based feature selection

approaches.

Also from Table 4, the desired number of genes to be

selected was considered 50 for the SRBCT and Prostate

Tumor datasets, and 100 for the remaining datasets (Leu-

kemia, Brain Tumor_1, and 11_Tumors).

5.2.1 Evaluation of the proposed BChOA without crossover

In this section, the performance of the suggested BChOAs

based on the S-shaped Transfer function (BChOA-ST) and

V-shaped Transfer function (BChOA-VT) are examined on

microarray datasets using two classifiers (NB and KNN). A

comparative study was carried out to compare the accuracy

of the developed BChOA models. Tables 5 and 6 illustrate

the results of these comparisons. Tables 5 and 6 show the

performance of the proposed approaches (BChOA-ST and

BChOA-VT) in terms of the three objectives (average

number of genes, fitness value, and classification accu-

racy), as well as the computing time for the NB and KNN

classifiers. In terms of the average number of selected

features and CPU time, BChOA-VT outperformed

BChOA-ST in most datasets. In addition, the KNN clas-

sifier yielded to a better outcome than NB. The classifi-

cation accuracies and fitness values presented in the same

tables produce almost identical results.

Figure 8 demonstrates the average computational results

of classification accuracy, fitness function, CPU time, and

the number of selected features with error bars for two

suggested BChOA with V-shaped and S-shaped transfor-

mation functions utilizing NB and KNN classifiers.

Table 5 Comparison of two proposed BChOA with V-shaped and S-shaped TFs using KNN classifier based on the average number of selected

genes, fitness value, classification accuracy (%), and computational time (second)

Data set Metrics # Genes Fitness value Accuracy Time

BChOA-ST BChOA-VT BChOA-ST BChOA-VT BChOA-ST BChOA-VT BChOA-ST BChOA-VT

SRBCT AVG 7.2 6.2 80.1672 80.1712 100 100 168.756 138.196

best 6 4 80.172 80.18 100 100 88.63 77.99

worst 8 7 80.164 80.168 100 100 220.98 231.36

STDEV 0.83666 1.30384 0.0033 0.00521 0.00 0.00 64.16187 78.30062

Prostate Tumor AVG 6.8 6 78.27789 78.34103 97.49493 95.79832 78.978 73.18167

best 4 3 78.72145 78.72145 98.03 97.05882 72.46 60.48

worst 11 8 77.97018 77.92945 95.09804 94.11765 89.88 80.12

STDEV 2.774887 1.632993 0.403214 0.4113963 1.044394 1.090877 6.755769 7.101891

Leukemia AVG 3.2 3.4 80.1916 80.1912 100 100 130.306 137.602

best 3 3 80.192 80.194 100 100 117.01 122.41

worst 4 5 80.19 80.186 100 100 142.95 168.77

STDEV 0.4472136 1.140175 0.0008944 0.00228035 0.00 0.00 9.3311 20.61237

Brain Tumor_1 AVG 10.8 10.33333 77.75862 78.4918 95.77778 95.7777 222.746 293.2867

best 8 6 78.582 78.582 96.66667 96.66667 145.2 154.91

worst 15 17 76.168 76.98 94.44444 95.55556 351.74 417.3

STDEV 2.588436 3.777124 0.9855074 0.6367874 0.9296249 0.4536088 77.80552 110.3203

11_Tumors AVG 20.28571 17.8 75.74996 75.68692 93.77504 93.75862 485.89 197.876

best 16 16 77.17038 76.73978 95.4023 94.82759 220.61 175.45

worst 24 20 74.53495 74.46158 90.22989 90.22989 718.19 226.58

STDEV 2.9277 1.48324 1.019654 0.9933987 1.872808 2.056155 212.7285 18.67895

Bold values indicate best performance
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5.2.2 Evaluation of the proposed BChOA with crossover

In this section, we assess the performance of BChOA-VT

combined with crossover (BChOA-VT-C) and compare its

performance to the basic BChOA-VT that has no crossover

operator.

Table 7 shows the experimental outcomes for BChOA

and BChOA-C in terms of average classification accuracy,

fitness value, and the average number of selected genes.

Both techniques were tested in ten separate runs. The

Wilcoxon signed-rank statistical test between BChOA-C

and BChOA is also shown in Table 7. Wilcoxon signed-

rank statistical test was performed to reveal a substantial

statistical difference between the two approaches. The best

performances are highlighted in bold font.

In Table 7, the T - sig row, with a probability range of

a B 0.05, ‘ * ‘ connotes that the BChOA-C technique

produces substantially better results than the BChOA,

whereas ‘‘ - ‘ connotes that the BChOA-C method pro-

duces results that are not significantly better than the

Table 6 Comparison of two proposed BChOA with V-shaped and S-shaped TFs using NB classifier based on the average number of selected

genes, fitness value, classification accuracy (%), and computational time (second)

Data set Metrics # Genes Fitness value Accuracy Time

BChOA-ST BChOA-VT BChOA-ST BChOA-VT BChOA-ST BChOA-VT BChOA-ST BChOA-VT

SRBCT AVG 7.4 7 80.1672 80.168 100 100 296.164 287.212

best 7 6 80.172 80.172 100 100 253.59 244.97

worst 9 9 80.16 80.16 100 100 347.88 333.6

STDEV 0.8944272 1.224745 0.00438178 0.0048989 0.00 0.00 36.46541 37.37997

Prostate Tumor AVG 5.4 5.2 78.22531 77.99338 96.47059 96.47059 249.504 199.39

best 3 4 78.71745 77.99818 98.03922 97.05882 195.6 169.85

worst 7 7 77.19818 77.98618 95.09804 96.07843 346.1 229.14

STDEV 1.81659 1.30384 0.678952 0.0052153 1.11782 0.53698 61.82561 23.80237

Leukemia AVG 4.2 3.8 80.1896 80.1904 100 100 150.28 165.884

best 3 3 80.192 80.194 100 100 90.1 112.41

worst 5 5 80.188 80.188 100 100 223.8 298.03

STDEV 1.095445 1.095445 0.00219089 0.00219089 0.00 0.00 55.4955 76.04223

Brain Tumor_1 AVG 8.833333 9 77.48404 77.32074 94.25925 94.6296 480.7033 469.4217

best 6 7 79.378 78.578 96.66667 96.66667 247.63 242.68

worst 10 10 76.09111 76.08911 92.2222 93.33333 618.38 604.92

STDEV 1.602082 1.264911 1.230991 0.8760792 1.780098 1.298942 136.5332 136.0959

11_Tumors AVG 25 23.66667 75.66339 75.25169 92.52874 92.24138 1000.83 530.695

best 21 20 76.14106 75.83515 93.67816 93.10345 522.4 451.56

worst 28 28 75.12101 74.70263 91.37931 91.37931 1383.68 611.09

STDEV 3.082207 3.669696 0.3937991 0.4433911 0.908701 0.6027657 387.3495 59.93123

Bold values indicate best performance

Fig. 8 Average Classification performance of two proposed BChOA with V-shape and S-shape TFs using NB and KNN classifiers on all datasets
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Table 7 Comparison between

BChOA and BChOA-C with

V-shape (VT) transformation

function

Algorithms Metrics Datasets

SRBCT Prostate Tumor Leukemia Brain Tumor_1 11_Tumors

BChOA |# Genes| 6.2 6 3.4 10.33 17.8

Accuracy 100 95.79832 100 95.7777 93.75

Fitness value 80.171 78.34103 80.191 78.4918 75.68

BChOA-C |# Genes| 4.4 5.75 3.1 13.22 22.6

Accuracy 100 97.52 100 95.85 95.14

Fitness value 80.179 78.686 80.1928 78.62 76.90

T—sing - * - - *

Bold values represent the best results

Fig. 9 The convergence behavior of BChOA and BChOA-C for five microarray datasets
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BChOA. To conduct statistical calculations, Wilcoxon

signed-rank statistical test uses just the accuracy metric. As

shown in Table 7, BChOA-C outperformed BChOA on

three out of five datasets in terms of classification accuracy.

Both methods achieved the highest classification accuracy

in the remaining two datasets (SRBCT and Leukemia)

(100%). On all datasets, BChOA-C yields higher fitness

values. In Brain Tumor_1 and 11_Tumors datasets,

BChOA showed slightly better results than BChOA-C in

terms of the average number of selected genes. On two

datasets (i.e., Prostate Tumor and 11_Tumors), substantial

differences in favor of BChOA-C may be deduced. The

convergence behavior of both methods on all datasets is

shown in Fig. 9. In terms of fitness value, the convergence

behavior trend of BChOA-C is significantly better than

BChOA on all datasets.

5.2.3 Comparison with other NIOAs

Table 8 shows that both proposed methods (BChOA and

BChOA-C with VT transform function) outperform other

NIOAs in terms of accuracy and the number of selected

genes. Figures 10 and 11 illustrate the average number of

selected genes and the accuracy of the ten approaches,

respectively.

In this study, we utilized the paired t-test for statistical

evaluation of BChOA-C performance. We compared our

algorithm’s accuracy and the number of selected genes

with the other nine methods (Table 9). From Table 9 it can

be seen that the p-values produced by the paired t-test

among BChOA-C and other algorithms are mostly below

the usual significance level of 0.05 for the number of

selected genes metric. In other words, the suggested tech-

nique outperforms current methods in terms of the number

of selected genes and the results are statistically significant.

The proposed BChOA-C marginally outperforms the cur-

rent NIOAs in terms of accuracy, but there is no statisti-

cally significant difference between the result of the

proposed technique and other metaheuristic algorithms

(MHAs). As a consequence, we may infer that the proposed

approach has a significant difference in performance and

indeed performs better than most of the compared

approaches in the term of the number of selected genes.

5.2.4 Comparison with other state-of-the-art approaches

In this part, the suggested method’s results are compared

against state-of-the-art gene selection approaches in the

literature to further examine its performance. The average

classification accuracy and the average of selected genes,

which appear between parentheses, are utilized as perfor-

mance metrics in the assessment (Table 10).
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On most datasets, the BChOA-C provided equal or

higher classification performance, as shown in Table 10.

Meanwhile, the suggested BChOA-C was able to reduce

the number of genes in each dataset while obtaining high

classification accuracy. On SRBCT and 11_Tumors data-

sets, BChOA-C had the best results in terms of

classification accuracy and the number of selected genes.

On two datasets (Prostate cancer and Brain Tumor 1),

BChOA-C chose the fewest number of genes. Furthermore,

for Brain Tumor 1, TLBOSA-SVM achieved the best

accuracy, whereas BCO-KNN picked the fewest genes for

the Leukemia dataset.

Fig. 11 The average accuracy comparison

Table 9 The p-Values of paired t-test of BChOA-C with other algorithms in the terms of accuracy and the number of selected genes

Paired t-Test BChOA-C

vs

CFS FCBF Flower pollination FireFly ACO Bat PSO NSGAII BChOA

P-Value Accuracy 0.03949 0.02053 0.06474 0.06474 0.1757 0.1402 0.07235 0.1342 0.3331

#Genes 0.00048 0.002402 0.009547 0.009539 0.06663 0.01117 0.09287 0.4719 0.5129

Fig. 10 The average number of genes of all datasets
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In summary for gene selection problems, BChOA-C

looks to be competitive and in some cases superior against

state-of-art methods.

5.2.5 The biological meaning of the selected genes
by the proposed BChOA-C approach

The biological meanings of the best subset of selected

genes derived from our suggested approach are presented

in this section. The names, prob-IDs, and descriptions of

Table 10 Comparing the performance of the proposed approach with the literature methods

Algorithm SRBCT Prostate Tumor Leukemia Brain Tumor_1 11_Tumors

Proposed (BChOA-C-KNN) 100 (4.4) 97.52 (5.75) 100(3.1) 95.85(13.22) 95.14 (22.6)

Proposed (BChOA-KNN) 100 (6.20) 97.49 (6) 100(3.4) 95.77(10.33) 93.75(17.8)

IG-MBKH 100(6.30) – 100.00(4.20) – –

rMRMR-MGWO 100(37.5) – 100 (5.06) – –

SFS-MB 97.50(35) 97.42(29) 96.19(23) 90.37(25) 72.31(39)

TLBOSA-SVM 99.91(11) 99.13(10.8) 95.35(12) 96.98(12) 92.23(13)

IDGA-F-SVM 100(18) 96.3(14) 100(15) – –

VLPSO-LS-KNN 99.7 (71.4) 92.58 (56.4) – 75.54(102.1) 82.81(367.4)

BCO-KNN 100(7.4) 100(7) 100(3) 96.30 (15.5) 89.62(24.1)

PS-NSGA-KNN 96.35(18.6) 89.44(65) – 73.81(57.8) 83.94(338.3)

Bold values represent the best results

Table 11 The best subset of selected genes from the gene selection method BChOA-C for binary datasets

Index

of

Genes

ProbeID Gene.Description Specification

SRBCT 2144 308,231 Homo sapiens incomplete cDNA for a

mutated allele of a myosin class I, myh-1c

(myosin IB)

Myo1b has a potential role in the progression of several

cancers, including prostate cancer, head, and neck

squamous cell carcinoma (HNSCC), and cervical

cancer (CC)

509 207,274 Human DNA for insulin-like growth factor

II (IGF-2); exon 7 and additional ORF

IGF2 is a protein hormone that affects cell

proliferation, growth, migration, differentiation, and

survival. IGF2 is linked to an increased risk of

developing malignancies such as colorectal, breast,

prostate, and lung

545 1,435,862 antigen identified by monoclonal antibodies

12E7, F21, and O13 (CD99)

CD99 is a 32-kD T-cell surface glycoprotein involved

in spontaneous rosette formation with

erythrocytes.CD99 can influence tumor cell

migration, invasion, and metastasis

742 812,105 transmembrane protein (TMEM) A transmembrane protein (TMEM) is a type of protein

that spans biological membranes. TMEMs have been

linked to tumor growth and invasion, as well as

chemoresistance

Leukemia 4211 X51521_at VIL2 Villin 2 (ezrin) Cytovillin is a microvillar cytoplasmic peripheral

membrane protein that is expressed strongly in certain

human tumors

4377 X62654_rna1_at ME491 gene extracted from H. sapiens gene

for Me491/CD63 antigen

The melanoma-associated antigen ME491 is expressed

strongly during the early stages of progression of the

tumor

6855 M31523_at transcription factor 3(E2A immunoglobulin

enhancer-binding factors E12/E47), TCF3

Dysregulation of E2A leads to leukemia and

tumorigenesis of some solid tumors
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obtained genes as well as their specifications for SRBCT

and Leukemia datasets are listed in Table 11. The inter-

pretation of acquired genes from Prostate cancer, Brain

Tumor_1, 11_ Tumors datasets is not feasible since no

names have been assigned to genes in the datasets.

The biological meanings of the selected genes were

obtained using the OMIM (https://omim.org/) and NCBI

(https://pubmed.ncbi.nlm.nih.gov/) websites. Table 11

shows that our suggested method can successfully identify

cancer-related genes for each dataset.

For biological interpretation of gene expression data, the

heatmap combined with the clustering method was used.

The heatmap was created in R using the ‘‘gplots’’ package.

In heatmaps (Fig. 12), each column demonstrates a sample

and each row demonstrates a gene. Changes in gene

expression are represented by the color and intensity of the

boxes. Figure 10 depicts the profile of samples for different

datasets. It clusters together genes with common expres-

sion profiles and confirms that the expression of most of the

genes is coordinately down-regulated.

Fig. 12 The gene expression level of the best subset of selected genes shown as a heatmap

cFig. 13 Box plot diagrams of gene expression for the best subset of

selected genes
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Boxplot was used to assess the validity of selected

genes. In Fig. 13, the expression of the best subset of genes

was shown as a box plot. Figure 13 shows that the selected

genes are able to separate cancer groups by differences in

their gene expressions.

5.3 Results for small-sized datasets

We show and evaluate the results produced by our sug-

gested methods on tiny datasets in this section. Table 12

compares the performance of both proposed methods with

three classical (CFS, FCBF, and SSF) and three NIOA-

based (Cuckoo, PSO, and NSGAII) feature selection

approaches on small datasets. The best results among all

feature selection methods have been highlighted and

marked in bold type. It is worth mention that for the Yale

dataset initially, we used the IG filter-based approach to

select the top 100 relevant genes. The kappa2 measurement

with the NB classifier from the ‘‘Irr’’ package in R was

employed as a fitness function in these datasets.

As shown in Table 12, our method obtained fewer genes

than CFS, FCBF, SSF, Cuckoo, PSO, and NSGAII for the

majority of datasets. On the other hand, for most datasets,

our approach obtains somewhat higher or second higher

classification accuracy than other approaches. From this

comparison, we conclude that BChOA-ST-NB is a suit-

able algorithm for FS problems on the different types of

datasets.

6 Conclusion

Feature subset selection plays an important role in classi-

fication tasks, as it enhances the general abilities of clas-

sifiers, simplifies the learning model, and reduces the

computational cost. In this paper, the problem of feature

selection in high-dimensional biomedicine data classifica-

tion has been considered and solved through a novel binary

ChOA which extends ChOA from the continuous version

to the discrete domain. To the best of our knowledge, this is

the first binary variant of ChOA which has been developed

for the task of feature selection. An enhanced binary

ChOA-based optimizer with a crossover scheme was also

presented. Two different transfer functions, S-shaped and

V-shaped, were utilized to convert the continuous form of

ChOA to binary form. Moreover, the widely used KNN and

NB classifiers were served as evaluators of feature subsets

in the proposed wrapper BChOA approach.

To verify the effectiveness of the proposed BChOA-

based approaches five well-known biomedical datasets and

several datasets with different domains were used. The

results were compared to two standard filter feature

selection methods and six popular wrapper techniques: Ta
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PSO, BA, ACO, GA, FA, and FP. The experimental results

show that the wrapper BChOA-based FS approaches are

able to select a small number of the most prominent fea-

tures whilst achieve a higher classification accuracy. The

proposed BChOAs also outperform other current state-of-

the-art techniques in the literature in terms of classification

accuracy using fewer features. Moreover, the performance

of BChOA-C is better than BChOA in the terms of clas-

sification accuracy due to the enhancement of the algo-

rithm’s exploration capability. In conclusion, both

suggested BChOA and BChOA-C can be used as ideal

feature selection tools for high-dimensional biomedical

data, allowing for better biological data mining in fields of

disease diagnosis.

As future work, BChOA may be proposed as a filter

feature selection approach and be examined on the classi-

fication of biomedical data using a variety of classifiers.

Development of binary multi-objective ChOA for feature

selection and its performance comparison with the con-

tinuous multi-objective ChOA is recommended as well.
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