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ABSTRACT Abdominal aortic aneurysm (AAA) is among the most widespread and dangerous diseases that
may cause death. Recently, Endovascular Aneurysm Repair outperformed open aortic surgery, since it is a
safe and reliable technique where a stent graft system is placed within the aortic aneurysm. It was aimed to
design an Mg biodegradable alloy with bio-friendly alloying elements that enhance the corrosion resistance
and mechanical properties of the alloy for the design of stents for Abdominal Aortic Aneurysm (AAA)
repair. Adaptive Neuro-Fuzzy Inference System (ANFIS) was proposed for the design of the Mg alloy and
compared to other traditional machine learning regression models (Multiple Linear Regression (MLR) and
Gradient Boosting (GB). The dataset utilized in this work consisted of 600 samples of Mg alloys that were
collected from the mat web database and additional papers from Google Scholar. The results revealed the
superior prediction capability of the ANFIS model since it attained maximum R2 scores of 0.926, 0.958, and
0.988 for the prediction of UTS, YS, and Ductility respectively. Furthermore, the ANFIS model was capable
of designing an Mg biodegradable alloy having a UTS, YS, and Ductility of 346.148 Mpa, 230.8 Mpa, and
15.4% respectively which are excellent mechanical properties satisfying vascular stents requirements The
ANFIS model can be further applied to speed up the design of other alloys in the future for various medical
applications, reducing the time, cost, and effort of large searching space.

INDEX TERMS Abdominal aortic aneurysm, ANFIS, biodegradable, gradient boosting, Mg alloy.

I. INTRODUCTION
An aortic aneurysm is an enlargement of the aorta, causing
the diameter to increase by at least 50% of its normal size [1].
They usually occur in the abdominal aorta and thoracic aorta,
as well as in the arteries located at the base of the brain and
legs [2]. Aortic aneurysms can weaken the wall of the aorta
and increase the risk of aortic rupture. When a rupture occurs,
excessive internal bleeding will occur, and if it is not treated
directly, shock and death may occur.

Abdominal aortic aneurysm (AAA), which is the most
common and fatal diseases, has been treated in the early
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1950s by replacement of the diseased part of the aorta by a
synthetic graft through open surgery [3], [4]. However, the
mortality associated with this process has been reported to
have reached 8%, and 10%of patientsmay experience cardiac
complications, respiratory and renal failure [5], [6]. In the
early 1990s, the placement of a graft within an AAA was a
suitable alternative to open surgery and proved to be a safe
and reliable technique [7].

In 2003, endovascular aneurysm repair (EVAR) was
superior to open aortic surgery in repairing abdominal
aortic aneurysm (AAA) [8]–[10]. In 2010, EVAR accounted
for 78% of all endovascular AAA repairs in the United
States [11]. Currently, EVAR is the most widely used method
for the treatment of aortic aneurysm disease. Endovascular
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aneurysm repair (EVAR) is a process in which a stent graft
system is placed in an aortic aneurysm with the help of a
thin, flexible plastic tube called a delivery catheter to pro-
tect the diseased or damaged area from blood circulation.
Therefore, the purpose of this procedure is to strengthen the
aortic wall and help protect the aneurysm sac from blood
pressure, thereby preventing the aortic wall from rupturing.
The advantage of this method is that there is no need to
remove any tissue from the aorta and the stent recovery time
is faster because it is less invasive than open surgery.

A stent-graft is an intraluminal device composed of a metal
supporting framework (typically Stainless Steel or Nitinol)
and a synthetic graft material (commonly expanded Polyte-
trafluoroethylene (PTFE) or Polyester) (PET, Dacron). The
stent can be placed inside, outside, or inside the graft material,
and it can run the length of the graft or just the ends. The
stent serves as an arterial attachment mechanism, providing
structural support for both the graft and the treated vas-
cular segment. The graft creates a new channel for blood
flow, protecting the damaged artery from pulsatile blood
pressure [2] [12]. A. Polanczyk, et al. [13] performed a
study to investigate the influence of a stent-graft on the pul-
satile blood hemodynamic changes in the abdominal aortic
aneurysm (AAA) of some patients before and after stent-
graft placement. The authors concluded that the presence
of the stent-graft decreased blood vessel wall deformation
and significantly minimized the influence of frequency of
pulsation and therefore reduced the risk of aortic rupture.

Several studies have been conducted on biodegradable
stents for cardiovascular applications [14]–[16] and Abdom-
inal Aortic Aneurysm (AAA) repair [2], [17], [18]. Stainless
Steel and Nitinol stents [19], [20] were commonly used
due to their mechanical properties, biocompatibility, and
good corrosion resistance. However, once inside the patient’s
body, metal ions may be discharged due to corrosion
and/or wear, causing an inflammatory response in the sur-
rounding tissues, causing invasive subsequent procedures to
remove. To minimize the pain and medical costs for patients,
biodegradable metal stents are introduced to replace the tra-
ditional non-degradable metal stents.

Many researchers in the biomedical and materials science
disciplines are interested in biodegradable stents because
they can perform their job for the predicted amount of time
and then degrade naturally. The biodegradable stent in the
stent-graft system acts as mechanical support or scaffold for
fixation of both the graft and the aorta vessel wall. It then
degrades over time gradually while being metabolized in
the body and replaced by the healed host aorta tissue, thus
reducing the long-term harms caused by permanent non-
degradable stents. Finally, the graft should reach a stage
where it integrates with the host aorta and is biologically fixed
on the vascular wall helping to prevent the aortic rupture.

Recently Magnesium biodegradable alloys have been
proposed as a promising class of biodegradable metallic
stents [21]–[23] due to their excellent biocompatibil-
ity, mechanical performance, and biodegradation [24]–[26]

inside the human body. Mg is also one of the trace ele-
ments found in the human body, which helps to maintain the
body healthy by performing different intracellular physiolog-
ical tasks, stimulating bone formation, and improving cell
adhesion to biomaterials. Furthermore, corrosion products of
Mg alloys are nontoxic and can be absorbed by the body
or expelled by the surrounding tissues and metabolic sys-
tem [27]. The primary drawback of using Mg alloys is their
high corrosion rates in the physiological environment, which
results in rapid degradation, loss of mechanical integrity
early in the degradation process, and implant failure before
vascular remodeling [28], [29]. In-vivo investigation on the
safety, mechanical performance and degradation of Mg stents
were carried out in several works [30] [31]. B. Grüter et
al[30] reported that animals treated with Magnesium stents
showed better aneurysm healing compared with those with-
out stents. They concluded that Bioabsorbable magnesium
stents offered a promising approach for the development
of future endovascular devices in aneurysm therapy. Patent
US 2010/0256728 A1[31] presented a stent graft system
comprised of biodegradable Mg - Zn alloy metal stent and
biodegradable polymer (polycaprolactone) graft and was then
applied to several patients suffering from early stage aortic
aneurysm and a patient that had a slight tear in the aorta.
After 6 months implantation of the stent graft system, the
aneurysm has totally healed and the stent graft has begun to
degrade inside the body. Later after a year, the stent graft
was completely degraded inside the body, saving patients
from having to deal with any complications and lifelong
monitoring related to having a permanent metal device in
his/her body.

Coating with di-calcium phosphate dehydrate (DCPD)
[32], Polymer deposit coating [33], Alkali-Heat treat-
ment [34], and alloying with other elements such as
aluminum, manganese, and rare earth elements [35] have all
been used to increase the mechanical strength, improve the
corrosion behavior and decrease the rate of degradation of
Mg alloys. Aluminum (Al) is a common alloying element
that is added to Mg alloys in amounts ranging from 1 to 5%
to improve corrosion and mechanical qualities by reducing
particle size [36]. Calcium (Ca) concentrations up to 0.5%
help to stabilize the grain size whereas percentages above
that value sped up the corrosion rates of Mg alloys so it
should not exceed 1% [37]. Manganese is another important
element in magnesium alloys, and its concentration of less
than 0.4% reduces the grain size and improves the tensile
strength and fatigue life of Mg-Al-Mn alloys [38]. Also,
percentages less than 9% lithium (Li) can improve the duc-
tility, corrosion resistance, and formability of Magnesium
alloys [38]. Song et al. [39] reported that Mn improves the
corrosion resistance of Aluminum-Magnesium alloys. How-
ever, a higher concentration of Mn will reduce the corrosion
resistance, because a large number of intermetallic phases of
Mn-Mg-Al are produced, which can be subjected to galvanic
corrosion. The addition of zinc (Zn) also helps to improve
the corrosion resistance of Magnesium alloys. Cai et al. [40]
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mentioned that the addition of Zn as high as 5% by weight
to the Mg improves the corrosion resistance and mechanical
properties of the alloy. Song and St. John [41] suggested in
their work that the addition of Zr of a 0.6 wt % favored
the corrosion resistance of the Mg-Zn alloy containing rare
earth elements since Zr provides a grain refinement effect
due to the formation of continuous layers of corrosion-
resistant intermetallic rare earth phases around grain bound-
aries. Rare-earth elements (REEs) including Y (Yttrium),
Nd (Neodymium), Gd (Gadolinium), Ho (Holmium) and La
(Lanthanum) are commonly added to Mg alloys as hardeners
that provoke the strength and corrosion resistance by both
solid solution and precipitation hardening. Liu et al. [42]
reported that when 0.5% La is added to AZ91 alloy, the
corrosion rate decreased, while Zhou et al. [43] revealed the
effect of adding 0.24% by weight and 0.44% by weight of
Ho, which also significantly reduced the corrosion rate of the
AZ91Dmagnesium alloy. Kannan et al. [44] reported that the
corrosion resistance of EV31A Mg alloy was improved by
addition of 2.35% Nd and 1.3% by weight Gd.

To identify the bestMg alloy with goodmechanical proper-
ties, one must first produce many alloys with various alloying
element compositions, which are generally done by trial and
error, and then test each of them in a large searching space.
This is a time-consuming and expensive treatment. Machine
learning is a promising and efficient technology for reduc-
ing the time, cost, and effort required to design new alloys.
Machine learning approaches have recently been used in
materials science to identify new alloys [45], predict physical
properties [46], [47], and predict tensile properties [48].

Therefore, the purpose of this work is to design an Mg
biodegradable alloy with bio-friendly alloying elements that
lead to improved corrosion resistance andmechanical proper-
ties of the alloy for the design of Bioabsorbable stents (BVS)
for Abdominal Aortic Aneurysm (AAA) repair. The mechan-
ical properties of the stent should be similar to those of 316L
stainless steel, which is the standard vascular stent mate-
rial [15],[23] [49], in order to achieve appropriate scaffolding.
Furthermore, it has been stated that the ideal mechanical
properties for Biodegradable stents include Yield Strength
(YS) larger than 200 MPa, Ultimate Tensile Strength (UTS)
greater than 300 MPa, and an Elongation greater than 15-18
percent [50], [51].

This study presented the Adaptive Neuro-Fuzzy Inference
System (ANFIS), Multiple Linear Regression (MLR), and
Gradient Boosting (GB) Regression models for the design
of an Mg biodegradable alloy for AAA repair. Furthermore,
an evaluation was conducted on the presented models using
the R2 score to attain the best suitable model having the high-
est efficiency and capability of designing the Mg alloy. A YS
greater than 200 Mpa, UTS greater than 300Mpa, and Ductil-
ity (Elongation) higher than 15 % were chosen as mechanical
properties appropriate for the design of endovascular stents.
The compositions of alloying elements were selected from
previous literature according to the optimum concentrations
that lead to improved mechanical and corrosion resistance

properties and therefore controlled degradation rates of Mg
alloys.

II. METHODOLOGY AND DATASET PREPARATION
A. PRELIMINARIES
1) ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM (ANFIS) REVIEW
The Neuro-Fuzzy Inference System (NFIS) combines the
Fuzzy logic system (FLS) and the artificial neural networks
(ANN). Combining this method with neural networks pro-
duces significant results, which can provide a rapid and accu-
rate prediction of biodegradable Mg alloys having certain
mechanical properties for various medical applications. The
adaptive network-based fuzzy inference systems (ANFIS) are
used to unravel difficulties associated with parameter recog-
nition issues [52]. This parameter recognition is achieved
by integrating the back-propagation gradient descent and the
least-squares approach via a hybrid learning law.

FIGURE 1. Structure of the ANFIS network.

ANFIS is a graphical network representation for a Takagi-
Sugeno-type fuzzy inference system with neural learning
capabilities. Fig. 1 depicts the architecture of the ANFIS. The
circular nodes show fixed nodes, whereas the square nodes
represent nodes with parameters that must be learned.

a: ANFIS ARCHITECTURE
ANFIS system architecture comprises five layers, as stated
in Figure 1.
Layer 1: Fuzzification layer is the first layer. It comprises

input variable MFs (Member-ship functions) and provides
inputs to the next layer. Every node i in this layer is a square
node and is shown in equations (1) and (2):

O1,i = µAi (x) for i = 1, 2 (1)

O1,i = µBi−2 (y) for i = 1, 2 (2)

whereµAi (x) andµBi−2 (y) fuzzymembership function (MF).
Layer 2: The second layer in the ANFIS network is the

rule layer where it computes the weight for each M. The
membership functions are the input values in this layer, and
each node multiplies the input and outputs the rule’s firing
power. This layer’s output is given in the equation. (3).

O2,i = wi = µAi (x) µBi (y) for i = 1, 2

(3)
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Layer 3: This layer calculates outputs in normalized firing
strength. The ratio of the i-th rule’s firing strength to the sum
of the rule’s firing strengths is used to determine the i-th node.

O3,i = w̄i =
wi

w1 + w2
(4)

where w̄i is referred to as the normalized ?ring strength.
Layer 4: calculates parameters function of layer 3

outputs.The total output is calculated in this layer as the
summation of all incoming signals as shown in equation (5).

O4,i = w̄ifi = w̄i(pix + qiy+ ri) (5)

where w̄i is the layer 3output, and (pix + qiy+ ri) is the
parameter set. The succeeding parameters refer to the param-
eters in this layer.
Layer 5: In this layer, a single node calculates the entire

output as the sum of all input signals, which is stated as

O5,i =
∑
i

w̄ifi =
∑

i

wifi
wi

(6)

Ten different types of Membership functions (MFs) were
investigated to get the best suited ANFIS model [53]. The
membership function (MF) is the most important notion
in fuzzy set theory; it determines the fuzziness of a fuzzy
set. [54], [55]. In order to find the optimal distribution of
the MFs, the input-output mapping connection in this work
was determined using a hybrid learning algorithm, which is a
combination of the backpropagation (BP) algorithm and the
least square method (LSM) method [56].

b: HYBRID-LEARNING ALGORITHM
The ANFIS has two classes of tuning criteria, the first layer
called the premise, and consequent parameters in the fourth
layer[52]. Throughout the learning process, these parameters
are attuned until the wanted response of the FIS is accom-
plished. The ANFIS output can be written as:

f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 (7)

2) MULTIPLE LINEAR REGRESSION
Multiple linear regression (MLR) is a statistical methodol-
ogy that uses the least square method to describe the linear
connection between two or more independent variables and a
single dependent variable.

a: REGULARIZATION
Regularization is a strategy for reducing error while also
injecting bias into the training set and avoiding overfitting.
Ridge regression and LASSO ((Least Absolute Shrinkage and
Selection Operator) Regression are two common regulariza-
tion approaches. LASSO is an effective continuous procedure
for estimating and selecting variables [57]–[60].

b: RIDGE
Ridge is a skewed prediction approach that works on the
premise of minimizing the sum of residual squares (RSS)

to get the coefficients. The ridge coefficients are calculated
using the following equation:

β̀Ridge = argm
β

RSS(β)

= argm
β


∑n

i=1

(
yi−β0−

∑k
j=1 xijβj

)2
+λ

∑k
j=1 β

2
j

 (8)

where `2 =
∑k

j=1β
2
j is the penalty function of the ridge and

λ ≥ 0 is the complexity constant that controlling the amount
of shrinkage [61], [62]

c: LASSO
The β coefficients can be obtained using this method by
solving the following optimization problem:

β̂LASSO

= argmin
β


n∑
i=1

yi − β0 − k∑
j=1

xijβj

2

+ λ

k∑
j=1

∣∣βj∣∣
(9)

where `1 =
∑p

j=1

∣∣βj∣∣ is the LASSO penalty function. l1
penalty is the least-squares fit and shrinks some compo-
nents of β̀LASSO to zero. The solution to the LASSO method
requires quadratic programming [52] [57]

d: ELASTIC NET (EN)
Elastic net is a LASSO variant that is resistant to strong
correlations between predictors [55] [63]. The method, which
combines the ridge (`2) and LASSO (`1) penalties, can be
written as follows:

β̀EN =

(
1+

λ2

n

)argmin
β

 n∑
i=1

yi − β0 − k∑
j=1

xijβj

2

+λ2

k∑
j=1

β2j + λ1

k∑
j=1

∣∣βj∣∣

 (10)

3) GRADIENT BOOSTING ALGORITHM
The gradient boosting algorithm designed by Friedman [64]
is an ensemble method in which classification and prediction
are performed by combining weaker models. This technique
has three elements: 1) The loss function that must be opti-
mized. The loss function is an index used to calculate how
well the model coefficients fit the data. 2) Weak students,
perform classification or prediction (decision tree), 3) Add
model, add one tree at a time. The final result is generated
based on the average of all weak students. In increasing gra-
dient, weak students work sequentially. Each model tries to
improve on the error of the previous model. The n-estimator
indicates the number of decision trees employed in the
model.
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FIGURE 2. Proposed Scheme Methodology.

TABLE 1. Hyper-parameter setting for different classifier algorithms.

B. PROPOSED ALGORITHMS
The proposed method is presented in Fig. 2 which comprised
four stages. In the first stage, the dataset containing 600
samples of Mg alloys was collected, preprocessed, and then
split into two parts for training and testing the models. The
second stage is developing and evaluating the three proposed
model algorithms and determining the optimum parameters
that produced the best fit models. The third stage is entering
the input variables (minimum and maximum compositions
(Wt %) of alloying elements composing the targeted Mg
alloy) and generating a new dataset. The final stage, which is
the most important step is setting the desired output variables
(mechanical properties of the targetedMg alloy crucial for the
design of biodegradable stents). The selected best-fit machine
learning model is then employed to predict the composition

TABLE 2. Maximum concentrations (weight %) of alloying elements
composing the new Mg biodegradable alloy.

of the Mg biodegradable alloy having mechanical properties
close to the desired output variables out of the newly gener-
ated dataset and suitable for vascular stents for AAAR.

1) DATASET SELECTION AND PREPROCESSING
600 samples of Mg alloys were collected from the mat web
database and additional papers fromGoogle Scholar. Accord-
ing to previous works, a biodegradable Mg alloy having
efficient mechanical and corrosion resistance properties for
use in medical applications should contain certain essential
elements. Therefore, some columns containing elements like
Fe, Ni, Sc, Sr, Er, Tb, Ty were removed from the dataset
since they were not from the essential elements in order
to increase the efficiency and accuracy of prediction of the
proposed models. Consequently, the main elements included
in the dataset are Mg (Magnesium), Mn (Manganese),
Al (Aluminum), Ca (Calcium), Zn (Zinc), Li (Lithium),
Zr (Zirconium), Y (Yttrium), Nd (Neodymium), Gd
(Gadolinium), Ho (Holmium) and La (Lanthanum). Dupli-
cate entries were removed from the dataset to get good accu-
racy for the model. The names of the alloys were removed
from the dataset as they were unique and no useful informa-
tion can be extracted from that column for machine learning.
The dataset was then split into two parts, one part was used for
training the models while the other part was used for testing
the ability of the models to predict the mechanical properties
of the Mg sample alloys.

2) MODELLING AND EVALUATION OF THE
REGRESSION MODELS
The next step was developing the Adaptive Neuro-Fuzzy
Inference System (ANFIS) model and comparing its per-
formance to other traditional machine learning algorithms
(Multiple Linear Regression (MLR) and Gradient Boosting
(GB) Regression models). The R2 scores were calculated to
evaluate the performance and prediction capability of all pre-
sented models. The optimum parameters for all the proposed
models were chosen to produce the best fit model, which will
be further employed for the design of the targeted Mg alloy.
Details of the hyper-parameter settings for the ANFIS model
and the other traditional classifier algorithms employed in this
work are summarized in Table 1.
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The adjusted coefficients of determination
(
R2
)
were used

as cohesion criteria to compare the performance of themodels
and shown in the following equation:

R2 = 1−

∑n
i=1 (Pi − Ai)

2∑n
i=1 A

2
i

(11)

Pi and Ai have predicted values, the actual number of the ith

record, and n is the total number of records [65]. If R2 is close
to 1, then a high-level correlation is displayed. R2 shows the
percentage variance explained by the model. Models with R2

higher than 75% are considered excellent.

3) SETTING THE CONSTRAINTS AND GENERATING
A NEW DATASET
The third stage of the presented methodology is setting the
constraints (input variables) for the models, which com-
prise the minimum and maximum concentrations (Wt%)
of the alloying elements composing the targeted Mg alloy
and then generating a new dataset. The minimum concen-
trations for all alloying elements would have 0 Wt%. The
maximum concentrations of the elements were chosen with
reference to previous literature. The compositions of the
alloying elements that lead to improved mechanical proper-
ties of the Mg alloy were shown in the following Table 2.
The generated dataset consisted of 1 million samples of
Mg alloys.

4) SETTING THE DESIRED MECHANICAL PROPERTIES AND
PREDICTION OF THE NEW MG BIODEGRADABLE ALLOY
Finally, the last most essential step is to design a biodegrad-
able Mg alloy having mechanical properties suitable for
stents employed in stent graft systems for Abdominal Aortic
Aneurysm (AAA) repair. This work focused on three main
mechanical properties of Mg alloys, which were Ultimate
Tensile Strength (UTS), Yield Strength (YS), and Ductility,
also known as elongation. Mechanical properties of YS
greater than 200 Mpa, UTS greater than 300Mpa, and
ductility (elongation) higher than 15% were set as out-
put variables appropriate for the design of endovascular
stents. The most efficient model was selected to pre-
dict the composition of the Mg alloy having the desired
mechanical properties out of the newly generated dataset.
The description of the mechanical properties is explained
hereinafter.

a: ULTIMATE TENSILE STRENGTH
is the maximum tensile load that a material can bear until
it breaks. It shows the resistance of the material to tensile
fracture [66]. It is also the highest point of the stress-strain
curve formed after tensile testing. The tensile strength can
also be determined using this formula:

σf =
Pf
Ao

(12)

where Pf is the load at fracture, Ao is the original cross-
sectional area, and σf is the tensile strength, measured in

N/m2 or Pascals. An ideal Mg-alloy that can be used as an
important structuring metal should have UTS higher than the
yield strength.

b: YIELD STRENGTH
is the point at which the material begins to deform plasti-
cally. Below this point, the material deforms elastically and
returns to its original shape after the applied stress is relieved.
Yield strength is measured in N/m2 or Pascals. Materials
having high yield stresses are required in orthopedic applica-
tions in order to withstand loads without undergoing plastic
deformation.

c: DUCTILITY
is the ability of the material to deform plastically without
fracture. It can be measured in terms of reduction in area or
elongation (% plastic strain at fracture) [67]. An ideal Mg
alloy should have a ductility of around 10-15% for it to be
considered desirable to create optimum Mg alloys. Ductility
or percent elongation can be expressed as

Percent Elongation =
1L
L0
× 100% (13)

where 1L is the change in length, L0 is the original length.

III. RESULTS AND DISCUSSION
The initial goal of this study is to design an Mg biodegrad-
able alloy having improved mechanical properties suitable
for the design of biodegradable stents for AAAR. This will
be accomplished by developing an Adaptive Neuro-Fuzzy
Inference System (ANFIS) model and comparing it with
traditional machine learning algorithms (Multiple Linear
Regression (MLR) and Gradient Boosting Regression mod-
els) to attain the best machine learning technique for the
design of the Mg alloy. This will further save time, effort and
lead to the precise design of alloys having various medical
applications. First, it was important to test the capability and
efficiency of the proposedmodels to predict the UTS, YS, and
ductility of theMg samples in the preprocessed testing dataset
by calculating the R2 scores of the models. The optimum
parameters that lead to the best performance in all models
were attained by studying the effect of these parameters on
the R2 score of the models. The best fit models were then
compared to give an insight into which model performs best
for further use in the design of the Mg-targeted alloy.

Fig. 3 shows the effect of membership functions on the
R2 score of the ANFIS model. Three curves were drawn for
the three main mechanical properties UTS, YS, and Ductility.
It was observed from the curves that the Trainscgmembership
function (Symbol H) was the best method for ANFIS in
predicting the mechanical properties of the alloys with max-
imum R2 scores of 0.926, 0.958, and 0.988 for UTS, YS &
Ductility respectively. The values of theR2 score for the three
mechanical properties for the selected membership functions
were tabulated in Table 3. It was also observed that the R2
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TABLE 3. Summary of performance standards for different types of
membership functions.

scores for the Trainscg membership function approached 1
which means the superior performance of the ANFIS model.

Fig. 4 shows the effect of regularization techniques on the
R2 scores of the Multiple Linear Regression (MLR) model.
It was clear that the prediction ability of the MLR model
for the yield strength (YS) of the Mg alloys using all regu-
larization techniques was the highest, having the maximum
R2 scores. It was also seen that the R2 scores for the predic-
tion of YS and UTS using the Ridge and LASSO methods
were nearly the same, however, there was a clear difference
between the two methods in the prediction of ductility since
the R2 score using the Ridge technique was the highest of
0.35. Hence, the Ridge method was chosen to be the best fit
regularization technique for Multiple Linear Regression with
the more reliable and precise prediction ability.

The influence of the n-estimator parameter on theR2 scores
of the Gradient Boosting regression model was presented in
Fig. 5. It was observed that the R2 scores for the yield strength
profoundly increased with the increase in the n-estimator of
the model reaching the highest value at an n-estimator of
400. Similarly, the R2 scores for the ductility also reached the
highest value at an n-estimator of 400. However, the ultimate
tensile strength attained the highest R2 score of 0.8 at 100
and it slightly decreased to 0.77 at 400. Accordingly, an n-
estimator of 400 was chosen to be the optimum parameter for
the Gradient Boosting regression model.

The coefficients of determination R2 scores for all best-
fit models were summed up in Table 4. The results showed
that R2 values for the ANFIS model for the three mechanical
properties were above 0.75 and they were very close to 1,
which shows the high prediction accuracy of the model.
By comparing the ANFIS model with the MLR and GBR
regression models, the results confirmed the superior predic-
tion capability of the ANFIS model. The fundamental reason
for this is that the ANFIS model combines the benefits of
neural network learning capabilities with fuzzy logic princi-
ples to construct a grading relationship between input factors
and Mg alloy output mechanical qualities. As a result, it was
further employed to create the biodegradable Mg alloy with
the appropriate mechanical characteristics.

The composition of the generated Mg alloy predicted by
the presented ANFIS model was shown in Table 5 and Fig. 6.

FIGURE 3. Effect of Membership functions on the ANFIS model
Performance.

It was clear that the generated Mg alloy exhibited excellent
mechanical properties, having ultimate tensile strength (UTS)
and Yield strength (YS) of 346.148 Mpa and 230.8 Mpa
respectively which were higher than the ideal mechanical
properties necessary for vascular stent applications reported
in previous literature [50], [51]. Also it had a ductility of
15.4% which is similar to the ideal 15-18% percent ductility.
The improved mechanical properties of the generated Mg
alloy in this study enables it to provide appropriate scaffold-
ing and support to the injured aorta vessel wall to allow for
its healing and remodeling of new blood vessels and makes
it superior to ceramics and polymers in endovascular stent
applications.

It was also obvious that the ANFIS model had the efficient
capability of designing anMg biodegradable alloy having the
desired mechanical qualities. The addition of alloying ele-
ments had the impact of improving the strength and ductility
of the Mg alloy. Moreover, the concentrations of the main
alloying elements (Mg, Al, Ca, Zn, Li, Zr) did not exceed
the maximum concentrations reported in previous literature,
however, the concentrations of the Rare-earth elements (Y,
Nd, Gd, Ho, and La) differed from other works.

For further evaluation of the mechanical aspects of the
designed Mg alloy, it was compared to stainless steel
which is reported as the standard stent material in several
researches [15], [23], [49] and commonly studied biodegrad-
able Mg alloys and shown in table 6. It was clear from the
table that the generated Mg alloy exhibited higher tensile
strength, yield strength and ductility than the other previously
reported Mg alloys. The increase in the strength of the alloy
can be attributed to the ability of Mg to create solid solution
with many alloying elements including Ca, Mn, Al, Zn, Zr,
Li and rare earth elements due to its atomic size and hexago-
nal close-packed system [68]. The addition of Ca,Mn, Zn and
Zr provides grain refinement effect, as previously reported in
the literature, due to the formation of continuous layers of
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FIGURE 4. Effect of Regularization techniques on the R2 score of the
Multiple Linear Regression (MLR) models.

FIGURE 5. Effect of n-estimator on the R2 score of the Gradient Boosting
Regression model.

corrosion-resistant intermetallic phases around grain bound-
aries and hence increases the yield and tensile strength of
the alloy. In addition, the small grain size particles act as
barriers for the movement of dislocations during slipping
and therefore can contribute to the increase in yield strength.
Rare-earth elements (REEs) added to the Mg alloy have also
led to the increase of strength of the generated Mg alloy as
they are found to enhance the strength and corrosion resis-
tance by both solid solution and precipitation hardening.

The YS and UTS properties of the designed Mg alloy
were very close to stainless steel, which proves that it
can integrate the mechanical qualities of medical stainless
steel necessary for scaffolding in stent applications. Hence,

TABLE 4. The coefficients of determination R2 score of the best fit
models.

TABLE 5. Compositions of the best randomly generated Mg
biodegradable alloy.

FIGURE 6. Composition of the Predicted Mg alloy.

it was concluded that the Mg biodegradable alloy designed
by the ANFIS model appears to be a promising candi-
date that can potentially address the challenges as tempo-
rary structural biomaterials providing superior mechanical
integrity essential for stent applications for Abdominal Aortic
Aneurysm (AAA) repair. The evolution of Mg biodegrad-
able stents as alternatives to non- degradable stents helps to
overcome the chronic inflammatory body reactions, avoid
complications, save expenses and pain to patients undergoing
later re-surgeries for removal of the implanted permanent
stents. Furthermore, altering the compositions of alloying
elements added to Mg leads to large changes in the mechan-
ical behavior of the alloy and the use of machine learning
techniques such as the ANFIS model facilitates the design
of new advanced alloys out of millions of alloys required for
many medical applications reducing the time, effort and cost
of large searching space.

Future enhancement of this work includes further stud-
ies that should be conducted on the implantation of
biodegradable stents manufactured from the newly designed
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TABLE 6. Comparison between mechanical properties of several alloys.

Mg alloy in the abdominal aorta of some clinically approved
animals for in-vivo long term evaluation. These studies
should include the investigation of the healing process of the
aorta vessel wall, safety, efficacy and degradation rates of the
Mg alloy inside the body.

IV. CONCLUSION
In this study, Adaptive Neuro-Fuzzy Inference System
(ANFIS) model was developed and compared with other
classic machine learning algorithms (Multiple Linear Regres-
sion (MLR) and Gradient Boosting Regression models) for
the design of an Mg biodegradable alloy necessary for
Abdominal Aortic Aneurysm repair (AAAR). By evaluating
the performance of the three proposed models, it was proved
that the ANFIS model outperformed the other models in
predicting the mechanical properties of the Mg samples with
maximum R2 scores of 0.926, 0.958, and 0.988 for UTS, YS,
and Ductility respectively.

The ANFIS model efficiently predicted an Mg biodegrad-
able alloy having improved mechanical properties of
346.148 Mpa, 230.8 Mpa, and 15.4% for UTS, YS, and
Ductility which are close to the mechanical properties of
stainless steel which is considered as a reference material
for vascular stent applications. The results also revealed that
alloying Mg with other elements such as Mn, Al, Ca, Zn,
Li, Zr, and Rare-earth elements with certain compositions
improved the strength and ductility of the Mg alloy which
are essential requirements for the design of stents included in
stent graft systems for AAAR. The biodegradable Mg stent in
the stent-graft system provides a mechanical scaffold for both
the graft and the aorta vessel wall and then degrades over time
gradually while being metabolized in the body and replaced
by the healed host aorta tissue, thus reducing any chronic
inflammatory reactions caused by permanent non-degradable
stents.

Hence, the ANFIS model proved to be a promising
approach to accelerate the design of new alloys in the future
for diverse medical applications. Furthermore, with the aid of
machine learning techniques, other alloys could be designed
by adding other elements to Mg with varying concentrations
to further enhance its strength and ductility.
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