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1 Introduction

The n-th harmonic number Hn has the usual definition

Hn =
n∑
k=1

1

k
=
∞∑
j=1

n

j(j + n)
(H0 = 0)

for n ∈ N. It can be described as a sum of the areas of certain rectangles. In other words, each
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term of the sum can be interpreted as the area of a rectangle with width equal to 1 and height
equal to 1

k
. The Fibonacci numbers have the following recurrence relation for n ≥ 0:

Fn+2 = Fn+1 + Fn

with F0 = 0, F1 = 1. Inspired by the definition of the harmonic number and Fibonacci number,
Tuğlu et al. introduced in [11] harmonic Fibonacci numbers as below:

Fn =
n∑
k=1

1

Fk

and gave various identities for these numbers by using the difference operator. They also studied
the theory of the harmonic and the hyperharmonic Fibonacci numbers and got some combinatoric
identities. Moreover, the authors obtained in [10] norms of some circulant matrices and some
special matrices, whose entries consist of harmonic Fibonacci numbers.

Assume that A = (aij) is an n× n matrix. The maximum column norm is found by

||A||c1 = max
j

√∑
i

|aij|2 (1.1)

and the maximum row norm is calculated by

||A||r1 = max
i

√∑
j

|aij|2. (1.2)

The Frobenius or Euclidean norm of A is found by

‖A‖E =

√√√√ n∑
i=1

n∑
j=1

|aij|2. (1.3)

Let AH be the conjugate transpose of matrix A, then the spectral norm of A is defined by

‖A‖2 =
√

max
1≤i≤n

λi, (1.4)

where λi is the eigenvalue of matrix AAH . The following well known inequality can be written

1√
n
‖A‖E ≤ ‖A‖2 ≤ ‖A‖E. (1.5)

In the literature, there are many papers dealing with some kind of matrices and some type of
norms, (see [1–3, 6, 7, 9, 12, 13]). Suppose that A = (aij), B = (bij) and C = (cij) are m × n
matrices. The Hadamard product of A and B is defined by A ◦ B = (aijbij). If C = A ◦ B, then
there exists the following relation

‖C‖2 ≤ ||A||r1||B||c1 . (1.6)

The Hadamard exponential of the matrix A = (aij)m×n is defined by e◦A = (eaij), [8]. The
permanent of an n× n matrix A is defined as:
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perA =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where the sum here extends over all elements σ of the symmetric group Sn over all permutations
of the numbers 1, 2, . . . , n. The matrices whose permanents arise in various applications often
have special structure. Usually these are nonnegative matrices whose nonzero entries are
distributed regularly over planes. In this content, Brualdi et al. defined in [4] a new method
which is called contraction method to calculate the permanents of the matrices. The authors
in [7] considered a square matrix M as below:

M =

[
A b

bT c

]
, (1.7)

where A is an n × n nonsigular matrix and b is an n × 1 matrix, also c is a real number. Then,
they obtained the inverse of M as following

N =

[
A−1 + 1

l
A−1bbTA−1 −1

l
A−1b

−1
l
bTA−1 c

]
,

where l = c− bTA−1b.
In this paper, we consider an n × n matrix F = [Fkij ]ni,j=1 and its Hadamard exponential

matrix e◦F = [eFk ], where ki,j = min(i, j) and Fn is the n-th harmonic Fibonacci number. In
other words, these matrices are represented as below:

F =


F1 F1 F1 · · · F1

F1 F2 F2 · · · F2

F1 F2 F3 · · · F3

...
...

... . . . ...
F1 F2 F3 · · · Fn

 =


1 1 1 · · · 1

1 2 2 · · · 2

1 2 5
2
· · · 5

2
...

...
... . . . ...

1 2 5
2
· · ·

∑n
k=1

1
Fk

 , (1.8)

and

e◦F = [eFmin(i,j)+1 ]ni,j=1 =


eF1 eF1 eF1 · · · eF1

eF1 eF2 eF2 · · · eF2

eF1 eF2 eF3 · · · eF3

...
...

... . . . ...
eF1 eF2 eF3 · · · eFn

 , (1.9)

where Fk is the k-th harmonic Fibonacci number. Some algebraic properties of these matrices
are investigated such as determinant, inversion, some norms and permanents. Moreover, some
illustrative examples are given and a MATLAB-R2016a code is presented.

2 Main results

Theorem 2.1. Let F be an n by n matrix as in the matrix from (1.8), then

det(F) =
1

F1F2...Fn
.
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Proof. By using elementary row operations on the matrix (1.8), we calculate:

det(F) = det


F1 F1 F1 · · · F1

0 F2 − F1 F2 − F1 · · · F2 − F1

0 0 F3 − F2 · · · F3 − F2

...
...

... . . . ...
0 0 0 · · · Fn − Fn−1

 .
So, we have

det(F) = F1

n∏
i=2

(Fi+1 − Fi) =
n∏
i=1

1

Fi
=

1

F1F2...Fn
.

Corollary 2.1. Suppose that F is a matrix as in (1.8) and the leading principal minor of F is
denoted by ∆n, then we have

i. ∆n = 1
Fn

∆n−1,

ii. ∆1∆2∆3 · · ·∆n = 1
Fn
1 F

n−1
2 ...F 2

n−1Fn
.

Proof. It can be calculated by using the Theorem 2.1.

Note that the matrix F is a positive definite matrix and all eigenvalues of F are positive.

Theorem 2.2. Assume that F is a matrix as in the matrix (1.8). The inverse of F is

F−1 =



F3 −F1 0 0 0 · · · 0 0

−F1 F4 −F3 0 0 · · · 0 0

0 −F3 F5 −F4 0 0 · · · 0

0 0 −F4 F6 −F5 0 · · · 0
...

...
... . . . ...

... . . . ...
0 0 0 · · · 0 −Fn−1 Fn+1 −Fn
0 0 0 · · · 0 0 −Fn Fn


·

Proof. The inverse of the matrix F can be calculated by Principle Mathematical Induction, on n.
It verifies for n = 2, i.e.: if

F =

[
1 1

1 2

]
,

then we find

F−1 =

[
2 −1

−1 1

]
.

Assume that the result provides for n, that is A = F = [Fkij ]n×n, A−1 = [Fkij ]−1n×n.
So, we have b = (F1,F2, . . . ,Fn)T , bT = (F1,F2, . . . ,Fn). By taking c = Fn+1 and by the

help of the equation (1.7), it verifies for n+ 1.

Definition 1. Let us define a second order recurrence relation, for i ≥ 2, as below:

w[i] = w[i−1]Fi+5 + w[i−2]F 2
i+3

where w[1] = w[0]F6 +AF 2
4 , w

[0] = AF5 +F 3
3 and A = F3F4 + 1. Here, Fn is the n-th Fibonacci

number.

402



The first few values of the sequence can be given as following:

w[1] = w[0]F6 + AF 2
4

w[2] = w[1]F7 + w[0]F 2
5

w[3] = w[2]F8 + w[1]F 2
6

...

where i = 2, 3, 4, . . . .

Here, we construct a new recurrence relation whose permanents are related to inverse of the
matrix F.

Theorem 2.3. The permanents of the matrix F−1 are:

per(F−1) = Fn(w[n−4]F 2
n−1 + w[n−5]Fn+2).

Proof. Let us considerA = F3F4+1 and w[0] = AF5+F 3
3 , then by using the contraction method,

we get:

[
F−1
](1)

=



A −F3

−F3 −F5 −F4

−F4 −F6
. . .

. . . . . . −Fn−1
−Fn−1 −Fn+1 −Fn

−Fn Fn


(n−1)×(n−1)

and going on with this method, we obtain:

[
F−1
](2)

=


w[0] −AF4

−F4 −F6
. . .

. . . . . . −Fn−1
−Fn−1 −Fn+1 −Fn

−Fn Fn


(n−2)×(n−2)

and we can mention these steps with a general statement, for n− 2 > r ≥ 3, as below:

[
F−1
](r)

=


w[r−2] −w[r−3]Fr+2

−Fr+2 −Fr+4 −Fr+3

. . . . . . . . .
−Fn−1 −Fn+1 −Fn

−Fn Fn


(n−r)×(n−r)

Consequently, we get

[
F−1
](n−2)

=

[
w[n−4] −w[n−5]Fn
−Fn Fn

]
= Fn(w[n−4]F 2

n−1 + w[n−5]Fn+2)

which is desired.
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Theorem 2.4. Assume that F is a matrix as in (1.8). Then, the determinant of Hadamard inverse
of F is

det(F◦(−1)) =
(−1)n−1

FnFn
n−1∏
i=1

FiF2
i

.

Proof. We can write

F◦(−1) =



1
F1

1
F1

1
F1
· · · 1

F1
1
F1

1
F2

1
F2
· · · 1

F2
1
F1

1
F2

1
F3
· · · 1

F3...
...

... . . . ...
1
F1

1
F2

1
F3
· · · 1

Fn

 .

By the elementary row operations, we have

det(F◦(−1)) = det



1
F1

1
F1

1
F1

· · · 1
F1

0 1
F2
− 1

F1

1
F2
− 1

F1
· · · 1

F2
− 1

F1

0 0 1
F3
− 1

F2
· · · 1

F3
− 1

F2...
...

... . . . ...
0 0 0 · · · 1

Fn
− 1

Fn−1

 .

Thus, we obtain

det(F◦(−1)) =
1

F1

n∏
k=2

(
1

Fk
− 1

Fk−1
) =

1

F1

n∏
k=2

−1

FkFkFk−1
=

(−1)n−1

F1F2...Fn

1

F2
1F2

2...F2
n−1Fn

.

Theorem 2.5. If F is a matrix which is given in (1.8), then

‖F‖E =

√√√√(n+ 1)2F2
n+1 − (2n+ 1) +

n∑
k=1

(k + 1)(k − (2n+ 1))

Fk+1

(Fk + Fk+1).

Proof. The Euclidean norm of F is

‖F‖2E =

[
(
n∑
i=1

n∑
j=1

|Fij|2)
1
2

]2
.

Thus,

‖F‖2E =
n∑
k=1

(2n− 2k + 1)F2
k = (2n+ 1)

n∑
k=1

F2
k − 2

n∑
k=1

kF2
k.

Also, help of the reference [5], we get

n∑
k=1

F2
k = F2

n+1(n+ 1)− 1−
n∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1), (2.1)

and
n∑
k=1

kF2
k = F2

n+1

n(n+ 1)

2
−

n∑
k=1

(k + 1)k

2Fk+1

(Fk + Fk+1). (2.2)
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According to (2.1) and (2.2), we obtain

‖F‖E =

√√√√(n+ 1)2F2
n+1 − (2n+ 1) +

n∑
k=1

(k + 1)(k − (2n+ 1))

Fk+1

(Fk + Fk+1).

Corollary 2.2. Let F be a matrix as in the matrix form (1.8) Then,

1√
n

√√√√(n+ 1)2F2
n+1 − (2n+ 1) +

n∑
k=1

(k + 1)(k − (2n+ 1))

Fk+1

(Fk + Fk+1) ≤ ‖F‖2

≤

√√√√(n+ 1)2F2
n+1 − (2n+ 1) +

n∑
k=1

(k + 1)(k − (2n+ 1))

Fk+1

(Fk + Fk+1).

Proof. The proof can be seen easily by using Theorem 2.5 and the inequality (1.5).

Theorem 2.6. Let F be a matrix as in the matrix form (1.8), then

‖F‖2 ≤

√√√√[(n+ 1)F2
n+1 − 1−

n∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1)

][
nF2

n −
n−1∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1)

]
.

Proof. We can write
F = A ◦B,

where

A =


F1 1 1 · · · 1

F1 F2 1 · · · 1

F1 F2 F3 · · · 1
...

...
... . . . ...

F1 F2 F3 · · · Fn

 and B =


1 F1 F1 · · · F1

1 1 F2 · · · F2

1 1 1 · · · F3

...
...

... . . . ...
1 1 1 · · · 1

 .

So, we have

r1(A) =

√√√√ n∑
i=1

F2
i =

√√√√(n+ 1)F2
n+1 − 1−

n∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1),

c1(B) =

√√√√n−1∑
i=1

F2
i + 1 =

√√√√nF2
n −

n−1∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1).

Consequently, we obtain

‖F‖2 ≤

√√√√[(n+ 1)F2
n+1 − 1−

n∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1)

][
nF2

n −
n−1∑
k=1

(k + 1)

Fk+1

(Fk + Fk+1)

]
.
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Theorem 2.7. Assume that e◦F is a matrix as in the matrix form (1.9), then

det(e◦F) = eF1

n∏
k=2

(eFk − eFk−1).

Proof. The proof can be done easily by the elementary row operations.

Theorem 2.8. Let e◦F be a matrix as in (1.9) and ∆n denotes the leading principal minor of e◦F,
then we have for n > 1

i. ∆n = (eFn − eFn−1)∆n−1,

ii. ∆1∆2∆3 · · ·∆n = (eF1)n(eF2 − eF1)n−1(eF3 − eF2)n−2...(eFn − eFn−1).

Proof. It can be easy calculated by the help of Theorem 2.7 and the followings:

∆1 = e,

∆2 = e(e2 − e),
∆3 = e(e2 − e)(e5/2 − e2)

...

∆n = eF1(eF2 − eF1)(eF3 − eF2) . . . (eFn − eFn−1).

Note that the matrix e◦F is a positive definite matrix and all eigenvalues of e◦F are positive.

Theorem 2.9. Suppose that e◦F is a matrix as in the matrix form (1.9), then:

(e◦F)−1 =



1
eF1−1

1
eF1−eF2 0 · · · 0 0 0

1
eF1−eF2 A 1

eF2−eF3 · · · 0 0 0

0 1
eF2−eF3

. . . · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · . . . 1

eFn−2−eFn−1
0

0 0 0 · · · 1

eFn−2−eFn−1
B 1

eFn−1−eFn

0 0 0 · · · 0 1

eFn−1−eFn
−1

eFn−1−eFn


,

where

A = (1− eF1

eF1 − eF2
− eF2

eF2 − eF3
)

1

eF2
,

and

B = (1− eFn−2

eFn−2 − eFn−1
− eFn−1

eFn−1 − eFn
)

1

eFn−1
.

Proof. It can be proven in a similar way in the proof of Theorem 2.2.

Theorem 2.10. Assume that eF is a matrix as in (1.9). Then,

det(eF◦(−1)) =
1

eF1

n∏
k=2

1

eFk−1

(1− e
1
Fk )

e
1
Fk

.
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Proof. By the definition of the Hadamard inverse, we get

eF◦(−1) =



1
eF1

1
eF1

1
eeF1

· · · 1
eF1

1
eF1

1
eF2

1
eF2

· · · 1
eF2

1
eF1

1
eF2

1
F3
· · · 1

eF3
...

...
... . . . ...

1
eF1

1
eF2

1
F3
· · · 1

eFn

 .

By the elementary row operations,

det(eF◦(−1)) =
1

eF1

n∏
k=2

(
1

eFk
− 1

eFk−1
) =

1

eF1

n∏
k=2

1

eFk−1

(1− e
1
Fk )

e
1
Fk

.

Theorem 2.11. Assume that e◦F is a matrix which is given in (1.9). Then,

‖e◦F‖E =

√√√√(2n+ 1)
n∑
k=1

e2Fk − 2
n∑
k=1

ke2Fk .

Proof. The Euclidean norm of e◦F can be written as∥∥e◦F∥∥2E =
n∑
k=1

(2n− 2k + 1)e2Fk = (2n+ 1)
n∑
k=1

e2Fk − 2
n∑
k=1

ke2Fk .

Thus, the proof is clear.

Corollary 2.3. Suppose that e◦F is a matrix as in the matrix form (1.9). Then,

1√
n

√√√√(2n+ 1)
n∑
k=1

e2Fk − 2
n∑
k=1

ke2Fk ≤ ‖e◦F‖2 ≤

√√√√(2n+ 1)
n∑
k=1

e2Fk − 2
n∑
k=1

ke2Fk .

Proof. The proof can be seen easily by using theorem above and the inequality (1.5).

Theorem 2.12. Suppose that e◦F is a matrix as in the matrix form (1.9). Then,

‖e◦F‖2 ≤

√√√√(
n∑
k=1

e2Fk)(
n−1∑
k=1

e2Fk + 1).

Proof. We can write
e◦F = A ◦B,

where

A =


eF1 1 1 · · · 1

eF1 eF2 1 · · · 1

eF1 eF2 eF3 · · · 1
...

...
... . . . ...

eF1 eF2 eF3 · · · eFn

 and B =


1 eF1 eF1 · · · eF1

1 1 eF2 · · · eF2

1 1 1 · · · eF3

...
...

... . . . ...
1 1 1 · · · 1

 .

So, we have

||A||r1 =

√√√√ n∑
k=1

e2Fk , and ||B||c1 =

√√√√n−1∑
k=1

e2Fk + 1.
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According to (1.6), we obtain

‖e◦F‖2 ≤

√√√√(
n∑
k=1

e2Fk)(
n−1∑
k=1

e2Fk + 1).

3 Numerical examples

In this section, to verify the obtained some results, we give a MATLAB-R2016a code for the
matrix given by (1.8). Moreover, we present an illustrative example.

1 clc

2 clear all

3 n=input(’n=?’);

4

5 f(1) = 1;

6 f(2) = 1;

7 g(1)=1;

8 g(2)=1;

9 for i = 3 : n

10 f(i) = f(i-1) + f(i-2);

11 g(i) =1/f(i);

12 end

13 b = g(1:n);

14 t=cumsum(b);

15 for i=1:n

16 for j=1:n

17 if i==j

18 a(i,j)=t(i);

19 elseif i<j

20 a(i,j)=t(i);

21 elseif i>j

22 a(i,j)=t(j);

23 end

24 end

25 end

26 A = rats(a)

27 c(1)=exp(2*1);

28 c(2)=exp(2*2);

29 for i = 3 : n

30 c(i)=exp(2*t(i));

31 end

32 d = c(1:n);

33 rownorm_1 = cumsum(d);

34 HEMrownnorm=rownorm_1(n)

35 e = c(1:n-1);

36 columnnorm_2 = cumsum(e)+1;

37 HEMcolumnnorm=columnnorm_2(n-1)

38 HEMl_2normlessthan=(columnnorm_2(n-1)*rownorm_1(n))ˆ(1/2)

39 for i = 1 : n
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40 f(i)=i*exp(2*t(i));

41 end

42 g = f(1:n);

43 x=cumsum(g);

44 HEMEuclidNorm=((2*n+1)*rownorm_1(n)-2*x(n))ˆ(1/2)

Example 1. Let F is a matrix as in matrix form (1.8) for n = 5. Then, the followings can be
calculated:

det(F) =
1

30

det(F◦(−1)) =
36

657475

||F||E =

√
91381

900
≈ 10.076

4.506 ≈ 1√
5

√
91381

900
≤ ||F||2 ≤

√
91381

900
≈ 10.076

||F||2 ≤
√

1871063

3240
≈ 24.031

det(e◦F) ≈ 1103.985

det(eF◦(−1)) ≈ 1.1191× 10−6

‖e◦F‖E ≈ 49.891

22.312 ≈ 1√
5

√
2.4892× 103 ≤ ‖e◦F‖E ≤

√
2.4892× 103 ≈ 49.891

‖e◦F‖2 ≤ 682.489

||A||r1 ≈ 930.710

||B||c1 ≈ 500.4697

4 Conclusion

In this paper, we construct a special symmetric matrix F whose entries are the harmonic Fibonacci
numbers and its Hadamard exponential matrix e◦F. Then, we obtain some interesting linear
algebraic properties, such as determinants, permanents, some norms, etc., for the constructed
matrix family. Also, we give some summation formulas for the harmonic Fibonacci numbers.
Moreover, we present a MATLAB-R2016a code for the matrix F and for the norm calculations
of e◦F. For the value n inputted to the code given:

1. writes the matrix F,

2. for the matrix e◦F,

i calculates the row norm ‖A‖r1 ,

ii calculates the column norm ‖B‖c1 ,

iii gives an upper bound for the spectral norm ‖e◦F‖2,

iv obtains the Euclidean norm ‖e◦F‖E.
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