
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcim20

International Journal of Computer Integrated
Manufacturing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcim20

(AIAM2019) Artificial Intelligence in Software
Engineering and inverse: Review

Mohammad Shehab, Laith Abualigah, Muath Ibrahim Jarrah, Osama Ahmad
Alomari & Mohammad Sh. Daoud

To cite this article: Mohammad Shehab, Laith Abualigah, Muath Ibrahim Jarrah, Osama
Ahmad Alomari & Mohammad Sh. Daoud (2020) (AIAM2019) Artificial Intelligence in Software
Engineering and inverse: Review, International Journal of Computer Integrated Manufacturing,
33:10-11, 1129-1144, DOI: 10.1080/0951192X.2020.1780320

To link to this article: https://doi.org/10.1080/0951192X.2020.1780320

Published online: 25 Jun 2020.

Submit your article to this journal

Article views: 1683

View related articles

View Crossmark data

Citing articles: 11 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
https://www.tandfonline.com/loi/tcim20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2020.1780320
https://doi.org/10.1080/0951192X.2020.1780320
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2020.1780320
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2020.1780320
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2020.1780320&domain=pdf&date_stamp=2020-06-25
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2020.1780320&domain=pdf&date_stamp=2020-06-25
https://www.tandfonline.com/doi/citedby/10.1080/0951192X.2020.1780320#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0951192X.2020.1780320#tabModule

ARTICLE

Artificial intelligence in software engineering and inverse: review
Mohammad Shehab a, Laith Abualigahb, Muath Ibrahim Jarrahc, Osama Ahmad Alomarid

and Mohammad Sh. Daoude

aComputer Science, Artificial Intelligence Department, Aqaba University of Technology, Aqaba, Jordan; bFaculty of Computer Sciences and
Informatics, Amman Arab University, Amman, Jordan; cFaculty of Computer Science and Information Technology, Universiti Tun Hussein Onn
Malaysia, Parit Raja, Malaysia; dDepartment of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey; eFaculty of Engineering, Al
Ain University of Science and Technology, Abu Dhabi, UAE

ABSTRACT
Artificial Intelligence (AI) and Software Engineering are considered as significant fields to solve
various problems. However, there are weaknesses in certain problem-solving in each field. Thus,
this paper is a broad-based review of using artificial intelligence (AI) to improve software engineer-
ing (SE), and vice versa. As well as it intends to review the techniques developed in artificial
intelligence from the standpoint of their application in software engineering. The aim of this review
is highlighted in how the previous study benefited from incorporating the advantages of both
fields. The researchers and practitioners on AI and SE belong to a wide range of audiences from the
domains of optimization, engineering, data mining, clustering, etc., who will benefit from this study
and areas for potential future research.

ARTICLE HISTORY
Received 1 August 2019
Accepted 30 May 2020

KEYWORDS
Artificial intelligence;
software engineering;
software development
process; artificial intelligence
techniques

1. Introduction

Artificial intelligence (AI) is the capability of the digital
computer to perform tasks in ways that are smarter
than human ability (Shahkarami et al. 2014). It has two
types based on performance strength. (i) Narrow AI
which handles the subgroups of a possible scenario.
All these subgroups are used to build strong AI
(Yampolskiy and Spellchecker 2016). For example, in
chess, all rules are entered manually, and the machine
begins using these rules depending on the situation.
Meanwhile, (ii) strong AI is used in complex systems
where human intervention is not required, and the
machine can think and execute tasks singlehandedly
(Stewart 2015).

Meanwhile, software engineering (SE) consists of
two expressions. Software refers to programs that
include instructions to supply the required function-
ality, and engineering refers to the operations of the
design and construction to determine the cost of
efficient solutions. Thus, the definition of SE is
a systematic approach for the design, development,
implementation, and maintenance of a software sys-
tem (Winter, Forshaw, and Ferrario 2018).

This paper aims to provide unusual guidelines to
work with AI systems that can be used in determining

problems incorporated with SE methods. Another
objective is to obtain the specific AI methods suitable
for producing appropriate software improvement
processes (Shankari and Thirumalaiselvi 2014).

This review is organized as follows: Section 2 and 3
illustrate an overview of the Artificial Intelligence and
Software Engineering, respectively. The publication
growth, benefits, and related works of Artificial
Intelligence and Software Engineering are shown in
Section 4. Section 5 presents the discussion. Finally,
Section 6 draws some concluding remarks and out-
lines several future research lines of interest.

2. Artificial intelligence

The Dartmouth conference in 1956 was the birthplace
of AI (Hamet and Tremblay 2017). Various definitions
of AI exist but all of them include the same purpose.
Winston and Prendergast (1984) mentioned that AI is
”the study of the computations that make it possible
to perceive, reason, and act”. According to Kurzweil
et al. (1990), AI is ”the art of creating machines that
perform functions that require intelligence when per-
formed by people”. AI differs from most of psychology
because of its emphasis on computation and it differs

CONTACT Mohammad Shehab moh.shehab12@gmail.com Computer Science, Artificial Intelligence Department. Aqaba University of Technology,
Aqaba 77110, Jordan

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
2020, VOL. 33, NOS. 10–11, 1129–1144
https://doi.org/10.1080/0951192X.2020.1780320

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0003-0211-3503
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2020.1780320&domain=pdf&date_stamp=2020-11-27

from most of computer science because of its empha-
sis on perception, reasoning, and action according to
Abualigah et al. (2019).

AI applications are used to simulate human intel-
ligence for providing help in problem solving and
decision making. AI has been applied and is still
utilized in various fields, such as economics, engi-
neering, law, economics, medicine, and manufac-
turing (Shehab, Khader, and Al-Betar 2017). Figure
1 shows an overview of the fields, methods, and
techniques of AI. AI has numerous advantages, such
as making decisions with rapid thinking, replacing
humans in certain jobs (such as dangerous tasks),
and simplifying life (such as with the use of smart-
phones and GPS) (Chowdhury and Sadek 2012).
However, AI also has flaws, such as being expen-
sive, and it may cause adverse results (such as
corruption or malfunction in robot armies and pos-
sibility of mass destruction) and create unemploy-
ment in certain sectors (Shehab et al. 2019).

3. Software engineering

SE is the application of engineering to the design,
development, and maintenance of software. SE was
initially introduced to address the issues of low-
quality software projects. Problems arise when
a software generally exceeds timelines, budgets, and
reduced levels of quality. Thus, SE ensures that appli-
cations are constructed consistently, correctly, on
time, on budget, and within requirements. The
demand of SE also emerged to cater to the immense
rate of change in user requirements and environment,
on which applications should function well. Figure 2
shows the common keywords in the SE lifecycle.

3.1. The software development process

This section shows the software engineering process
followed by summarizing the common models in the
software development life cycle.

3.1.1. Software process

A software process (also known as software metho-
dology) is a set of related activities that leads to the
production of the software (Eisty, Thiruvathukal, and
Carver 2019). These activities may involve developing
software from scratch or modifying an existing sys-
tem. Any software process must include the following
four activities:

(1) Software specification (requirements engineer-
ing): The major functionalities of the software
and the constrains around them are defined.

(2) Software design and implementation: The soft-
ware is designed and programmed.

Figure 1. AI fields, methods, and techniques (Rech and Althoff 2004).

Figure 2. The keywords of the software engineering.

1130 M. SHEHAB ET AL.

(3) Software verification and validation: The soft-
ware must conform to specifications and meet
the customer needs.

(4) Software evolution (software maintenance):
The software is modified to meet the customer
needs and the changes in market requirements.

3.1.2. Software development life cycle (SDLC) model
A software life cycle model is either a descriptive or
prescriptive characterization of how software is or
should be developed. A descriptive model describes
the history of how a particular software system was
developed. Descriptive models may be used as the
basis for understanding and improving software devel-
opment processes or for building empirically grounded
prescriptive models (Rao, Kumar, and Reddy 2018).
Table 1 presents the SDLC common models.

3.2. Objectives of software engineering

The following points illustrate the main objectives of
software engineering.

(1) Reliability: This attribute of software quality is
the extent to which a program can be expected

Table 1. Software development life cycle models.
Model Advantages Disadvantages Ref

Waterfall ● Simple and
easy to use
and
understand

● High amounts
of risk and
uncertainty

Kramer (2018),
Shambour et al.
(2018),
Kuhrmann et al.
(2017)

● Easy to
manage (i.e.,
each phase
has specific
deliverables)

● Poor for long
and ongoing
projects

● processed
and
completed
one at a time

● Cannot
accommodate
changing
requirements

● works well
for smaller
projects

● difficult to
measure
progress within
stages

Prototyping ● Missing
functionality
can be
identified
easily

● Insufficient
analysis

Shambour,
Abusnaina, and
Alsalibi (2019),
Falzone and
Bernaschina
(2018), Devadiga
(2017)

● Reduces time
and cost

● User confusion

● Quicker user
feedback is
available

● Developer misunderstanding
of user objectives

● Improved
and increased
user
involvement

● Excessive
Development
Time

Spiral ● Can
changing
requirements

● Risk of not
meeting the
schedule or
budget

Shambour (2017),
Boehm and
Turner (2015),
Krishnan (2015)

● Users see the
system early

● High cost

● Allows
extensive use
of prototypes

● Not useful for
small projects

(Continued)

Table 1. (Continued).
Model Advantages Disadvantages Ref

● helps in
better risk
management

● Not suitable for
low risk projects

Incremental ● Easy to test
and debug

● Requires
a good
planning
designing

Semeráth, Vörös,
and Varró (2016),
Varró et al.
(2016), Abu-
Hashem, Uliyan,
and Abuarqoub
(2017)

● A customer
can respond
to each
building

● Each iteration
phase is
inflexible and
does not
overlap each
other

● Errors are
easy to be
identified

● Problems may
arise pertaining
to system
architecture

● Thought the
development
stages
changes can
be done

● More expensive
comparing to
the waterfall
model

Iterative ● Can be
developed
parallel

● Required highly
skilled resources
for risk analysis

Meja Niño et al.
(2018), Menghi,
Rizzi, and
Bernasconi
(2018), Abu-
Hashem et al.
(2015)

● Less costly to
change the
requirements

● End of project
may not be
known

● Easy of
testing and
debugging
during
smaller
iteration

● Management
complexity is
more

● Easier to
manage risk

● Not suitable for
smaller projects

Agile ● Very realistic
approach to
software
development

● More risk of
sustainability

Ringert et al. (2017),
Shehab (2020a),
Al-Zewairi et al.
(2017)

● Suitable for
fixed or
changing
requirements

● Very high
individual
dependency

● Need
minimal
resource
requirements

● Not suitable for
handling
complex
dependencies

● Easy to
manage

● Depends
heavily on
customer
interaction

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1131

to perform its desired function over an arbitrary
time period (Qiang and Peña 2018).

(2) Reusability: A software product has good reusa-
bility if the different modules of the product
can easily be reused to develop new products
(Tahir et al. 2016).

(3) Maintainability: The software should be feasible
to evolve to meet changing requirements (Jain,
Sharma, and Ahuja 2018).

(4) Testability: Software establishes test criteria and
evaluates software with respect to those criteria
(Hassan et al. 2015).

(5) Correctness: A software product is correct if the
different requirements as specified in the SRS
document are correctly implemented
(Chakraborty et al. 2018).

(6) Adaptability: Software allows differing system
constraints and user needs to be satisfied by
making changes to the software (Fink, Wyss, and
Lichtenstein 2018).

(7) Portability: Software can be transferred from
one computer system or environment to
another (Bonati et al. 2015).

3.3. Challenges

SE utilizes a well-defined and systematic approach for
software development. This approach is considered to
be the most effective for producing high-quality soft-
ware. However, despite this systematic approach in soft-
ware development, some serious challenges are still
faced by SE. Some of these challenges are listed below.

(1) The methods used to develop small- or med-
ium-scale projects are inapplicable when devel-
oping large-scale or complex systems
(Chapman 2018).

(2) Changes in software development are unavoid-
able. Currently, changes occur rapidly, and accom-
modating these changes to complete a software
project is a major challenge faced by the software
engineers (Malhotra and Bansal 2016).

(3) The advancement in computer and software
technology has necessitated for the changes in
the nature of software systems. Software

systems that cannot accommodate changes are
not considerably useful. Thus, a challenge in SE is
to produce high-quality software that adapts to
the changing needs within acceptable sche-
dules. To meet this challenge, the object-
oriented approach is preferred; however, accom-
modating changes to software and its mainte-
nance within acceptable cost remains
a challenge (Gui et al. 2015).

(4) Informal communications account
a considerable portion of the time spent on
software projects. Such wastage of time delays
the completion of projects in the specified time
(Johanson and Hasselbring 2018).

(5) The user generally has only a vague idea about
the scope and requirements of the software
system. This usually results in the development
of software, which does not meet the user’s
requirements (Abad, Noaeen, and Ruhe 2016).

(6) Changes are usually incorporated in docu-
ments without following any standard proce-
dure. Thus, verification of such changes often
becomes difficult (Mistry 2017).

(7) The development of high-quality and reliable
software requires the software to be thoroughly
tested. Although thorough testing of software
consumes the majority of resources, underesti-
mating it deteriorates the software quality
(Noureddine, Rouvoy, and Seinturier 2015).

In addition to the aforementioned key challenges,
the responsibilities of system analysts, designers, and
programmers are usually not well defined. Also, if the
user requirements are not precisely defined, then soft-
ware developers can misinterpret the meaning (Stark
et al. 1999). All these challenges need to be addressed
to ensure that the software is developed within the
specified time and estimated costs and meets the
requirements specified by the user.

4. Artificial intelligence and software
engineering

This section illustrates the growth of the integration
between AI and SE, the benefits of this integration,
and the related works.

1132 M. SHEHAB ET AL.

4.1. Growth of the integration between AI and SE

Several studies on AI and SE have been widely pub-
lished. Figure 3 shows the number of published arti-
cles between 1984 and January 2019. The materials
were collected using the keyword AI and SE. First,
published articles were collected from highly reputed
publishers, such as Springer, Elsevier, and IEEE, as well
from other journals searched via Google Scholar.
Second, the search results were classified per publish-
ing date to show the growth of the integration
between AI and SE.

4.2. Benefits

According to the father of AI, Marvin Minsky, ”using SE
is important to build strong AI systems”. The creation of
a huge AI system is expensive (Tenne and Goh 2010).
Thus, problem analysis, modeling, implementation,
test, and evaluation should be carefully performed.
Utilizing AI has a positive effect on the performance
of the SE field, such as rapid creation of minimum
viable products, project management, automatic
debugging, smart assistants, and automatic code gen-
eration and testing (Shehab et al. 2020).

SE is currently a global hotspot, and automation is the
next trend. Software and engineers need to automate
everything in technology. The role of the AI domain in
the SE domain was validated in (Tamalika et al. 2017).
Rather than humans manually generating all the soft-
ware code to obtain services, users’ need, and test auto-
mation, tools can help in generating the code and
executing test and analysis for the code and can con-
stantly develop as they obtain personal information. This
paper reviews and summarizes the different benefits
and drawbacks regarding automating SE. It also explains
the position that factors can perform in a scheme.

The two sciences, that is, AI and SE, are the two
major areas of the computer science domain. AI refers
to creating intelligent machines, whereas SE is an
information-intensive exercise that requires vast
knowledge of the application area and the purpose
of software. Shankari and Thirumalaiselvi (2014) pro-
posed a survey for the procedures generated in AI
from the attitude of their importance in SE.

4.3. Related works

This section introduces three categories of related
works: (i) AI using SE, (ii) SE using AI, (iii) and integra-
tion of AI and SE (where the utilization ratio of each
field is nearly equal). These categories were divided
on the basis of the contribution of each previous
study.

4.3.1. Artificial intelligence using software
engineering
Al software is a fact in the computer science domain
but only for specific classes of computer science pro-
blems. Usually, difficulties in AI are different from
those of traditional SE. The variations proposed in
(Partridge 1992) include various program improve-
ment approaches for difficulties and problems in AI,
that is, programs with the purposes of functional soft-
ware (such as reliability, maintainability, robustness,
and usability) are not produced rapidly. In addition,
the difficulties and problems of machine learning
techniques must be solved (to some level) before
the full prospect of AI can be achieved, without
expecting the resultant self-adaptive software to
increase the difficulties in AI. The realization of the
full prospect of AI in working software expects some
essential discoveries in basic difficulties and problems

Figure 3. Publications of artificial intelligence and software engineering.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1133

in AI and a suitable software improvement approach
(Abualigah et al. 2020).

SE for game purposes is a class of important appli-
cations that are utilized for entertainment, amuse-
ment, and earnest purposes and used in various
regions and domains, such as education, science,
business, gaming, and healthcare. The game improve-
ment process varies from the popular software
improvement method because it includes interdisci-
plinary field actions. Therefore, SE methods are still
necessary for game improvement progress because
they can encourage developers to obtain maintain-
ability, flexibility, usability, low effort and cost, read-
ability, and reliable design. The aim of this
comparison is to evaluate the well-known published
studies on the game improvement SE method and
determine sections that still require further investiga-
tion by researchers. In the investigation, a systematic
literature analysis methodology was conducted in
(Aleem, Capretz, and Ahmed 2016) using well-
known digital publishers. An extensive number of
studies have reported the creation phase of the life
cycle of the game improvement SE method sup-
ported by the preproduction phase. By contrast, the
postproduction aspect has been less researched than
the preproduction and creation aspects. The out-
comes of this study recommend that the game
improvement SE method, especially the postproduc-
tion aspect, still requires further research.

Numerous difficulties and problems in SE include
determining optimal solutions from a collection of
candidate solutions. Such techniques usually need
stakeholders, such as developers, programmers, and
testers, to define decisions across various characteris-
tics or purposes that are to be optimized (that is,
searching and finding the optimal solution from the
available solutions). However, in many instances, sta-
keholders should show such decisions in easy and
qualitative terms. The survey conducted in
(Santhanam 2016) reported that qualitative optimiza-
tion methods can be beneficial to handle dilemmas
within SE. Furthermore, a new optimization technique
was developed to rely on stakeholders’ qualitative
decisions, thereby leveraging modern approaches in
decision-theoretic AI techniques. This study proved
the beneficial uses and produced conjunctions
between qualitative judgment hypothesis and SE.

In the past few years, deep learning (DL) methods
have gained enormous success and benefits. They

have also reached excellent reputation in many dif-
ferent applications, such as intelligent machines, data
mining, image processing, text mining, speech pro-
cessing techniques, and therapeutic diagnostics.
Deep neural networks are the important driving
power behind the modern success of DL methods.
However, black box testing still requires interpretabil-
ity and further knowledge. This problem results in
multiple open safety and protection issues with tre-
mendous and essential requirements on accurate
techniques and SE system for quality improvement.
A large amount of studies have explained that state-of
-the-art DL schemes yield weaknesses and vulnerabil-
ities that can head to critical failure and difficulties,
especially when used to real-world safety-critical
attention. Large-scale studies have introduced an arti-
cle repository of 223 related works in (Ma et al. 2018)
regarding the quality assurance, safety, security, and
understanding of DL. These studies, from a software
quality assurance aspect, have determined difficulties
and future possibilities toward safe DL in the SE
domain. This work and the conducted paper reposi-
tory covered the track for the SE researchers with
respect to solving the important technical require-
ment for safe AI applications.

4.3.2. Software engineering using artificial
intelligence
Tunio et al. (2018) proposed classical planning of AI
techniques to promote quality and alleviate the bur-
den of the crowdsourcing software development
(CSD) platform and CSD developers by searching in
the open tasks and optimizing the matching process,
which matches the CSD developers to develop and
provide a solution for the given task. The results
demonstrated that the automatic planning has
a remarkable influence and suitable efficiency of
matching the task and personality than human work.

In SE automation, introducing a solution for SE
problems in one piece is complex. Thus, C.V.
Ramamoorthy and Shim (1991) presented AI techni-
ques for SE research by using the principle of divide-
and-conquer approach and providing the criteria for
dividing SE problems. Moreover, they provided
recommendations on how to conduct research in AI
for SE and evaluate the results in accordance with
scalability, generality, and combinability.

In software development phase, Ammar,
Abdelmoez, and Hamdi (2012) applied fuzzy logic in

1134 M. SHEHAB ET AL.

software testing to address the uncertainty experi-
enced in this phase.

In (Claypool and Claypool 2005), the authors pro-
posed a new approach that allows gaining further
understanding and effective education of SE using
game theories. In this study, the aforementioned
objectives were fulfilled by using a computer game-
based project. Particularly, project-based and set
game-centric modules were combined in managing
students to (1) engage actively in several phases of
software life cycle; (2) allow them to track real issues
experienced in the project and team management
during the course that extended to a two-semester
project; and simultaneously (3) expose them to var-
ious aspects of computer game design. The prelimin-
ary results proved the effectiveness of the proposed
approach to improve the class participation and per-
formance in SE course.

A group of researchers have devoted their efforts in
creating auto-coding software called DeepCoders by
using AI system (Zohair 2018). The DeepCoders can
develop a working program after referring to massive
database of codes. However, the current version of
this software is limited to write a mini program, which
does not exceed five lines of codes, but may be
extended in the succeeding years as declared by the
developers.

Many researchers have utilized AI-based
approaches to address SE problems, such as require-
ment and design, maintenance, and testing (Zhang,
Finkelstein, and Harman 2008; Räihä 2010; Shehab
2020b). The application of optimization search
approaches in solving such problems is widely
known as search-based SE (SBSE) and was proven to
be successful and applicable (Harman 2012).

Participation in SE activities requires intense
human effort. AI techniques have been widely used
to automate these activities. Traditionally, the starting
points in designing AI techniques rely on human’s
domain knowledge. Thereafter, findings are inter-
preted or verified by human users. However, another
direction of research has focused on using user feed-
back to be incorporated with AI techniques to
improve their performance further. Xie (2013) pro-
posed cooperative testing and analysis involving on
human-tool cooperation (embedding of human-
assisted and human-centric computing) and human-
human cooperation. Such mechanism assists in

realizing the synergy of human and AI in SE and has
been integrated into solution for SE problems, such as
test generation (Marri et al. 2009; Taneja, Zhang, and
Xie 2010; Thummalapenta et al. 2011), specification
generation (Ammons, Bodk, and Larus 2002;
Shambour 2019; Thummalapenta and Xie 2009),
Debugging (Zeller 1999, 2009), and Programming
(Gulwani 2010). Feldt, de Oliveira Neto, and Torkar
(2018) proposed an initial taxonomy to categorize AI
in SE application levels (AI-SEAL). AI-SEAL demon-
strates the different ways of applying AI in SE and
provides a prior knowledge for software engineer to
consider the risks in utilizing AI.

In software quality context, artificial neural network
(ANN)-based framework for software fault/defect pre-
diction throughout SDLC phases has been proposed
(Vashisht et al. 2015). The framework is interactive
with developed graphical user interface. A historical
dataset taken from 45 actual projects is involved in
the experiments. The actual defect data are taken
from completed projects on the basis of waterfall
development model. For building the proposed fra-
mework, ANNs used this historical dataset as
a training data in its training phase. Then, the devel-
oped network is used for defect prediction in all new
projects. The input components for the network in the
proposed framework consider production, preven-
tion, rework, and review efforts. Users are required
to enter the planned effort data of the five phases of
SDLC. If the data provided by the user meets the
given range of eligible criteria, then defects are esti-
mated using the defect estimation system of the
ANNs. The proposed framework is validated using 15
real-time projects, and the results show that actual
defects lie inside the range of predicted defects.
Moreover, the optimistic prediction quality and the
quality of fit are introduced. The proposed framework
is compared with evolutionary neural network (ENN)
framework and linear regression-based prediction
model. The proposed ANN framework has obtained
up to 90% accuracy, whereas the ENN and linear
regression frameworks have obtained 75% and 66%
accuracy, respectively.

In the field of modeling and simulation, Fishwick
(1992) constructed a broad multimodeling concep-
tual paradigm as an extension to the object-oriented
modeling paradigm to address complexity by using
different partial models at different scales and in

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1135

different operating contexts. One of the early frame-
works is the use of a set of models to represent
a single phenomenon and incorporate different
abstraction levels. The framework attempts to unite
the taxonomy and terminology of three disparate
fields, namely, simulation, SE, and AI, to facilitate the
interworking of these specialties. This methodology
provides a way to structure a heterogeneous set of
model types where each type performs its part, and
the behavior is preserved while levels are mapped.

In computer science, AI and SE are contrasted and
compared in terms of techniques and tools that they
use, the methods they use, and the problems they
attempt to solve. Barstow (1988) performed an excel-
lent survey of the use of AI in SE. He distinguished
between two categories of SE activities, that is, small-
and large-scale programming. He categorized the
knowledge used during software activities into five
general categories, namely, methodologies of SE, pro-
gramming techniques, the target machine’s architec-
ture, the amount of knowledge about the application
domain, and the history of the target software. The
author also described the roles played by this knowl-
edge and argued that AI techniques can greatly assist
with the handling of this knowledge. In other words,
AI techniques can help manage the fundamental pro-
blems faced by SE effectively, thereby leading to
arguments that effective knowledge management
requires computer support and that computer sup-
port for knowledge management requires AI techni-
ques. The author further argued that AI applied to SE
has been relatively narrowly focused, whereas
research on AI applied to SE has had virtually no
demonstrations of practical value. He also claimed
that the diversity and amount of the knowledge do
not demonstrate practical success in this area in past
research. For small-scale programming, some pre-
vious experimental systems, such as Mitre (Brown
1985) and AT&T (Kelly and Nonnenmann 1987), are
good experimental systems in a practical situation.

AI techniques have introduced a significant poten-
tial for supporting and enhancing SE. Meziane and
Vadera (2010) introduced a survey of some trends in
using AI methods, such as genetic algorithms (GAs),
neural networks, and natural language processing
techniques, for the SDLC. In the software planning
phase, GAs are the most commonly used technique.
In practice, they are appropriate for adoption because
they are flexible to represent different objectives and

can easily represent schedules. ANNs, Bayesian net-
works, and case-based reasoning (CBR) proposed by
Yang and Wang have been adopted for risk assess-
ment with favor to Bayesian networks, which are
more transparent and more appealing in practice
than the other methods (Yang and Wang 2009).
Knowledge-based systems (KBSs) are used to manage
requirements and decisions taken during the design
process. Ontologies have been used for requirements
and design. Domain ontologies allow good under-
standing of the problem domain and detection of
incompleteness and ambiguities because they
encompass the strengths of KBS- and NLP-based sys-
tems. They also encapsulate knowledge and rules in
a specific domain in a single resource. A number of
researchers have attempted to use AI planning and
GAs for generating test cases and suggested that
using genetic programming can reduce the number
of ill-defined test sequences. Moreover, using GAs for
generating the order of integration of object-oriented
classes is more promising than traditional graph-
based methods. The review concluded that large-
scale evaluation studies of AI techniques in SE are
required. Thus, further research is needed to under-
stand the effectiveness of different approaches.

In service-oriented architecture (SOA) design,
Rodriguez et al. provided a detailed synthesized and
conceptualized analysis of 69 significant studies that
use AI approaches to discover, compose, or develop
web services (Rodrguez, Soria, and Campo 2016). The
review study attempted to answer some research
questions, such as common features, major character-
istics, and differences among the applied AI
approaches in services. In terms of web service discov-
ery process, among the studies conducted between
2002 and 2013 that have applied AI techniques, the
most popular used AI approaches are ontologies, col-
laborative filtering, and information retrieval (IR).
Ontologies are used because of their capability in
machine-interpretable descriptions. Meanwhile, IR
inherits a rich background. In terms of composing
services, numerous frameworks and approaches have
been developed to facilitate service composition. The
widely used approaches between 2002 and 2015 in
web service composition are planning techniques
and evolutionary algorithms, which are used to build
executable workflows of composed web services for
meeting the service requirements. Depending on the
composition environment, some AI techniques are

1136 M. SHEHAB ET AL.

more appropriate than others. For instance, constraint
optimization techniques are suitable for uncertain dis-
tributed and dynamic environments. AI planning is
promising for dynamic web service compositions with
incomplete information. For high-scalability require-
ments, evolutionary techniques are more useful than
others. The third term is service development. CBR has
been widely applied to achieve the essence of auto-
nomic computing, such as availability, dependability,
and robustness. CBR is suitable in well-defined applica-
tion domains and in determining previous solutions to
current problems with similar conditions. Moreover, it
helps developers choose appropriate object-oriented
designs to reify SOAs.

In SE practices, the experience of using AI domain
has been reported for educating computer science
students. Two large AI-based software systems have
been successfully applied for instruction focusing on
board game learning mechanisms and tree lifecycle
management (Kalles 2016).

In (Poyet, DUBOIS, and Delcambre 1990), the
authors presented two research projects conducted
at the French Scientific and Technical Center for
Building, which is involved in the area of AI applied
to building engineering in a wide range of research
programs. The review introduced software tools
developed for suitable framework for knowledge
modeling. As a result of the experience gained from
the development of different systems, either based on
design facilities, AI languages, large expert system, or
restricted microcomputer environments, the authors
created an object-based integrated environment that
would facilitate data exchange, ensure machine inde-
pendence, and take advantage of advanced SE poli-
cies, thereby further providing robustness and code
saving and avoiding most pitfalls previously encoun-
tered, such as large tools in cumbersome design or
basic languages in low-level modeling.
A representative set of coupled systems, including
object-oriented databases, were presented to provide
immediately reusable information structures for
remote processing, hypertext and hyperobject facil-
ities linked to multifunctional expert systems, and
database modeler that offers retrieval functions.

Raza (2009) highlighted the use of AI in solving SE
problems to save time and effort during software
development process. Applications of AI in expert
system development and risk management were dis-
cussed. In expert system development, KBSs in AI

assist traditional expert system approach. In addition,
automated programming in AI is promising for reusa-
ble codes. Thus, when a certain part of a design is
changed, the unchanged part will not be affected.
Automated programming aims to minimize the spe-
cification, simplify the writing and understanding, and
produce less error than programming languages. In
risk management, automated programming makes
data structures flexible, thereby making AI-based sys-
tems free from risk management strategies. Thus, the
applying AI-based systems with the help of auto-
mated tools can save time and effort in software
development and reduce risk assessment phase.

Computational intelligence (CI) serves as an algo-
rithmic and conceptual framework to address the
needs of knowledge-rich environment of SE. CI can
handle data and knowledge coherently, thereby
increasing assurance to SE. Pedrycz (2002) identified
that CI is suitable to support SE activities. He linked
three CI techniques, namely, granular computing,
evolutionary optimization, and neural networks, to
various SE activities, such as data visualization, evalua-
tion of domain knowledge, and cost estimation. For
example, the notion of information granules, such as
rough sets, shadowed sets, probabilities, random sets,
and fuzzy sets. SE plays a primary role in information
granulation. The fundamentals of granular computing
are compatible with the underlying paradigms of soft-
ware products and process software. The role of infor-
mation granules needs to be emphasized given
project design details and testing plans. Meanwhile,
neural networks, especially self-organizing maps, are
useful for high-dimensional software data
visualization.

Wooldridge (1997) intensively studied agent-based
SE. He stated that ”agents are simply software com-
ponents that must be designed and implemented in
much the same way that other software components
are. ” Software agents are encapsulated entities situ-
ated in a certain environment, aiming to achieve and
meet their needs and design objectives and have
superior flexibility and autonomy in that environ-
ment. The author highlighted the issues of building
a software with respect to multi-agent-based system.
A roadmap was set out in agent-based SE, where the
considered fundamental issues of agent-based sys-
tem were specification, implementation/refinement,
and verification (including testing and debugging).
The article discussed that software agent should

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1137

exhibit some principle characteristics, namely, reac-
tive and proactive social behaviors. Thus, an agent
should have the following key properties: (1)
Autonomy: Agents are identifiable entities. They
decide without any external intervention from other
systems or humans. (2) Reactivity: Agents are
embedded in a certain environment (such as
a collection of other agents, physical world, the
Internet, a user via a graphical user interface, or per-
haps many of these combined). They can perceive this
environment (at least to some extent) and react to
changes in it. (3) Pro-activeness: Agents do not simply
react to changes in the environment. They also exhibit
goal-directed behavior by taking the initiative. (4)
Social ability: Agents can cooperate with one another
and engage in social activities to fulfill their design
objectives. Therefore, an agent-embedded model is
user-friendly, intuitive, adaptive, and flexible.

Tveit (2001) introduced some of the previous
methodologies and applications of agent-oriented
SE (AOSE) in real world; he highlighted design and
high-level methodologies related to SE.

The term ”intelligent” should be used because the
software can have certain types of behavior, and the
term ”agent” pertains to the purpose of the software.
An agent is ”one who is authorized to act for or in the
place of another” (Merriam Webster’s Dictionary). The
purposes of AOSE are to create tools and methodol-
ogies for agent-based software and enable low-cost
development and maintenance. In addition, software
should be high quality, scalable, easy to use, and
flexible. Some examples of software agents include
destructive agents, such as computer viruses, ani-
mated paperclip in MS Office, trading agents (such
as auction agent in eBay), and Quake (an example of
artificial player in games). For further details, the fol-
lowing points illustrate the types of high-level and
design methodologies:

(1) High-level Methodologies
● Gaia Methodology:
Gaia is a general methodology that supports the

macrolevel (that is, organization structure and agent
society) and microlevel (namely, agent structure of
agent development). Gaia addresses some limitations
of existing methodologies where they fail to represent
the nature of problem solving and autonomy of agents
and model approaches for agents to create organiza-
tions and interact. Gaia allows software designers to

systematically develop an implementation-ready
design based on system requirements. Gaia is a good
approach to develop closed-domain agent systems
(Wooldridge, Jennings, and Kinny 2000, 1999).

● The Multiagent Systems Engineering Methodology:
MaSE is similar to Gaia with respect to generality

and the application domain supported. However,
MaSE goes further for using MaSE tool for automatic
code creation. This methodology addresses the lack
of industrial-strength toolkits and creates agent-
based systems. MaSE aims to lead designers from
the initial system specification to the implementation
of agent-based system. MaSE has similar domain
restrictions to those of Gaia. However, MaSE requires
one-to-one agent interactions and not multicast
(DeLoach 1999; Wood and DeLoach 2000).

● Modeling database information systems:
Agent-object relationship model aims to provide

the capability to model relationship between agents
in addition to static entities (Wagner 2003, 2001).

(2) Design Methods
● UML:
An architecture-centric design method for multia-

gent-based systems was presented by Yim et al.
(2000). The method supports the transformation
modeling problems from agent-oriented to object-
oriented. In this method, developers and designers
can use existing UML-based tools and experience
and knowledge from developing object-oriented
systems. A further extension to UML was proposed
by Odell, Parunak, and Bauer (2000) and called it
agent UML. The extension gives agents the ability
to be mobile, that is, they can autonomously move
among different agent-based systems. The applica-
tion of four agent-oriented UML diagrams were sug-
gested by Bergenti and Poggi (2000) applied at the
highest abstraction level (agent level) of AOSE,
where the standard of UML is not required to be
changed.

● Design Patterns:
Design patterns are recurring patterns of pro-

gramming code or component software architec-
ture. In a mobile agent context, Aridor and Lange
(1998) suggested a classification scheme for design
patterns. The objectives are to increase quality and
reusability of the code and reduce the develop-
ment effort of mobile agent-based systems. Rana
and Biancheri (1999) applied a Petri net-based

1138 M. SHEHAB ET AL.

approach to model the meeting pattern of mobile
agents. A seven-layer architecture pattern was pro-
posed for agents, and sets of patterns belonged to
each of the layers (Kendall, Malkoun, and Jiang
1997).

● Components:
Components are logical groups of related objects

that can provide certain functionalities. Erol, Lang, and
Levy (2000) suggested a three-tier architecture that
applies reusable components to compose agents.

● Graph Theory:
Depke and Heckel et al. (2000) applied formal

graph theory on requirement specifications for
agent systems to maintain consistency when transfer-
ring the requirements into a design model.

4.3.3. Integration artificial intelligence and software
engineering
The developments in AI and SE have several shared
properties. They transact with modeling real-world
objects, such as business rules, expert instruction, or
process standards. A short survey was reported in (Rech
and Althoff 2004) to provide an overview of these
methods and explain any modern research topics on
the framework of natural features of communication.
A comprehensive review of the domain of combined AI
and SE was introduced in (Partridge 1990). A taxonomy
of this extension domain was explained and compared
to other major efforts to solve the communication
between the two domains. The three major subareas,
namely, AI-based encouragement circumstances, AI
tools and procedures in functional SE, and SE mechan-
isms and procedures in AI techniques, were explained
and demonstrated with illustrative examples.
Eventually, the domain of the extension should still
be developed. Thus, any modern struggle to change
the circumstances should be surveyed.

A tutorial introduction to AI techniques for SE
developer and a similar introduction to SE develop-
ment for AI techniques was introduced in (Ford 1987).
These domains were analyzed and differentiated in
terms of the difficulties they solve, the techniques
they apply, and the utilized mechanisms and proce-
dures. Merging the two domains is required for sev-
eral different software requirements. The indication
was reviewed briefly, and any of the actions required
for an organization of the two domains were
introduced.

As a model of utilizing the synergy in AI and SE
domains, the domain of deep SE with AI was
developed with several improvements in the pre-
vious years. Such domain broadly discusses pro-
blems on the intelligence of SE and the
engineering of intelligence software. The recent
and future studies concerning intelligent SE were
introduced in (Xie 2018). The first problem, which
is the intelligence of SE, converges the deep and
intelligence strategies in methods to improve the
performance and productivity in many different SE
jobs. The second problem, which is the engineer-
ing of intelligence software, converges many dif-
ferent SE jobs for intelligent and deep software
(such as AI software).

SE and AI are the major two domains in computer
science. During the recent years, the methods of these
domains have been improved individually with no
considerable interchange of research results.
However, both domains have various features, attri-
butes, benefits, and limitations. This statement pre-
sents several chances and plans for new studies.
A major important idea is that the researcher utilizes
the possible methods, instruments, and methods of AI
to SE, and vice versa in practice. In this manner,
knowledge, experiences, characteristics, and
resources of both fields can be collected, and the
controls can decrease. Regarding applicability,
a junction domain is located between AI and SE,
thereby establishing the relationship between AI
and SE. The factors during the interaction between
AI and SE include information, goal, difficulty, and
motivations for using. The framework of cooperation
on which both domains interact with each other was
explored in (Jain 2011). This framework contains four
major types of interaction, namely, software mainte-
nance setting, AI tools and techniques in traditional
software, the performance of conventional software
technology, and methodological problems. This
paper presented the connection between AI and SE
and several systems developed while integrating both
domains.

5. Discussion

This section highlights two major points based on the
above survey findings. First, as illustrated in Figure 4,
the taxonomy of this review shows that the usage of

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1139

SE for the techniques, methods, or tools of AI reached
57% compared with the usage of AI for those of SE
(that is, SDLC), which reached 29%. Meanwhile, the
integration of AI and SE reached 14%. These percen-
tages are logical because AI contains many subfields,
such as optimization algorithms and machine learn-
ing. Therefore, software engineers have many choices
to improve the performance of their works, as men-
tioned in Section 4.2.

Second, new versions of the software are gener-
ated by integrating AI and SE, which leads to many
possibilities. Figure 5 shows an overview of each
field with the interaction area between them. AI

includes knowledge acquisition, domain modeling,
and data analysis techniques. SE contains project
management methods, requirements engineering,
and code engineering. The intersection area
between AI and SE includes KBS, AOSE, CI, and
ambient intelligence.

6. Conclusion and future works

This review focuses on the relationships between
AI and SE. It highlights the effect of AI on the
performance of SE, and vice versa. The overview
of each AI and SE, as well as their definitions, tools,
features, and weaknesses, are provided. This over-
view helps the researchers in each field to under-
stand the other fields. The second stage illustrates
the growth of the integration between AI and SE,
the benefits of the integration, and the presenta-
tion of the previous works. The conclusion shows
several research fields on AI and SE, where the
percentages of using the research on AI in SE, SE
in AI, and integration of both are presented. The
interaction between both domains is also pre-
sented. In future works, the techniques and meth-
ods for each field will be considered, and their
effects will be studied. For instance, machine learn-
ing from AI and the requirements in the SE will be
covered.

Figure 4. The distribution of published research articles.

Figure 5. Interaction between AI and SE.

1140 M. SHEHAB ET AL.

Disclosure statement

The authors declare that they have no conflicts of interest.

ORCID

Mohammad Shehab http://orcid.org/0000-0003-0211-3503

References

Abad, Z. S. H., M. Noaeen, and G. Ruhe. 2016. “Requirements
Engineering Visualization: A Systematic Literature Review.”
In 2016 IEEE 24th International Requirements Engineering
Conference (RE), 6–15. Beijing, China: IEEE.

Abualigah, L., M. Shehab, M. Alshinwan, and H. Alabool. 2019.
“Salp Swarm Algorithm: A Comprehensive Survey.” Neural
Computing & Applications31: 1–21.

Abualigah, L., M. Shehab, M. Alshinwan, S. Mirjalili, and M. Abd
Elaziz. 2020. “Ant Lion Optimizer: A Comprehensive Survey
of Its Variants and Applications.” Archives of Computational
Methods in Engineering. doi:10.1007/s11831-020-09420-6.

Abu-Hashem, M. A., N. A. Rashid, R. Abdullah, A. A. Hasan, and
A. A. Abdulrazzaq. 2015. “Investigation Study: An Intensive
Analysis for Msa Leading Methods.” Journal of Theoretical &
Applied Information Technology 75 (1): 1–12.

Abu-Hashem, M. A., D. M. Uliyan, and A. Abuarqoub. 2017.
“A Shared Memory Method for Enhancing the Htngh
Algorithmperformance: Proposed Method.” In Proceedings
of the International Conference on Future Networks and
Distributed Systems, 14. Cambridge, UK: ACM.

Aleem, S., L. F. Capretz, and F. Ahmed. 2016. “Game
Development Software Engineering Process Life Cycle:
A Systematic Review.” Journal of Software Engineering
Research and Development 4 (1): 6. doi:10.1186/s40411-016-
0032-7.

Al-Zewairi, M., M. Biltawi, W. Etaiwi, and A. Shaout. 2017. “Agile
Software Development Methodologies: Survey of Surveys.”
Journal of Computer and Communications 5 (5): 74–97.
doi:10.4236/jcc.2017.55007.

Ammar, H. H., W. Abdelmoez, and M. S. Hamdi 2012. “Software
Engineering Using Artificial Intelligence Techniques: Current
State and Open Problems.” In Proceedings of the First Taibah
University International Conference on Computing and
Information Technology (ICCIT 2012), Al-Madinah Al-
Munawwarah, Saudi Arabia, 52.

Ammons, G., R. Bodk, and J. R. Larus. 2002. “Mining
Specifications.” ACM Sigplan Notices 37 (1): 4–16.
doi:10.1145/565816.503275.

Aridor, Y., and D. B. Lange. 1998. “Agent Design Patterns:
Elements of Agent Application Design.” In Agents, 108–115.
Vol. 98. USA: ACM.

Barstow, D. 1988. “Artificial Intelligence and Software
Engineering.” In Exploring Artificial Intelligence, 641–670.
San Francisco, California: Elsevier.

Bergenti, F., and A. Poggi. 2000. “Exploiting Uml in the Design
of Multi-agent Systems.” In International Workshop on
Engineering Societies in the Agents World, 106–113. Berlin,
Germany: Springer.

Boehm, B. W., and R. Turner. 2015. “The Incremental
Commitment Spiral Model (Icsm): Principles and Practices
for Successful Systems and Software.” In ICSSP, 175–176.
University of Southern California.

Bonati, C., E. Calore, S. Coscetti, M. D’elia, M. Mesiti, F. Negro,
S. F. Schifano, and R. Tripiccione. 2015. “Development of
Scientific Software for Hpc Architectures Using Openacc:
The Case of Lqcd.” In Proceedings of the 2015 International
Workshop on Software Engineering for High Performance
Computing in Science, 9–15. Florence, Italy: IEEE Press.

Brown, R. 1985. “Automation of Programming; the Isfi
Experiments.” In Proc. Of Expert Systems in Government
Symposium, 525–539. Mclean.

Chakraborty, P., R. Shahriyar, A. Iqbal, and A. Bosu. 2018.
“Understanding the Software Development Practices of
Blockchain Projects: A Survey.” In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 28. Oulu, Finland: ACM.

Chapman, W. 2018. Engineering Modeling and Design. Vol. 33.
Routledge.

Chowdhury, M., and A. W. Sadek. 2012. “Advantages and
Limitations of Artificial Intelligence.” Artificial Intelligence
Applications to Critical Transportation Issues 6 (3): 360–375.

Claypool, K., and M. Claypool. 2005. “Teaching Software
Engineering through Game Design.” In ACM SIGCSE
Bulletin. Vol. 37, 123–127. ACM.

DeLoach, S. A. 1999. “Multiagent Systems Engineering:
A Methodology and Language for Designing Agent
Systems.” Technical report, air force inst of tech wright-
patterson afb oh dept of electrical.

Depke, R., R. Heckel, et al. 2000. “Formalizing the
Development of Agent-based Systems Using Graph
Processes.” In ICALP Satellite Workshops, 419–426.
Paderborn, Germany.

Devadiga, N. M. 2017. “Tailoring Architecture Centric Design
Method with Rapid Prototyping.” In 2017 2nd International
Conference on Communication and Electronics Systems
(ICCES), 924–930. Monte De Caparica, Portuga: IEEE.

Eisty, N. U., G. K. Thiruvathukal, and J. C. Carver. 2019. “Use of
Software Process in Research Software Development: A
Survey.” 3 (3): 180–202.

Erol, K., J. Lang, and R. Levy. 2000. “Designing Agents from
Reusable Components.” In Proceedings of the Fourth
International Conference on Autonomous Agents, 76–77.
Barcelona, Spain: ACM.

Falzone, E., and C. Bernaschina. 2018. “Model Based Rapid
Prototyping and Evolution of Web Application.” In
International Conference on Web Engineering, 496–500.
Cáceres, Spain: Springer.

Feldt, R., F. G. de Oliveira Neto, and R. Torkar. 2018. “Ways of
Applying Artificial Intelligence in Software Engineering.” In
Proceedings of the 6th International Workshop on Realizing

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1141

https://doi.org/10.1007/s11831-020-09420-6
https://doi.org/10.1186/s40411-016-0032-7
https://doi.org/10.1186/s40411-016-0032-7
https://doi.org/10.4236/jcc.2017.55007
https://doi.org/10.1145/565816.503275

Artificial Intelligence Synergies in Software Engineering, 35–41.
Gothenburg, Sweden: ACM.

Fink, L., S. Wyss, and Y. Lichtenstein. 2018. “Aligning Flexibility
with Uncertainty in Software Development Arrangements
through a Contractual Typology.” Journal of Global
Operations and Strategic Sourcing 11 (1): 2–26. doi:10.1108/
JGOSS-11-2016-0033.

Fishwick, P. A. 1992. “An Integrated Approach to System
Modeling Using a Synthesis of Artificial Intelligence,
Software Engineering and Simulation Methodologies.” ACM
Transactions on Modeling and Computer Simulation
(TOMACS) 2 (4): 307–330. doi:10.1145/149516.149530.

Ford, L. 1987. “Artificial Intelligence and Software Engineering:
A Tutorial Introduction to Their Relationship.” Artificial
Intelligence Review 1 (4): 255–273. doi:10.1007/BF00142926.

Gui, J., S. Mcilroy, M. Nagappan, and W. G. Halfond. 2015. “Truth
in Advertising: The Hidden Cost of Mobile Ads for Software
Developers.” In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, 100–110.
Florence, Italy: IEEE Press.

Gulwani, S. 2010. “Dimensions in Program Synthesis.” In
Proceedings of the 12th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative
Programming, 13–24. Hagenberg, Austria: ACM.

Hamet, P., and J. Tremblay. 2017. “Artificial Intelligence in
Medicine.” Metabolism 69: S36–S40. doi:10.1016/j.
metabol.2017.01.011.

Harman, M. 2012. “The Role of Artificial Intelligence in Software
Engineering.” In 2012 First International Workshop on
Realizing AI Synergies in Software Engineering (RAISE), 1–6.
Zurich, Switzerland: IEEE.

Hassan, M. M., W. Afzal, M. Blom, B. Lindström, S. F. Andler, and
S. Eldh. 2015. “Testability and Software Robustness:
A Systematic Literature Review.” In 2015 41st Euromicro
Conference on Software Engineering and Advanced
Applications, 341–348. Funchal, Portugal: IEEE.

Jain, P. 2011. “Interaction between Software Engineering and
Artificial Intelligence-a Review.” International Journal on
Computer Science and Engineering 3 (12): 3774.

Jain, P., A. Sharma, and L. Ahuja. 2018. “Software
Maintainability Estimation in Agile Software Development.”
International Journal of Open Source Software and Processes
(IJOSSP) 9 (4): 65–78. doi:10.4018/IJOSSP.2018100104.

Johanson, A., and W. Hasselbring. 2018. “Software Engineering
for Computational Science: Past, Present, Future.”
Computing in Science & Engineering 11 (3): 52–66.

Kalles, D. 2016. “Artificial Intelligence Meets Software
Engineering in Computing Education.” In Proceedings of
the 9th Hellenic Conference on Artificial Intelligence, 36.
Thessaloniki, Greece: ACM.

Kelly, V. E., and U. Nonnenmann. 1987. “Inferring Formal
Software Specifications from Episodic Descriptions.” In
Sixth National Conference on Artificial Intelligence, 127-132.
Seattle, Washington.

Kendall, E. A., M. T. Malkoun, and C. H. Jiang. 1997. “The
Application of Object-oriented Analysis to Agent-based
Systems.” JOOP 9 (9): 56–62.

Kramer, M. 2018. “Best Practices in Systems Development
Lifecycle: An Analyses Based on the Waterfall Model.”
Review of Business & Finance Studies 9 (1): 77–84.

Krishnan, M. S. 2015. “Software Development Risk Aspects and
Success Frequency on Spiral and Agile Model.” International
Journal of Innovative Research in Computer and
Communication Engineering 5 (3): 1.

Kuhrmann, M., P. Diebold, J. Münch, P. Tell, V. Garousi,
M. Felderer, K. Trektere, F. McCaffery, O. Linssen, E. Hanser,
et al. 2017. “Hybrid Software and System Development in
Practice: Waterfall, Scrum, and Beyond.” In Proceedings of the
2017 International Conference on Software and System
Process, 30–39. Paris, France: ACM.

Kurzweil, R., R. Richter, R. Kurzweil, and M. L. Schneider. 1990.
The Age of Intelligent Machines, 579. Cambridge, MA: MIT
press.

Ma, L., F. Juefei-Xu, M. Xue, Q. Hu, S. Chen, B. Li, Y. Liu, J. Zhao,
J. Yin, and S. See. 2018. “Secure Deep Learning Engineering:
A Software Quality Assurance Perspective.” arXiv Preprint
arXiv:1810.04538 3 (1): 42–54.

Malhotra, R., and A. J. Bansal. 2016. “Software Change
Prediction: A Literature Review.” International Journal of
Computer Applications in Technology 54 (4): 240–256.
doi:10.1504/IJCAT.2016.080487.

Marri, M. R., T. Xie, N. Tillmann, J. De Halleux, and W. Schulte.
2009. “An Empirical Study of Testing File-system-dependent
Software with Mock Objects.” In 2009 ICSE Workshop on
Automation of Software Test, 149–153. Vancouver, BC,
Canada: IEEE.

Meja Niño, C., M. Albano, E. Jantunen, P. Sharma, J. Campos,
and D. Baglee. 2018. “An Iterative Process to Extract Value
from Maintenance Projects.” In 3 Conferência Internacional
Sobre Engenharia De Manutenção (Income-iii 2018), 319–335.
Coimbra, Portugal: APMI.

Menghi, C., A. M. Rizzi, and A. Bernasconi. 2018. “Integrating
Topological Proofs with Model Checking to Instrument
Iterative Design.” arXiv Preprint arXiv:1811.11123 21 (3):
249–259.

Meziane, F., and S. Vadera. 2010. “Artificial Intelligence in
Software Engineering: Current Developments and Future
Prospects.” In Artificial Intelligence Applications for Improved
Software Engineering Development: New Prospects, 278–299.
Andrews, UK: IGI Global.

Mistry, S. V. 2017. “Homelessness and Trust: The Effects of
Homeless Intake Verification on Relationships.” Washington
and Lee University33 (2): 365–374.

Noureddine, A., R. Rouvoy, and L. Seinturier. 2015.
“Monitoring Energy Hotspots in Software.” Automated
Software Engineering 22 (3): 291–332. doi:10.1007/
s10515-014-0171-1.

Odell, J., H. V. D. Parunak, and B. Bauer. 2000. “Extending Uml
for Agents.” In Proceedings of the Agent-oriented Information
Systems Workshop at the 17th National Conference on
Artificial Intelligence, 3–17. Austin, USA.

Partridge, D. 1990. “Artificial Intelligence and Software
Engineering: A Survey of Possibilities.” In The Software Life
Cycle, 375–385. Elsevier.

1142 M. SHEHAB ET AL.

https://doi.org/10.1108/JGOSS-11-2016-0033
https://doi.org/10.1108/JGOSS-11-2016-0033
https://doi.org/10.1145/149516.149530
https://doi.org/10.1007/BF00142926
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.4018/IJOSSP.2018100104
https://doi.org/10.1504/IJCAT.2016.080487
https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1007/s10515-014-0171-1

Partridge, D. 1992. Engineering Artificial Intelligence Software.
Vol. 9. Oxford and Norwood: Intellect Books.

Pedrycz, W. 2002. “Computational Intelligence as an Emerging
Paradigm of Software Engineering.” In Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering, 7–14. Ischia, Italy: ACM.

Poyet, P., A.-M. DUBOIS, and B. Delcambre. 1990. “Artificial
Intelligence Software Engineering in Building Engineering.”
Computer-Aided Civil and Infrastructure Engineering 5 (3):
167–205. doi:10.1111/j.1467-8667.1990.tb00376.x.

Qiang, B., and E. A. Peña. 2018. “Improved Estimation of System
Reliability with Application in Software Development.” Analytic
Methods in Systems and Software Testing 17 (5): 255–275.

Räihä, O. 2010. “A Survey on Search-based Software Design.”
Computer Science Review 4 (4): 203–249. doi:10.1016/j.
cosrev.2010.06.001.

Ramamoorthy, C. V., and Y.-C. Shim. 1991. “On Issue in Software
Engineering and Artificial Intelligence.” International Journal
of Software Engineering and Knowledge Engineering 2 (1), 8–15.

Rana, O. F., and C. Biancheri. 1999. “A Petri Net Model of the
Meeting Design Pattern for Mobile-stationary Agent
Interaction.” In Proceedings of the 32nd Annual Hawaii
International Conference on Systems Sciences. 1999. HICSS-
32. Abstracts and CD-ROM of Full Papers, 9–16. Maui, HI,
USA: IEEE.

Rao, P. V., V. P. Kumar, and B. P. K. Reddy. 2018. “Applying Agile
Software Methodology for the Development of Software
Development Life Cycle Process (Sdlc).” Journal for
Research— Volume 4 (2): 125–136.

Raza, F. N. 2009. “Artificial Intelligence Techniques in Software
Engineering (Aitse).” In International MultiConference of
Engineers and Computer Scientists (IMECS 2009), 10–17. Vol.
1. Hong Kong.

Rech, J., and K.-D. Althoff. 2004. “Artificial Intelligence and
Software Engineering: Status and Future Trends.” KI 18 (3): 5–11.

Ringert, J. O., B. Rumpe, C. Schulze, and A. Wortmann. 2017.
“Teaching Agile Model-driven Engineering for
Cyber-physical Systems.” In Proceedings of the 39th
International Conference on Software Engineering: Software
Engineering and Education Track, 127–136. Buenos Aires,
Argentina: IEEE Press.

Rodrguez, G., Á. Soria, and M. Campo. 2016. “Artificial
Intelligence in Service-oriented Software Design.”
Engineering Applications of Artificial Intelligence 53 (3):
86–104. doi:10.1016/j.engappai.2016.03.009.

Santhanam, G. R. 2016. “Qualitative Optimization in Software
Engineering: A Short Survey.” Journal of Systems and
Software 111: 149–156. doi:10.1016/j.jss.2015.09.001.

Semeráth, O., A. Vörös, and D. Varró. 2016. “Iterative and
Incremental Model Generation by Logic Solvers.” In
International Conference on Fundamental Approaches to
Software Engineering, 87–103. Eindhoven, The Netherlands:
Springer.

Shahkarami, A., S. D. Mohaghegh, V. Gholami, S. A. Haghighat, et al.
2014. “Artificial Intelligence (Ai) Assisted History Matching.” In
SPE Western North American and Rocky Mountain Joint Meeting,
369–381. Denver, Colorado: Society of Petroleum Engineers.

Shambour, M. K. Y. 2017. “Dynamic Search Zones (Dsz) for
Harmony Search Algorithm.” In 2017 8th International
Conference on Information Technology (ICIT), 941–946.

Shambour, M. K. Y. 2019. “Adaptive Multi-crossover Evolutionary
Algorithm for Real-world Optimisation Problems.”
International Journal of Reasoning-based Intelligent Systems
11 (1): 1–10. doi:10.1504/IJRIS.2019.098058.

Shambour, M. K. Y., A. A. Abusnaina, and A. I. Alsalibi. 2019.
“Modified Global Flower Pollination Algorithm and Its
Application for Optimization Problems.” Interdisciplinary
Sciences, Computational Life Sciences 11 (3): 496–507.
doi:10.1007/s12539-018-0295-2.

Shambour, Y., et al. 2018. “Vibrant Search Mechanism for
Numerical Optimization Functions.” Journal of Information
& Communication Technology 17 (4): 679–702.

Shankari, K. H., and R. Thirumalaiselvi. 2014. “A Survey on Using
Artificial Intelligence Techniques in the Software
Development Process.” International Journal of Engineering
Research and Applications 4 (12): 24–33.

Shehab, M. 2020a. Adaptive Cuckoo Search Algorithm for
Extracting the ODF Maxima, 77–89. Switzerland: Springer
International Publishing.

Shehab, M. 2020b. Modified Cuckoo Search Algorithm (MCSA) for
Extracting the ODF Maxima, 91–110. Switzerland: Springer
International Publishing.

Shehab, M., L. Abualigah, H. Al Hamad, H. Alabool,
M. Alshinwan, and A. M. Khasawneh. 2019. “Moth–flame
Optimization Algorithm: Variants and Applications.” Neural
Computing & Applications. doi:10.1007/s00521-019-04570-6.

Shehab, M., H. Alshawabkah, L. Abualigah, and A.-M. Nagham.
2020. “Enhanced a Hybrid Moth-flame Optimization
Algorithm Using New Selection Schemes.” Engineering with
Computers 36: 1–26.

Shehab, M., A. T. Khader, and M. A. Al-Betar. 2017. “A Survey on
Applications and Variants of the Cuckoo Search Algorithm.”
Applied Soft Computing 61: 1041–1059. doi:10.1016/j.
asoc.2017.02.034.

Stark, G. E., P. Oman, A. Skillicorn, and A. Ameele. 1999. “An
Examination of the Effects of Requirements Changes on
Software Maintenance Releases.” Journal of Software
Maintenance: Research and Practice 11 (5): 293–309.
doi:10.1002/(SICI)1096-908X(199909/10)11:5<293::AID-
SMR198>3.0.CO;2-R.

Stewart, J. 2015. “Strong Artificial Intelligence and National
Security: Operational and Strategic Implications.” Technical
report, naval war college newport ri joint military operations
dept.

Tahir, M., F. Khan, M. Babar, F. Arif, and F. Khan. 2016.
“Framework for Better Reusability in Component Based
Software Engineering.” The Journal of Applied
Environmental and Biological Sciences (JAEBS) 6 (4S): 77–81.

Tamalika, B., B. Avantika, D. Joseph, and Ramanathan. 2017.
“A Survey on the Role of Artificial Intelligence in Software
Engineering.” International Journal of Innovative Research in
Computer and Communication Engineering 5 (4): 7062–7066.

Taneja, K., Y. Zhang, and T. Xie. 2010. “Moda: Automated Test
Generation for Database Applications via Mock Objects.” In

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 1143

https://doi.org/10.1111/j.1467-8667.1990.tb00376.x
https://doi.org/10.1016/j.cosrev.2010.06.001
https://doi.org/10.1016/j.cosrev.2010.06.001
https://doi.org/10.1016/j.engappai.2016.03.009
https://doi.org/10.1016/j.jss.2015.09.001
https://doi.org/10.1504/IJRIS.2019.098058
https://doi.org/10.1007/s12539-018-0295-2
https://doi.org/10.1007/s00521-019-04570-6
https://doi.org/10.1016/j.asoc.2017.02.034
https://doi.org/10.1016/j.asoc.2017.02.034
https://doi.org/10.1002/(SICI)1096-908X(199909/10)11:5%3C293::AID-SMR198%3E3.0.CO;2-R
https://doi.org/10.1002/(SICI)1096-908X(199909/10)11:5%3C293::AID-SMR198%3E3.0.CO;2-R

Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 289–292. Antwerp,
Belgium: ACM.

Tenne, Y., and C.-K. Goh. 2010. Computational Intelligence in
Expensive Optimization Problems. Vol. 2. Switzerland:
Springer Science & Business Media.

Thummalapenta, S., and T. Xie. 2009. “Alattin: Mining
Alternative Patterns for Detecting Neglected Conditions.”
In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, 283–294.
Auckland, New Zealand: IEEE Computer Society.

Thummalapenta, S., T. Xie, N. Tillmann, J. De Halleux, and Z. Su.
2011. “Synthesizing Method Sequences for High-coverage
Testing.” In ACM SIGPLAN Notices. Vol. 46, 189–206.
Portland, Oregon, USA: ACM.

Tunio, M. Z., H. Luo, C. Wang, F. Zhao, W. Shao, and Z. H. Pathan.
2018. “Crowdsourcing Software Development: Task
Assignment Using Pddl Artificial Intelligence Planning.”
Journal of Information Processing Systems 14 (1): 129–139.

Tveit, A. 2001. “A Survey of Agent-oriented Software
Engineering.” In NTNU Computer Science Graduate Student
Conference, Norwegian University of Science and Technology.

Varró, D., G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and
Z. Ujhelyi. 2016. “Road to a Reactive and Incremental Model
Transformation Platform: Three Generations of the Viatra
Framework.” Software & Systems Modeling 15 (3): 609–629.
doi:10.1007/s10270-016-0530-4.

Vashisht, V., M. Lal, G. Sureshchandar, and S. Kamya. 2015.
“A Framework for Software Defect Prediction Using Neural
Networks.” Journal of Software Engineering and Applications
8 (8): 384. doi:10.4236/jsea.2015.88038.

Wagner, G. 2001. “Agent-oriented Analysis and Design of
Organisational Information Systems.” In Databases and
Information Systems, 111–124.
Switzerland. Janis Barzdins, Albertas Caplinskas: Springer.

Wagner, G. 2003. “The Agent–object-relationship Metamodel:
Towards a Unified View of State and Behavior.” Information
Systems 28 (5): 475–504. doi:10.1016/S0306-4379(02)00027-3.

Winston, P. H., and K. A. Prendergast. 1984. The AI Business:
Commercial Uses of Artificial Intelligence. Vol. 25. Cambridge,
MA United States: Massachusetts Institute of Technology.

Winter, E., S. Forshaw, and M. A. Ferrario. 2018. “Measuring
Human Values in Software Engineering.” In Proceedings of
the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 48. Oulu, Finland:
ACM.

Wood, M. F., and S. A. DeLoach. 2000. “An Overview of the
Multiagent Systems Engineering Methodology.” In

International Workshop on Agent-Oriented Software
Engineering, 207–221. Limerick, Ireland: Springer.

Wooldridge, M. 1997. “Agent-based Software Engineering.” IEE
Proceedings-software 144 (1): 26–37. doi:10.1049/ip-sen
:19971026.

Wooldridge, M., N. R. Jennings, and D. Kinny. 1999.
“A Methodology for Agent-oriented Analysis and Design.”
In Proceedings of the third annual conference on Autonomous
Agents, 69-76.

Wooldridge, M., N. R. Jennings, and D. Kinny. 2000. “The Gaia
Methodology for Agent-oriented Analysis and Design.”
Autonomous Agents and Multi-agent Systems 3 (3): 285–312.
doi:10.1023/A:1010071910869.

Xie, T. 2013. “The Synergy of Human and Artificial Intelligence
in Software Engineering.” In 2013 2nd International
Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), 4–6. San Francisco, CA, USA:
IEEE.

Xie, T. 2018. “Intelligent Software Engineering: Synergy
between Ai and Software Engineering.” In International
Symposium on Dependable Software Engineering: Theories,
Tools, and Applications, 3–7. Beijing, China: Springer.

Yampolskiy, R. V., and M. Spellchecker. 2016. “Artificial
Intelligence Safety and Cybersecurity: A Timeline of Ai
Failures.” arXiv Preprint arXiv:1610.07997 14 (6):
344–360.

Yang, H.-L., and C.-S. Wang. 2009. “Recommender System for
Software Project Planning One Application of Revised Cbr
Algorithm.” Expert Systems with Applications 36 (5):
8938–8945. doi:10.1016/j.eswa.2008.11.050.

Yim, H., K. Cho, J. Kim, and S. Park. 2000. “Architecture-centric
Object-oriented Design Method for Multi-agent Systems.” In
Proceedings Fourth International Conference on MultiAgent
Systems, 469–470. Boston, MA, USA: IEEE.

Zeller, A. 1999. “Yesterday, My Program Worked. Today, It Does
Not. Why?” In ACM SIGSOFT Software Engineering Notes. Vol.
24, 253–267. Passau, Germany: Springer-Verlag.

Zeller, A. 2009. Why Programs Fail: A Guide to Systematic
Debugging. Vol. 22. Dagstuhl, Germany: Elsevier.

Zhang, Y., A. Finkelstein, and M. Harman. 2008. “Search Based
Requirements Optimisation: Existing Work and Challenges.”
In International Working Conference on Requirements
Engineering: Foundation for Software Quality, 88–94.
Montpellier, France: Springer.

Zohair, L. M. A. 2018. “The Future of Software Engineering
by 2050s: Will Ai Replace Software Engineers?”
International Journal of Information Technology and
Language Studies 2 (3).

1144 M. SHEHAB ET AL.

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.4236/jsea.2015.88038
https://doi.org/10.1016/S0306-4379(02)00027-3
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1023/A:1010071910869
https://doi.org/10.1016/j.eswa.2008.11.050

	Abstract
	1. Introduction
	2. Artificial intelligence
	3. Software engineering
	3.1. The software development process
	3.1.1. Software process
	3.1.2. Software development life cycle (SDLC) model

	3.2. Objectives of software engineering
	3.3. Challenges

	4. Artificial intelligence and software engineering
	4.1. Growth of the integration between AI and SE
	4.2. Benefits
	4.3. Related works
	4.3.1. Artificial intelligence using software engineering
	4.3.2. Software engineering using artificial intelligence
	4.3.3. Integration artificial intelligence and software engineering

	5. Discussion
	6. Conclusion and future works
	Disclosure statement
	ORCID
	References

