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ABSTRACT
A real-world topological network consists of multiple entrances along its source nodes. Routing
appropriate percentages of pedestrians from these entrances to the particular available routes with
relevant arrival rates will improve the network’s performance. This paper presents a framework for
finding theoptimal arrival rates of pedestrians fromall available entrances and routes todownstream
nodes maximising the network’s throughput. The calculation of the arrival rates and movement
directions is based on M/G/C/C analytical and simulation models and the network flow model and
considers the real distances of the entrances along the source nodes. The framework was tested
on the Tuanku Syed Putra Hall, Universiti Sains Malaysia, Malaysia. Extensive analyses of the perfor-
mances of its available nodes especially on the achievable optimal throughputs were documented
and discussed. Quantitative results show that the hall’s throughput is optimised when pedestrians’
arrival rates to all the available entrances and theirmovementdirections are controlledwithin certain
ranges.
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1. Introduction

Many buildings and transportation networks now
implement evacuation plans and route assignments
to reduce the risks of injury or death during emer-
gency cases; e.g. fire and bomb threat. Conventional
plans simply recommend that occupants use the safest,
shortest or even easiest exit routes along their move-
ment. Such movement is also a typical approach con-
sidered by human natural psychology and behaviour
during emergency cases. However, the approach may
not be the best evacuation strategy. For example, if all
occupants use their shortest routes without any proper
control during high loads, the routes will then be over
utilised after a certain point of time. This situation
will create unsteady flow which can cause congestion
along the travel routes, block incoming pedestrians
and eventually decrease the overall evacuation perfor-
mance (Gao et al., 2014; Shende, 2008; Stepanov &
Smith, 2009).
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The stability of flow in a topological network sig-
nificantly depends on its traffic loads; i.e. the number
of pedestrians in all its available routes. Each route
has its own capacity to support the intense demand
of pedestrians. Any increase in the number of resid-
ing pedestrianswill decrease the currentwalking speed
and reduce the overall flow in the network. To avoid
the over utilisation, the flow in the network should
be analysed and optimised. For this, various scientific
approaches combining different fields of knowledge
(e.g. operations research, computer science and trans-
portation engineering) and striving to model what
may actually happen during pedestrian flow have been
proposed. The approaches include the use of integer
programming to design and analyse network routes
(Stepanov & Smith, 2009), mixed integer program-
ming to reduce delays and improve traffic flow at inter-
sections (Cova & Johnson, 2003) and the ant colony
algorithm to determine the optimal route to best flow
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occupants from a facility (Fang, Zong, et al., 2011). In
fact, facilities with complex network topologies have
made pedestrian flow analyses significantly important.
However, most of the flow analyses focused by previ-
ous research have only revolved around identifying the
potential bottlenecks at particular networks or deter-
mining the impacts of operational policies on the cur-
rent and alternative physical designs (e.g. Cruz et al.,
2005, 2010, 2012; Cruz & Smith, 2007; Hu et al., 2015;
Huang et al., 2018; Jiang et al., 2016; Khattak et al.,
2017, 2018; van Woensel & Cruz, 2014; Zhu et al.,
2017). Other research (e.g. Cuesta et al., 2017; Saeed
Osman&Ram, 2017; Taneja&Bolia, 2018)meanwhile
optimised the flow in a topological network based on
the optimal network routes without optimising both
of pedestrian arrival rates to all its available entrances
(i.e. the arrival sources where pedestrians start walk-
ing) and routing probabilities (i.e. their movement
directions) to relevant downstream nodes (individual
networks). It is thus important to derive the optimal
arrival rates and routing probabilities maximising the
overall throughput of a topological network with small
blocking probabilities along all its routes.

The objective of this paper is to derive pedestri-
ans’ optimal arrival rates to all available entrances
and their movement directions maximising the over-
all flow in a complex topological network using an
M/G/C/C state-dependent queuing model (Cheah &
Smith, 1994; Cruz et al., 2005; Cruz& Smith, 2007; Jain
& Smith, 1997; Smith & Cruz, 2014; Weiss et al., 2012)
and a network flow model. A network flow model and
its variation models are a common tool used in pre-
vious studies (e.g. Cova & Johnson, 2003; Farahani
et al., 2018; Kimms & Maiwald, 2017) for investigat-
ing movement or evacuation planning. How to set the
parameters and constraints of the network flowmodel
using M/G/C/C is the main interest of this paper.
M/G/C/C is used to analyse and simulate pedestrians’
travel behaviours and find the optimal arrival rate to
each node maximising its throughput while minimis-
ing its blocking probability. The optimal arrival rates of
all nodes are then set as the flow capacity constraints
of the network flow model whose objective is to find
the optimal arrival rates to the available entrances and
movement directions to relevant exits maximising the
overall flow in the topological network. As a case study,
we consider a network of corridors in the Tuanku
Syed Putra Hall (DTSP), Universiti Sains Malaysia,
Malaysia.

The derivation of the optimal arrival rates to source
nodes based on an analytical M/G/C/C model and a
network flow model has actually been discussed in
R. Khalid, Baten, et al. (2016). They, however, assume
that each source node only has a single arrival source
located at its origin. In reality, a source node typically
has multiple entrances along with it. How pedestrians
move from the entrances to their available downstream
nodes will definitely determine the overall throughput
of the network. However, the effect of such movement
directions on the throughput was not considered in
their paper. Additionally, how the analytical through-
put matches the throughput of a simulation model
and how sensitive the throughput to the changes in
arrival rates was also not discussed. This paper thus
offers two main contributions. The first contribution
is the proposal of a framework for deriving pedestri-
ans’ optimal arrival rates and movement directions in
a network with multiple entrances and exits based on
the combination of M/G/C/C and network flow mod-
els. The framework helps decision makers find strate-
gies to optimally flow pedestrians to their downstream
nodes in a complex topological network. The second
contribution is the extensive quantitative analysis of
pedestrian flow in a network based on analytical and
simulationmodels. The analysis helps decisionmakers
get insight into the effect of arrival rates and move-
ment directions on the performance of a network in
terms of its blocking and throughput and how the per-
formance can be optimised by controlling both of the
arrival rates and movement directions within certain
ranges.

This paper is structured as follows. Section 2 briefly
collects some literature reviews related to this study.
In Section 3, we briefly discuss a framework for opti-
mising the flow in a topological network with multi-
ple entrances and exits using the M/G/C/C and net-
work flowmodels. The framework derives the optimal
arrival rates and pedestrian movement directions in
the network. How sensitive the arrival rates to the per-
formance of the network are also discussed. Section 4
utilises the framework to flow pedestrians in a network
based on relevant routing policies, considering the
DTSP as a case study. The performance of the policies
including the optimal policy using the optimal arrival
rates and routing strategies based onM/G/C/C analyti-
cal and simulation models is presented in Section 5. In
this section, we also propose some recommendations
for optimising pedestrians’ flow in the hall. Finally,
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Section 6 summarises the findings and presents some
conclusions.

2. Literature review

Pedestrian movement in a network is influenced by
various travel characteristics such as walking speed
and different routing patterns. The walking speed has
been argued (e.g. by Cao et al., 2017; Drake et al.,
1965; Drew, 1968; Greenberg, 1959; Greenshields,
1935; Hänseler et al., 2017; Hu et al., 2015; Jiang
et al., 2016; Pipes, 1967; Underwood, 1960; Yuhaski
& Smith, 1989) to be dependent on pedestrian den-
sity in each node decreasing with the increased density
of the pedestrians. The density is sequentially affected
by the incoming pedestrians from its upstream nodes.
The density can be controlled to improve the flow in
all routes by managing the pedestrians’ arrival to all
available entrances and their movement directions to
relevant downstream nodes.

In emergency situations, such movement becomes
more complicated since pedestrians are typically ner-
vous and panic. These feelings can ignite unpredictable
behaviour such as stampede, trampling and pushing
which significantly delays their movement and causes
havoc along the movement routes. The behaviour is
very complex and difficult to capture in mathemati-
cal equations or computer simulation (Helbing et al.,
2002; Peacock et al., 2011). This difficulty has imposed
many studies to only derive the best or optimal move-
ment in a normal situation (i.e. a state where pedes-
trians are in rational normal behaviour) using rel-
evant approaches; e.g. flow-based modelling (Asano
et al., 2007; Fang, Li, et al., 2011; Hänseler et al., 2004;
Hughes, 2002; Zhang et al., 2016), cellular automata
(Blue & Adler, 2001; Burstedde et al., 2001; Sarmady
et al., 2011; Zhang et al., 2017) and multi-agent based
systems (Antonini et al., 2006; Hernández et al., 2011).

The flow-based modelling approach has long been
used to model the evacuation of evacuees from a large
scale topological network or the flow of pedestrians
in a complex topological facility building. In this case,
designing the optimal evacuation routes is necessary
forminimising the total clearance time of the network.
The routes are typically derived using relevant oper-
ations research methods; e.g. linear programming,
mixed integer linear programming, simulation-based
assessment or heuristics embedding with a relevant
density-flow model or integrating with an available

traffic simulation package for modelling the dynamic
of traffic flow. Some studies focusing on transporting
evacuees from area to area in a large network include
Murray-Tuite and Mahmassani (2003), Sayyady and
Eksioglu (2010), Chen and Chou (2009), Naghawi and
Wolshon (2012), Campos et al. (2012) and Kunwar
et al. (2016).

There have also been studies focusing on build-
ing or facility evacuation. Chalmet et al. (1982), for
example, developed a model determining evacuation
routes of a complex structuremulti-story building. For
each route, its evacuation status especially the time to
evacuate occupants was calculated using their arrival
rates to the source nodes (e.g. halls and lobbies) and
the capacity of confined spaces (e.g. stairwells). To
find the ideal number of occupants to use each avail-
able exit route minimising the total clearance time,
Pursals and Garzón (2009) formulated an advanced
flow model. The model replicates the effect of occu-
pants’ density on their speed in a space. How pedes-
trian dynamics movements in a space are effected
by different age compositions were investigated by
Cao et al. (2016). The effect of other relevant prop-
erties; e.g. visibility and occupant types on pedes-
trian evacuation in a room were meanwhile consid-
ered by Cao et al. (2015, 2018) in their multi-grid
model. Additionally, an efficient flow and evacua-
tion approach to achieve the target evacuation time
during mass gathering from source to sink nodes
by utilising their available capacities was proposed
by Taneja and Bolia (2018). M. N. A. Khalid and
Yusof (2018), as another example, combined crowd
modelling techniques and flexible routing approach
to measure pedestrian evacuation plan performance.
Meanwhile, the effect of pedestrian density on the
uni-, bi- and multi-directional flow within facilities
was captured by Smith (1991) in an M/G/C/C model.
In the meantime, various computer evacuation mod-
els with their features (e.g. modelling methods and
visual simulation support) and limitations (e.g. pro-
cessing time andmodel capacity) to simulate the crowd
movement in buildings have also been discussed and
reviewed (e.g. Gwynne et al., 1999; Kuligowski et al.,
2005).

M/G/C/C measures network performance in terms
of the throughput, blocking probability, expected
number of entities and expected service time. To max-
imise the throughput, previous studies (e.g. Smith
& Kerbache, 2011; Stepanov & Smith, 2009) utilised
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M/G/C/C to find the optimal routing policy or anal-
yse the effect of arrival rates of entities to source
networks. The importance of controlling arrival rates
to achieve a better throughput has also been argued
in many other studies (Cheah & Smith, 1994; Cruz
et al., 2005; Cruz & Smith, 2007; Kawsar et al., 2013;
Smith, 2012; Weiss et al., 2012; Yuhaski & Smith,
1989). Cruz et al. (2005), for example, developed an
M/G/C/C analyticalmodel for a ten-story building and
found that the throughput at the ground floor was
significantly influenced by the arrival rate to each of
its stairwells. To validate the analytical results, Cruz
and Smith (2007) developed its counterpartM/G/C/C
simulation model and then compared the results
generated by both models. The results showed that
both models generated almost similar performance
measures.

Coding M/G/C/C libraries for simulating pedes-
trians’ dynamic behaviour using object-oriented pro-
gramming languages, e.g. Java (Garrido, 2001) and
C++ (Garrido, 1998) is time-consuming and difficult.
To cater this, R. Khalid et al. (2013) discussed how
Arena (Kelton et al., 2015) can simulate the effects of
arrival rates on the performance of a network (node).
Arena itself is not designed to directly handle the
state-dependent service rates instantaneously altered
as a function of the number of pedestrians as they
flow in the node. The service rates can, however, be
programmed using Arena’s special available modules.
For a source node consisting of multiple entrances
with their own distances to the end of the node, R.
Khalid, Nawawi, et al. (2016) studied the effect of
treating the entrances as a single source on the perfor-
mance of the node using M/G/C/C weighted distance
and real distance simulationmodels. Unfortunately, no
optimal arrival rates and movement directions were
discussed.

Arrival rates maximising the throughputs of source
nodes may not maximise the throughputs of their
downstream nodes since the rates could create block-
ings along the node links. The same concept also
applies to travel routes. The shortest route believed to
be the fastest way of flowing pedestrians may overex-
ploit the downstreamnodes and causemassive conges-
tion along the node links (Stepanov & Smith, 2009).
Minimising the congestion by controlling the arrival
rates to available entrances and appropriately routing
pedestrians to downstream nodes especially during
emergency cases is thus crucial.

3. Framework of optimising pedestrian flow in a
complex topological network withmultiple
entrances

3.1. Framework assumptions

Our framework only considers a space size and its
current number of pedestrians in modelling the flow
behaviour as replicated by an M/G/C/C model. This
model ignores pedestrians’ attributes (e.g. gender, age,
personality, mood and body size) and other environ-
mental factors (e.g. floor material and lighting levels)
in spite of the fact that they can actually influence
their movement in a circulation space. However, the
attributes and environmental factors have trivial effect
on the movement when the traffic density increases
(Mitchell & Smith, 2001). Additionally, our framework
derives the optimal flow of pedestrians in a topolog-
ical network in a normal situation. Under this situ-
ation, human complex and unpredictable behaviour
over time during emergency situations (e.g. panic,
confusion and loss of orientation) creating unexpected
patterns of movement (e.g. stumbling, herding and
flocking) and reducing pedestrian flow in the network
has been ignored. Ignoring this aspect enables us to
model pedestrian dynamic movement using analytical
and simulation models. Both models can then be used
to evaluate and assess various determined strategies.

Pedestrians are assumed to start travelling from all
entrance sources and move freely without any obsta-
cles through the network or blockages in their exits.
Any obstacles or blocked exits reduce the optimal flow.
To optimise the flow, all available paths are analysed
based on their flow capacities. The capacities are used
to find the optimal arrival rates to entrances andmove-
ment paths from the arrival to exit sources. We further
assume that arrival rates can be controlled to meet
their optimal flow rates.

3.2. Finding the optimal arrival rate of anM/G/C/C
network

M/G/C/C models the arrival of pedestrians at a net-
work (according to the Markovian process) and their
flowwith relevant speed variably changed based on the
current density of residing pedestrians. TheM/G/C/C
model was originally based on Tregenza’s curves (Tre-
genza, 1976). The data of the curves were retrieved
from some previous empirical studies (e.g. Foot, 1973;
Hankin & Wright, 1958; Togawa, 1955). How the
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arrival rate affects the flow performance based on
mathematical equations has been documented in pre-
vious studies (e.g. Cruz et al., 2005; Cruz & Smith,
2007; Mitchell & Smith, 2001; Smith, 2001; Smith &
Cruz, 2014;Weiss et al., 2012; Yuhaski & Smith, 1989).
Its mathematical equations are as follows:

Vn = V1 exp
[
−

(
n − 1

β

)γ ]
(1)

where

γ =
ln

[
ln(Va/V1)
ln(Vb/V1)

]
ln

(
a−1
b−1

) ,

β = a − 1[
ln

(
V1
Va

)]1/γ = b − 1[
ln

(
V1
Vb

)]1/γ ,
γ , β = shape and scale parameters for the expo-
nential model, Vn = average walking speed for n
pedestrians in the network, Va = average walking
speed when crowd density is 2 peds/m2 = 0.64 m/s,
Vb = average walking speed when crowd density is 4
peds/m2 = 0.25 m/s, V1 = average walking speed for
a single pedestrian = 1.5 m/s, n = number of pedes-
trians in the network, a = 2 × L × W, b = 4 × L ×
W, L = network length in metres, and W = network
width in metres.

The model can also approximate the walking speed
for bi-directional andmulti-directional flow by chang-
ing the parameter values of Va and Vb (Cheah,
1990; Cheah & Smith, 1994). For bi-directional flow,
Va = 0.60 m/s and Vb = 0.21m/s while for multi-
directional flow, Va = 0.56 m/s and Vb = 0.17 m/s.
Using the speed-density relationship, the performance
of a network can be measured as:

θ = λ(1 − Pbalk), E(N) =
C∑

n=1
nPn and E(T) = E(N)

θ

(2)
λ is the arrival rate to the network; i.e. the number
of pedestrians arriving to the network in a second
(peds/s). θ is the throughput of the network; i.e. the
number of pedestrians exiting the network in a second
(peds/s). E(N) is the expected number of pedestrians
residing in the network (peds). E(T) is the expected
service time; i.e. the travel time spent by pedestrians
exiting the network (seconds). C is the capacity of
the network; i.e. the available space to accommodate

pedestrians which is 5 × L × W. Pbalk is the block-
ing probability of the network (i.e. the probability that
arriving pedestrians are blocked from entering the net-
work because of its available spaces are being used
by other pedestrians) whose situation occurs when
Pn = C. Pn is the probability when there are n pedes-
trians in the corridor and is given by

Pn = [λE(S)]n

n!f (n)f (n − 1) . . . f (2)f (1)
P0

n = 1, 2, 3, . . . , C (3)

where,

P−1
0 = 1 +

C∑
n=1

[
[λE(S)]i

i!f (i)f (i − 1) . . . f (2)f (1)

]
.

E(S) is the expected service time of a single pedestrian
in the network given by E(S) = L/1.5 where L is the
average travel distance,P0 is the probabilitywhen there
is no pedestrian in the network, and f(n) is the ser-
vice rate and given byf (n) = Vn/V1. Vn is the current
pedestrian speed in the network as given in Equation
(1).

An arrival rate is one of the input parameters for the
M/G/C/Cmodel. By letting the other input parameters;
i.e. the length, width and pedestrian travel distance of
a network be constant, its optimal arrival rate can then
be derived.How to derive the optimal arrival rate using
calculus and numerical analysis has been discussed
in R. Khalid, Baten, et al. (2016). This static perfor-
mance approximation can be validated using simula-
tion. We chose Arena to simulate the M/G/C/C logic
for two reasons. First, it provides Process Analyzer, a
user-friendly platform to report the effects of arrival
rates on a network’s performance. Second, it provides
OptQuest to search the optimal arrival rate subject to
relevant constraints. To confine the search, the arrival
rate should have lower and upper values as its bound,
and a suggested value as its initial searching point. To
set the bound, the suggested value is initially fed with
the optimal arrival rate based on its analytical model.

The suggested value is then decreased by 10% to be
the lower bound and increased 10% to be the upper
bound. The throughputs at the near end of the lower
and upper bounds and the highest throughput gen-
erated by OptQuest are then observed. If the highest
throughput occurs at the near lower bound, the range
is to be adjusted to the left side with the new suggested
value is the lower bound value. Similarly, if the highest
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Figure 1. Finding the optimal arrival rate based on simulation.

throughput occurs at the near upper bound, the range
is to be adjusted to the right side where the new sug-
gested value is the upper bound value. This process is
repeated until the three throughput values show the
concave pattern. In this case, the arrival rate generating
the highest throughput is the optimal arrival rate. The
process of finding the lower and upper bounds and the
optimal arrival rate based on simulation is illustrated
in Figure 1. In the figure, λ refers to the arrival rate
while θ refers to the throughput.

3.3. Optimising the flow in anM/G/C/C topological
network

A complex network is structured by many source,
intermediate and sink (exit) nodes. In real-life systems,
a node represents a segment of corridors, roads or

spaces with a particular size of length and width (Cruz
& Smith, 2007; Mitchell & Smith, 2001; Smith, 2011).
The nodes are linked to each other to form a topo-
logical network where flow can occur. The flow starts
from the source nodes; i.e. the entryway nodes where
entities (e.g. pedestrians and vehicles) in a unit of time
arrive and flow from node to node through available
links.

The links between nodes form three types of topolo-
gies; i.e. series, splitting and merging topologies. How
these topologies are extracted from a system are illus-
trated in Figure 2. For each topology, the flow conser-
vation (Kachroo, 2009; Kachroo et al., 2008; Shende,
2008) and the flow capacity of its nodes limiting the
amount of flow to the nodes must be satisfied. For
example, the flow conservation in a series topology
formed by node 1, node 2 and node 3 (see Figure 1) is
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given by x1→2 = x2→3 where xi→j represents the flow
from node i to node j.

The network we consider has multiple sources (s1,
s2, . . . , sn) and sinks (t1, t2, . . . , tn). This network has
to be converted to a network having a unique source
and sink by creating a fictitious super-source S and
a fictitious super-sink T. The flow capacities (i.e. the
maximum number of pedestrians per unit time that
can flow) from the super-source S into each available
source (S, si) and the flow capacities from the super-
sink T into each available sink (tj, T) are unlimited;
i.e. c(S, si) = c(tj, T) = ∞. The optimal flow from the
super-source S to the super-sink T (the optimal flow
in the network) can be modelled as a linear program
as follows:

Notation
i = an index for origin node i (i = 1, 2, . . . , n) of a

set of origin nodes, I.
j = an index for destination node j (j = 1, 2, . . . ,

n) of a set of destination nodes, J.
Decision variable

xi→j = the flow from origin node i to destination
node j.

Mathematical formulation

Maximise xT→S xT→S represents the flow from super-
sink node T back to super-source
node S

subject to:∑
j xS→j − xT→S = 0 outflow of super-source node S to its

downstream nodes must be equal
to inflow from super-sink node T∑

j xi→j−
(
xS→i +

∑
j xj→i

)
= 0 outflow of source node i (i = s1 ,

s2 , . . . , sn) to its downstream nodes
must be equal to inflow from super
node S and inflow from its upstream
nodes (in case the source node is
also an intermediate node)∑

j xi→j −
∑

j xj→i = 0 outflow of node i to its downstream
nodes must be equal to inflow from
its upstream nodes for every node i
�= s, t(

xi→T + ∑
j xi→j

)
− ∑

j xj→i = 0 outflow of sink node i (i = t1 , t2 , . . . ,
tn) to super node T and outflow to
its downstream nodes (in case the
sink node is also an intermediate
node) must be equal to its inflow
from upstream nodes

xT→S − ∑
j xj→T = 0 outflow of super-sink node T to

super-source node Smust be equal
to inflow from its upstream nodes∑

j xj→i ≤ λoptimali total inflow capacity to every node
i must be smaller or equal to its
optimal arrival rate

xi→j ≥ 0 flow for every node i to node jmust be
non-negative

Note that the decision variable is a discrete variable
modelling the movement of individual pedestrians.
The movement process continues from node to node
where the total throughput of the upstream nodes (in
pedestrians/second) will be the arrival for the down-
stream nodes. How flow is conserved between nodes
and controlled to avoid blockages can be modelled
using the network flow model.

This model finds the optimal flow through the net-
work with multiple sources and sinks. As observed,
optimising arrival rates to source nodes and flow to
other nodes requires the network to be decomposed
into individual independent nodes. These nodes are
to be analysed separately. However, the network is a
finite capacity topological network where each node is
state dependent. Since state dependent nodes are finite,
treating the nodes as separate individual nodes will
explicitly ignore blockages which may happen in the
network during the flow processes. How to avoid this
situation?

Our strategy is to minimise the blocking proba-
bility of each node to avoid any blockages between
the node links while maximising its flow. Pedestri-
ans should thus be flowed to a relevant node up to
its optimal arrival rate. For this, the total flow to the
node must be smaller or equal to its optimal arrival
rate to minimise any blockage. This condition is sat-
isfied by setting the optimal arrival rate as the inflow
capacity to the node; i.e.

∑
j xj→i ≤ λoptimali where

λoptimali is a parameter; i.e. the optimal arrival rate
to node i whose value is determined by the capac-
ity of the node. The optimal arrival rate of each
node based on the analytical model can be derived
using the formula discussed in R. Khalid, Baten, et al.
(2016) while the optimal arrival rate of the node based
on the simulation model is derived using OptQuest.
If the capacities of two nodes are equal, then the
node with a shorter distance will definitely have a
bigger optimal flow. The outflow of the node must
also be equal to its inflow; i.e.

∑
j xi→j −

∑
j xj→i =

0. Additionally, all flow has to be non-negative;
i.e. xi→j ≥ 0.

There are to be two network flow models. The first
model uses the optimal arrival rates of all nodes based
on the analytical model. The second model uses the
optimal arrival rates of all nodes based on the simula-
tion model.
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Figure 2. Conversion of various physical topological networks.

3.4. Optimising the flow in a source nodewith
multiple entrances

A topological network may consist of many source
nodes. A source node is the first node entered by
pedestrians before travelling to downstream nodes. It
can be of two cases. In a simple case, it only has a single
entrance located at its origin (Figure 3(a)). An example
of this is a single-entry traffic corridor. As intermediate
or sink nodes, the pedestrians’ average travel distance
is simply the length of the node. In a more complex
case, the source node has multiple entrance scattered
at various locations along it (Figure 3(b or c)). A typi-
cal example of this is a complex subway station. In the
station, theremay be some confined spaces withmulti-
ple entrances allowing pedestrians to enter the spaces
from various angles before travelling to other spaces.
Based on this concept, a single-entrance node is thus a
subset or a special case of a multi-entrance node.

The distances from each of the entrances to the end
of the node differ from each other. These various dis-
tances can be attached to the attribute of pedestrians
in the simulation model. However, the distances have
to be averaged before being set in the analytical model
since it can only accept the weighted distance travelled
by all pedestrians. To find this weighted distance, the
node has to be converted to a single equivalent node.
Assume that the node has k entrances with arrival rates
of λ1, λ2, . . . , λk whose travel distances to the end
of the node are L1, L2, . . . , Lk respectively. Based on
the work of Yuhaski and Smith (1989), the node can
be modelled as another single node of length L’ and
arrival rate λ’ such that

λ′ =
k∑

i=1
λi and L′ =

∑k
i=1 λiLi∑k
i=1 λi

(3)
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Figure 3. Multiple entrances of a source node.

In Equation (3), L’ is the weighted distance travelled by
all the arrivals of λ1, λ2, . . . , λk. If we further assume
that λ1 = λ2 = . . . = λk, then

L′ = λ
∑k

i=1 Li
kλ

=
∑k

i=1 Li
k

(4)

Equation (4) calculates the weighted distance travelled
by pedestrians from multiple entrances along a source
node for single (Figure 3(b)) or bi-direction (Figure
3(c)) flow. The percentage or probability flow to the
ends of the node determines theweighted distance. For
example, consider that node 2 is a source node con-
nectedwith node 5 in its left and node 6 in its right, and
has k entrances along it. The number of pedestrians
travelling to nodes 5 and 6 will affect the probabil-
ity of pedestrian flow from node 2 and their weighted
distance. For example, assume that k=3 and L2, i→ j
represents the distance of arrival source i in node 2 to
node j. If 50% of pedestrians from the first entrance
(source 1) are directed to travel to node 5 while the
other pedestrians from sources 2 and 3 are directed to
travel to node 6, then the routing probability of node 2
is 1/6. For this probability, the weighted travel distance

of node 2 is L′
2 = 0.5L2, 1→5+0.5L2, 1→6+L2, 2→6+L22, 3→6

3 . If
the probability is set to 0.5, all pedestrians from source
1 and 50% of pedestrians from source 2 then have to
travel to node 5 while the other pedestrians have to
travel to node 6. The weighted travel distance of node
2 is then L′

2 = L2, 1→5+0.5L2, 2→5+0.5L2, 2→6+L2, 3→6
3 . If the

probability is set to 1, all pedestrians from these three
entrances have to travel to node 5. The weighted travel
distance of node 2 is then L′

2 = L2, 1→5+L2, 2→5+L2, 3→5
3 .

In simulation, the probability can be set using a
decision module. The module should follow each
entity creation module representing an entrance of
pedestrians. The general expression for flowing pedes-
trians from a source node with a number of entrances
to relevant directions is as follows:

Decisioni = min(max(Total Number Of Entrances

∗ PSource Node– (i – 1), 0), 1)

For example, the expression for the decision module
following the first entrance of node 2 is min(max(3 *
P2, 0), 1). If P2 P2 ≥ 2/6, then all pedestrians from
its entrance 1 will travel to the right; i.e. node 6. As
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other examples, imagine that node 10 has 10 entrances
while node 11 has 8 entrances. Thus, the expression
of the decision module for entrance 3 of node 10 is
min(max(10 * P10 – 2, 0), 1) while that for entrance
7 of node 11 is min(max(8 * P11 – 6, 0)), 1. The prob-
ability values should be stored in a variable so that it
can flexibly be adjusted to accommodate the routing
probability.

3.5. Finding the optimal arrival rates and routing
probabilities of source nodes

Our objective is to derive the optimal arrival rates
to source nodes and routing probabilities to down-
stream nodes. Without the optimal routing probabil-
ities, the weighted travel distance of the source node
for the analytical model cannot be computed. Con-
sequently, this prohibits the calculation of its optimal
arrival rate. To handle the problem, we initially set the
default routing probability for each source node. For
this, we assume that its optimal routing probability
is 0.5. This assumption enables us to find its optimal
arrival rate using the analytical and simulation mod-
els. For analytical, we first calculate its weighted travel
distance based on this strategy. Using the distance and
the capacity, its optimal arrival rate can then be calcu-
lated. For simulation, we first set the distance of each
of its entrances and then set its flow probability to 0.5
(i.e. PSourceNode = 0.5). Its optimal arrival rate is then
searched using OptQuest.

All individual nodes’ optimal arrival rates based on
analytical and simulation are separately set as the flow
constraints of the network flow model. Both mod-
els are then solved to find the optimal flows to the
source nodes maximising the whole network’s flow.
Using the optimal flows, we then calculate the opti-
mal pedestrian routing probability of each source node
to both of its ends. For example, assume that the net-
work flow model reports that xS→2 = α maximises
the flow with the conditions that x2→5 = β (β ≤ α)
and x2→6 = α − β . Based on these values, the opti-
mal routing probability from node 2 to its downstream
nodes can then be calculated. Of pedestrians in node
2, (β/α) × 100 should be routed to node 5 while the
remaining ((α − β)/α) × 100 to node 6. Since node 2
has k entrances, pedestrians from the first (β/α) × k
of the entrances should travel to the left while 1 −
((β/α) × k) should travel to the right.

The optimal routing probability value can directly
be set in the simulation model. In this case, P2 = β/α.
Based on this probability, we once again use OptQuest
to find its optimal arrival rate under the optimal rout-
ing based on simulation. For the analytical model,
the probability value is used to calculate the weighted
travel distance of pedestrians in node 2 to node 5
or/and node 6. The distance is then used to find the
optimal arrival rate of node 2 under the optimal rout-
ing. Since the capacity of node 2 stays constant, this
new optimal arrival rate value for both models should
be smaller than that of the default strategy for any
increment in the weighted travel distance and vice
versa. The new optimal arrival rate is then compared
to the lower and upper bounds of the optimal flow
of the default strategy generated while performing the
sensitivity analysis of the model. This post-optimality
analysis measures the sensitivity of any changes of the
arrival rate of each source node to the whole network’s
flow. The impact can be of two cases.

The first case is the newoptimal arrival rate iswithin
an allowable range. Its impact can directly be mea-
sured by looking at its slack variable and dual price
value without the need to re-solve the network flow
model. For any source node, the dual price of 0.0000
indicates that any increment or decrement in its arrival
rate within an allowable range will not change the cur-
rent solution since it still has an unused inflow capacity
represented by the slack variable value greater than
0.0000. Thus, if the slack variable of node 2 is greater
than 0.0000, any changes of arrival rates of node 2,
λS→2 within a ≤ �2 ≤ b or λS→2 ∈ [α − a, α + b]
has no effect on the current optimal solution and the
value of its objective function. Note that α is the opti-
mal flow in node 2 while a and b are the lower and
upper bounds of the optimal flow generated by the net-
work flow model. The dual price greater than 0.0000
meanwhile indicates that its inflow capacity has fully
been utilised represented by its slack variable value of
0.0000. Thus, any increment or decrement in its arrival
rate will increase or decrease to Z+ �2, where Z is the
current value of the objective function. This dual price
stays valid for a particular lower and upper bound of
the optimal arrival rate generated by the model, λS→2
∈ [α − a, α + b]; i.e. before the current solution mix
changes.

The second case is the new optimal arrival rate is
out of an allowable range. For example, the new opti-
mal arrival rate to node 2, i.e. λS→2 �∈ [α − a, α + b].
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Figure 4. Finding the optimal arrival rates of source nodes.

In this case, we have to re-solve the model by changing
the optimal arrival rate to node 2 to λS→2 while keep-
ing the same arrival rates to other source nodes. This
step is repeated until all arrival rate values of source
nodes are within their allowable ranges. The processes
of finding the optimal arrival rates to source nodes are
illustrated in Figure 4.

3.6. Analysing the impact of the optimal flow to the
performance of the topological network

The optimal arrival rates to source nodes are then
input to real distance analytical and simulationmodels
to analyse their impacts on the network’s performance.
The main purpose of the simulation model is to vali-
date the analytical model. The real distance simulation
model uses the exact distance of each arrival source in

a source node to its downstream nodes and accepts
its routing probabilities. The simulation model is an
extended version of the M/G/C/C simulation model
discussed in R. Khalid et al. (2013).

In brief, each arrival source is modelled using a
Createmodule which generates pedestrians according
to a specified arrival rate. The pedestrians then travel
to the end of source nodes and downstream nodes
based on routing probabilities specified using aDecide
module. If the nodes are full, the pedestrians are tem-
porarily queued in a Seizemodule and will only travel
when there are available spaces based on the capacity
of the nodes. Their movement through the nodes is
simulated using a Hold module. Its number in queue
denotes the current number of residing pedestrians in
the nodes while the waiting time spent by the pedes-
trians in the queue denotes their travel times. Other
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Figure 5. Steps to calculate the optimal routing policy.

modules (e.g. Signal and Remove) are used to tem-
porarily remove the pedestrians to update their current
attribute values or permanently remove them to flow to
downstream nodes.

All the parameters of the simulation model; e.g.
arrival rates, lengths and widths of the nodes, cur-
rent travel speed and routing probabilities are stored
in variables. All attribute values; e.g. the travel dis-
tance and current location which is unique for each
pedestrian are stored in attributes and attached to the
pedestrians. The variables and attributes are declared
and assigned values using anAssignmodule which can
directly be accessed via aVariable spreadsheet. Various
setup option parameters before running the model;
e.g. the number of replications and replication length
are set in the Run Setup dialog box. However, some
of the model parameters; e.g. arrival rates and rout-
ing probabilities can easily be made accessible to users
by uploading the model to Process Analyzer which
eases them to interactively analyse the performance
of a network based on various parameter changes and
scenarios.

Both models should replicate all topologies and the
dynamic flow from node to node. For any topologies,
the arrival rate to a particular node is the total propor-
tional outflow of all its connected upstreamnodes. The
arrival rate determines the flow through the node and

its throughput. The proportion of the throughput will
then be the arrival rate to its other downstream nodes.
The processes continue for all other topologies. The
throughput of the whole network generated by both
models are then compared and justified. Figure 5 sum-
marises the steps taken to calculate the best routing
policy.

4. Tuanku Syed Putra hall (DTSP) as a case study

Ourmodelling of pedestrian flow in theDTSP (Kawsar
et al., 2013) was performed as follows. We first
obtained its structure and retrieved all available cor-
ridors and their topologies as in Figure 6. All corridors
are numbered consecutively. Corridors 6, 7, 8, 9, 10
and 11 are source corridors, corridor 3a is an interme-
diate corridor while corridors 1, 2, 3b, 3c, 12, 13, 14
and 15 are exit corridors. The detailed information in
terms of their lengths and widths (in metre), available
entrances (the number and distance to the end of the
source corridors) is shown in Table 1. Each entrance
represents the entrance point of a row of seats.

The seats are clustered using alphabets S,T,U,V,W,
X, Y and Z whose numbers are 220, 220, 309, 259, 100,
55, 98 and 77 seats respectively. S and T are the sources
for corridor 11, each of which has 8 entrances. U and
V are the sources for corridor 10, each of which has 5
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Figure 6. DTSP’s structures and its available corridors (Kawsar et al., 2013).

entrances.W, X, Y and Z are the sources for corridors
6, 7, 8 and 9, each of which has 3 entrances respectively.
Initially, all pedestrians are assumed in their seats and
no pedestrians are in any corridors.

Our next step was to construct an analytical
M/G/C/C program and verify its accuracy by com-
paring its results with analytical results reported in
previous studies; e.g. Cruz and Smith (2007), Cruz
et al. (2005) andMitchell and Smith (2001). To validate
the analytical results, we first developed an M/G/C/C
weighted distance simulation model using Arena. Its
outputs were compared with the outputs of the avail-
able M/G/C/C simulation model; i.e. MGCCSimul
(Cruz et al., 2005; Mitchell & Smith, 2001). Both sim-
ulation models generated almost similar performance
outputs for various input parameters of arrival rates,
lengths and widths as reported in Cruz et al. (2005).

Comparing our analytical and simulation mod-
els’ outputs, we found that there was a small range

of arrival rates of each corridor where both models
showed significant discrepancies. The range always
took place at the arrival rates starting the blocking.
The findings were reported in R. Khalid et al. (2013)
and Cruz et al. (2005). Based on the weighted sim-
ulation model, we then constructed the real distance
simulation model of a source network with multiple
entrances. Themodels were used to search the optimal
arrival rate of each corridormaximising its throughput
using OptQuest. Its optimal arrival rate based on the
analytical model was also derived.

The optimal arrival rates to available corridors
in the DTSP generated by both models were then
input into the network flow models. Solving the net-
work flow models and manipulating relevant flow
constraints based on relevant routing policies gave us
various sets of the optimal arrival ratesmaximising the
DTSP’s overall throughput. The optimal arrival rates
were then input into real analytical (real_analytic) and
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Table 1. Detail information on source corridors.

Source Corridor No. of Entrance
Length×

Width (metre)
Distance of Entrance

(metre)
Weighted Length

(metre)

Relevant
Exit/Intermediate

Corridor

6 3 10.1× 2.8 L1 = 0.73125, L2 = 5.00625,
L3 = 0.73125

2.156 1 and 2

7 3 8.5× 2.8 L1 = 0.73125, L2 = 3.88125,
L3 = 0.73125

1.780 2 and 3

8 3 10.1× 2.0 L1 = 0.73125, L2 = 5.00625,
L3 = 0.73125

2.156 3 and 4

9 3 8.5× 2.0 L1 = 0.73125, L2 = 3.88125,
L3 = 0.73125

1.780 4 and 5

10 20 9.45× 1.8 L1 = L2 = L3 = L4 = 0.9;
L5 = L6 = L7 = L8 = 1.8;
L9 = L10 = L11 = L12 = 2.7;
L13 = L14 = L15 = L16 = 3.6;
L17 = L18 = L19 = L20 = 4.5

2.700 3, 12, and 13

11 16 7.35× 1.8 L1 = L2 = L3 = L4 = 0.91;
L5 = L6 = L7 = L8 = 1.82;
L9 = L10 = L11 = L12 = 2.73;
L13 = L14 = L15 = L16 = 3.64

2.275 12, 13, 14 and 15

real distance simulation (real_sim)models to measure
their impacts on the performances of all corridors.

4.1. Two practical routing policies

We consider two practical routing policies to flow
pedestrians out of the DTSP. For each policy, we find
the optimal arrival rates to source corridors and mea-
sure their impacts on the performance of all available
corridors using real distance analytical and simulation
models. Their performances are then compared to jus-
tify the best policy for flowing pedestrians. The routing
policies are:

(a) Routing pedestrians to their nearest exit corridors

Pedestrians from source corridors 6, 7, 8, 9, 10 and
11 travel to their nearest exit corridors. They are thus
split into half to travel to one side of the corridor. For
example, pedestrians from seatingW first enter corri-
dor 6. 50% of them travel to corridor 1 while the others
travel to corridor 2. The same logic applies to corridor
10. Pedestrians from seating U and V first enter corri-
dor 10. 50% of them travel to exit corridors 12 and 13
while the others travel to corridor 3a to join pedestri-
ans from corridors 7 and 8. All of them finally exit the
DTSP through exit corridors 3b or 3c.

(b) Routing pedestrians maximising the overall
throughput

This policy finds the optimal arrival rate of pedes-
trians to each source corridor and routing probability

to relevant downstream corridors maximising the
throughput of the DTSP. In this strategy, some per-
centages of pedestrians enter the source corridors with
relevant arrival rates and travel to either one side of
the corridors to join pedestrians in the downstream
corridors.

4.2. Casting the DTSP’s policies as a network flow
model

The flow of pedestrians in the DTSP can be casted
as a network flow diagram as in Figure 7. The nodes
symbolise the corridors while the arrows represent
pedestrians’ movement from their seats to the down-
stream corridors. The objective is to find the optimal
arrival rates to source corridors 6, 7, 8, 9, 10 and 11
(xT→S = xS→6 + xS→7 + xS→8 + xS→9 + xS→10 +
xS→11) maximising the throughput of the hall; i.e. the
total throughputs of all exit corridors 1, 2, 3b, 3c, 4, 5,
12, 13, 14 and 15 (x1→T + x2→T + x3b→T + x3c→T
+ x4→T + x5→T + x12→T + x13→T + x14→T +
x15→T = xT→S). To find the optimal arrival rates, the
optimal arrival rate to each individual source, interme-
diate and exit corridor maximising its throughput has
to be retrieved. The optimal arrival rate for each corri-
dor and its performance based on analytical (denoted
as analytic) and simulation (sim) models are shown in
Table 2. λ, θ and p(c) respectively represent the arrival
rate, throughput and blocking probability of the cor-
ridor. Any values bigger than the optimal arrival rate
decrease the throughput and increase the blocking.

Note that the initial optimal arrival rates to the
source corridors are calculated based on the distance
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Figure 7. DTSP’s network flow diagram.

Table 2. Arrival rates maximising corridor throughputs.

Corridor Model λ θ p(c) Corridor Model λ θ p(c)

6 analytic 14.1800 14.0436 0.0096 3b analytic 1.8800 1.6452 0.1249
sim 14.0992 14.0877 0.0000 sim 1.5150 1.4021 0.0740

7 analytic 14.4600 14.2904 0.0117 3c analytic 1.8800 1.6452 0.1249
sim 14.0094 14.0198 0.0000 sim 1.5150 1.4021 0.0740

8 analytic 10.1100 9.9744 0.0134 4 analytic 2.5800 2.4973 0.0321
sim 9.7610 9.7558 0.0000 sim 2.3000 2.2094 0.0382

9 analytic 10.2900 10.1213 0.0164 5 analytic 1.4900 1.4478 0.0283
sim 9.4688 9.4747 0.0000 sim 1.3473 1.3182 0.0187

10 analytic 6.7500 6.6422 0.0160 12 analytic 1.3000 1.2792 0.0160
sim 6.3838 6.3476 0.0044 sim 1.2617 1.2596 0.0000

11 analytic 6.2100 6.0807 0.0208 13 analytic 1.3000 1.2792 0.0160
sim 5.7595 5.6940 0.0120 sim 1.2617 1.2596 0.0000

3a analytic 3.1600 3.0614 0.0312 14 analytic 4.2500 4.2343 0.0037
sim 2.7000 2.6596 0.0152 sim 4.5000 4.4912 0.0000

1 analytic 1.4900 1.4478 0.0283 15 analytic 2.6100 2.5886 0.0082
sim 1.3473 1.3182 0.0187 sim 2.7029 2.6989 0.0000

2 analytic 2.5800 2.5077 0.0280
sim 2.3081 2.5927 0.0218

where pedestrians are assumed to travel to their near-
est downstream corridors located at the both ends
of the corridors; i.e.P6 = P7 = P8 = P9 = P10 = P11
= 0.5 as considered in the first routing policy. In
this case, the weighted distance for corridor 6 with
3 arrival sources based on analytical is thus L′

6 =
L6, 1→1+0.5L6, 2→1+0.5L6, 2→2+L6, 3→2

3 = [0.73125+ 0.5
(5.00625)+ 0.5(5.00625)+ 0.73125]/3 = 2.1560 m
while the weighted distance for corridor 11 with
16 arrival sources is 2[2(0.91)+ 2(1.82)+ 2(2.73)+ 2
(3.64)]/16 = 2.2750 m (see Table 1). The optimal

arrival rates for simulation are generated using
OptQuest based on 30 potential scenarios bounded
by relevant ranges, each of which is run for 20,000
s and 10 replications. In average, OptQuest takes
1500 min to report the optimal arrival for each
corridor.

All the corridors’ optimal arrival rates generated
by each model are then separately set as their inflow
capacities in the network flow model to find the opti-
mal arrival rates to the source corridors. Thus, each
policy has two sets of optimal arrival rates. The first



1340 R. KHALID ET AL.

set is based on analytical while the second set is based
on simulation.

4.3. Modelling the routing policies

For the first routing policy, we must ensure that the
outflow of each source corridor is equal to its inflow;
i.e. xS→6 = x6→1 + x6→2, xS→7 = x7→2 + x7→3a,
xS→8 = x8→3a + x8→4, xS→9 = x9→4 + x9→5, xS→10
= x10→3a + x10→12 + x10→13 and xS→11 = x11→12
+ x11→13 + x11→14 + x11→15 (see Figure 7). Addi-
tionally, the inflow to each corridor must be smaller
or equal to its optimal arrival rate to avoid any block-
ages (see Table 2). For example, the inflow to source
corridor 6 for the analytical model must not exceed
14.1800; i.e. xS→6 ≤ 14.1800. The same concept is
also applied for intermediate and exit corridors. For
example, the flow conservation for intermediate corri-
dor 3a is x7→3a + x8→3a + x10→3a ≤ 3.1600while that
for exit corridor 12 is x10→12 + x11→12 ≤ 1.3000. We
must also ensure that pedestrians are split into half
with the travel probability of 0.5 and directed to travel
to their nearest corridors. Thus, we must set the out-
flow constraints of each corridor; i.e. x6→1 = x6→2,
x7→2 = x7→3a, x8→3a = x8→4, x9→4 = x9→5, x10→3a
= x10→12 + x10→13, x11→12 + x11→13 = x11→14 +
x11→15.

For the second routing policy, we have to remove
the outflow constraints imposed in the first rout-
ing policy. This removal allows the network flow
model to flexibly search the optimal flow in each
source corridor. Based on the optimal flow, we
can calculate the pedestrian routing probability to
the ends of the source corridor. For the analyti-
cal model, this optimal value depends on the corri-
dor’s weighted travel distance which cannot be cal-
culated if its optimal routing probability is unknown.
As discussed in Section 3.6, we initially solved the
network flow model using the corridors’ optimal
arrival rates as in the first policy without imposing
the outflow constraints; i.e. by removing the con-
straint x6→1 = x6→2, x7→2 = x7→3a, x8→3a = x8→4,
x9→4 = x9→5, x10→3a = x10→12 + x10→13 and x11→12
+ x11→13 = x11→14 + x11→15. Solving themodel gives
us a new initial set of the optimal flow in the source
corridors. Using the optimal flow, we can calculate
the routing probability for each source corridor. Based
on the routing probability and its flow direction, we
calculate the corridor’s new weighted travel distance

which is then used to find the corridor’s new optimal
arrival rate for both the analytical and simulationmod-
els. The new optimal arrival rate is then compared to
the lower and upper bound of the optimal flow. All
network flow models are solved using Lingo software
(http://www.lindo.com). In average, Lingo takes 0.05 s
to solve each network flow model.

4.4. Measuring the impacts of the optimal arrival
rates on the DTSP’s performance

The optimal arrival rate to each source corridor
is input to analytical (real_analytic) and simulation
(real_sim) models of the DTSP to evaluate the flow
performance of the two routing policies. The routing
policies in real_sim can flexibly be handled by chang-
ing the values of probability variables of the source
corridors during the analysis. For the first routing pol-
icy, all probabilities of source corridors have to be set to
0.5; i.e. P6 = P7 = P8 = P9 = P10 = P11 = 0.5. For
the second routing policy, the optimal routing prob-
ability of each source has to be calculated based on the
flow value generated by the network flow model.

5. Results and analysis

For each routing policy, the optimal arrival rates to
the source corridors generated by the network flow
model based on the analytical model are first anal-
ysed using real_analytic. Its performance is validated
using real_sim. We next analyse the optimal arrival
rates generated by the network flow model based on
the simulation model. Its performance is first analysed
using real_sim and then confirmed using real_analytic.
All simulation results are based on 30 replications with
the confidence interval is 95% (α = 0.05). Each repli-
cation is run for 20,000 s and analysed using Process
Analyzer. In average, Process Analyzer takes 330 min
to validate each of the policies.

5.1. Performances of the first routing policy

Using the optimal arrival rates of the analytical model
in Table 2, the network flow model for the first pol-
icy reports that the flow values of xS→6 = 2.9800,
xS→7 = 2.1800, xS→8 = 2.1800, xS→9 = 2.9800,
xS→10 = 1.9600 and xS→11 = 3.2400 generate the
maximum total flow of 15.5200. Inputting the flow val-
ues into real_analytic generates the overall throughput

http://www.lindo.com
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of 15.0831. The detailed performance of the first rout-
ing policy is shown in Table 3. Themaximum blocking
probability is observed in corridor 4 with the value of
0.0321 (3.21%). The small blockings in all corridors
confirm smooth flow in all routes.

To validate the performance, we feed the flow val-
ues to real_ sim. The model however generates the
overall throughput of 12.7776. The inconsistency of
the throughputs is much influenced by intermediate
corridor 3a. The optimal arrival rate for corridor 3a
based on the simulation model is only 2.7000 (com-
pared to 3.1600 based on the analytical model); see
Table 2. In real_sim, the arrival rate of 3.1622 gener-
ated from half of the throughputs of corridors 7, 8 and
10 causes a massive blocking in corridor 3a decreas-
ing its throughput. This small throughput then causes
the small arrival rate to exit corridors 3a and 3b (in
spite of the fact that they can support the arrival rate
of 1.5150) which eventually decreases the throughputs
of the two exit corridors. For other exit corridors, both
models report almost the same arrival rates from their
source corridors. However, since the optimal arrival
rates supported by the simulation model are slightly
smaller than the analytical model in most of our anal-
yses, the overall throughput generated by real_sim is
much smaller than real_analytic.

We then restrict the same flow to source corridors
6, 7, 8 and 9 (i.e. xS→6 = xS→7 = xS→8 = xS→9) and
let the network flow model to flexibly adjust the flow
to corridors 10 and 11. Under this restriction, Lingo
reports that xS→6 = xS→7 = xS→8 = xS→9 = 2.5800,
xS→10 = 1.1600 and xS→11 = 4.0400 also generate
the maximum total flow of 15.5200. Feeding the flow
values into real_analytic generates the overall through-
put of 15.1672; i.e. an increase of 0.0841 from the
flexible rate strategies. The throughputs of all corri-
dors are as in Table 3. There are decreases in the
throughputs of corridors 1 and 2; i.e. 0.1579 each. The
decreases are however balanced with the increases in
the throughputs of corridors 14 and 15 which increase
as much as 0.2000 each; and this contributes to a slight
increase in the throughput of the DTSP. Feeding the
flow values into real_sim also generates a better overall
throughput; i.e. 13.3806.

We then search the optimal arrival rates of source
corridors based on the simulation model by inputting
the optimal arrival rate of each source corridor to
the network flow model. The model reports that
the flow values of xS→6 = 2.6946, xS→7 = 1.9216,

xS→8 = 1.9054, xS→9 = 2.6946, xS→10 = 1.5730 and
xS→11 = 3.4738 will optimise the flow of 14.2630.
Inputting the flow values into real_sim generates the
overall throughput of 14.1233 while real_analytic gen-
erates the overall throughput of 14.2439. The through-
puts of all corridors are as in Table 4. There is a
small discrepancy between the two throughputs since
real_analytic uses the values without causing any
blockings in all corridors.

Restricting the same flow to source corridors 6, 7,
8 and 9 (i.e. xS→6 = xS→7 = xS→8 = xS→9) yields
xS→6 = xS→7 = xS→8 = xS→9 = 2.300, xS→10 =
0.8000, xS→11 = 4.2468 with the samemaximum total
flow of 14.2468. Using these flow values, real_sim and
real_analytic generate the throughput of 14.1009 and
14.2293 respectively. Both models report that there
are small blockings along all routes. Simulation and
analytical results show that the flexible arrival rates
produce a better throughput.

5.2. Performances of the second routing policy

For the second routing policy, the weighted travel dis-
tance of each source corridor depends on the rout-
ing probability of pedestrians from the corridor to
their downstream corridors. Since the optimal rout-
ing probability value is unknown, their weighted travel
distance cannot be calculated. Asmentioned, our strat-
egy is to first use the weighted travel distance of each
source corridor as in the first routing policy (see Table
2) and let Lingo freely find the optimal rate of the
corridor.

Using the weighted travel distances, Lingo reported
xS→6 = 1.4900, xS→7 = 5.7400, xS→8 = 2.5800,
xS→9 = 1.4900, xS→10 = 2.6000 and xS→11 = 6.2100
generate the maximum flow of 20.1100 with the con-
ditions that x6→1 = 1.4900, xS6→2 = 0.0000, x7→2 =
2.5800, x7→3a = 3.1600, x8→3a = 0.0000, x8→4 =
2.5800, x9→4 = 0.0000, x9→5 = 1.4900, x10→3a =
0.0000, x10→12 = 1.3000 and xS10→13 = 1.3000,
x11→12 = 0.0000, x11→13 = 0.0000, x11→14 = 4.2500
and x11→15 = 1.9600. Based on the optimal flow,
we then calculate the routing probability of each
source corridor to its downstream corridors. For
example, consider corridor 6. The network flow
model reports that xS→6 = 1.4900 maximises the
flow with the conditions that x6→1 = 1.4900 and
x6→2 = 0.0000; i.e. P6 = 1. Thus, all pedestrians
in corridor 6 should only travel to corridor 1
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Table 3. Analytical results for the first routing policy.

Flexible Arrival Rate Same Arrival Rate for Corridor 6, 7, 8 and 9

Corridor Type Corridor Model λ θ p(c) λ θ p(c)

Source 6 real_analytic 2.9800 2.9800 0.0000 2.5800 2.5800 0.0000
real_sim 2.9775 0.0000 2.5808 0.0000

7 real_analytic 2.1800 2.1800 0.0000 2.5800 2.5800 0.0000
real_sim 2.1790 0.0000 2.5800 0.0000

8 real_analytic 2.1800 2.1800 0.0000 2.5800 2.5800 0.0000
real_sim 2.1819 0.0000 2.5796 0.0000

9 real_analytic 2.9800 2.9800 0.0000 2.5800 2.5800 0.0000
real_sim 2.9771 0.0000 2.5790 0.0000

10 real_analytic 1.9600 1.9600 0.0000 1.1600 1.1600 0.0000
real_sim 1.9635 0.0000 1.1617 0.0000

11 real_analytic 3.2400 3.2400 0.0000 4.0400 4.0400 0.0000
real_sim 3.2427 0.0000 4.0412 0.0000

Intermediate 3a real_analytic 3.1600 3.0614 0.0312 3.1600 3.0614 0.0312
real_sim 3.1622 2.3222 0.2647 3.1607 2.3101 0.2676

Exit 1 real_analytic 1.4900 1.4478 0.0283 1.2900 1.2899 0.0001
real_sim 1.4888 1.2016 0.1903 1.2904 1.2892 0.0000

2 real_analytic 2.5800 2.5077 0.0280 2.5800 2.5077 0.0280
real_sim 2.5783 1.9615 0.2387 2.5804 1.9659 0.2377

3b real_analytic 1.5307 1.5020 0.0187 1.5307 1.5020 0.0187
real_sim 1.1611 1.1611 0.0000 1.1551 1.1550 0.0000

3c real_analytic 1.5307 1.5020 0.0187 1.5307 1.5020 0.0187
real_sim 1.1611 1.1610 0.0000 1.1551 1.1550 0.0000

4 real_analytic 2.5800 2.4973 0.0321 2.5800 2.4973 0.0321
real_sim 2.5795 1.9180 0.2551 2.5793 1.9087 0.2597

5 real_analytic 1.4900 1.4478 0.0283 1.2900 1.2899 0.0001
real_sim 1.4886 1.1544 0.2244 1.2895 1.2878 0.0000

12 real_analytic 1.3000 1.2792 0.0160 1.3000 1.2792 0.0160
real_sim 1.3016 1.2989 0.0000 1.3007 1.3000 0.0000

13 real_analytic 1.3000 1.2792 0.0160 1.3000 1.2792 0.0160
real_sim 1.3016 1.2989 0.0000 1.3007 1.3000 0.0000

14 real_analytic 0.8100 0.8100 0.0000 1.0100 1.0100 0.0000
real_sim 0.8107 0.8111 0.0000 1.0103 1.0095 0.0000

15 real_analytic 0.8100 0.8100 0.0000 1.0100 1.0100 0.0000
real_sim 0.8107 0.8111 0.0000 1.0103 1.0095 0.0000

Throughput θAnalytic = 15.0831, θSim = 12.7776 θAnalytic = 15.1672, θSim = 13.3806

to exit. The weighted distance for this flow is
[1(0.73125)+ 1(5.00625)+ 1(10.1–0.73125)]/3 =
5.0354 m. In this case, 10.1 is the length of corridor
6 (see Table 1). For corridor 7, xS→7 = 5.7400 with
x7→2 = 2.5800 and x7→3a = 3.1600; i.e. P7 = 2.5800/
5.7400 = 0.4495 maximises the flow in the network.
This reflects that 44.95% of pedestrians in corridor 7
should travel to corridor 2 while the others travel to
corridor 3a to exit. The weighted travel distance based
on the flow is [1(0.73125)+ 0.4495(3.88125)+ 0.5505
(3.88125)+ 1(0.73125)]/3 = 1.7813 m. The same cal-
culation is also applied to corridor 10. Since P10 = 0;
i.e. all pedestrians in corridor 10 should only travel to
corridors 12 and 13 to exit. Its weighted distance is thus
2[0.9+ 1.8+ 2.7+ 3.6+ 4.5+ (9.45–4.5)+ (9.45–3.6)
+ (9.45–2.7)+ (9.45–1.8)+ (9.45–0.9)]/20 = 4.950m.
Using the weighted distance, the new optimal arrival
rate is then derived. Table 5 shows the routing prob-
ability, the new weighted travel distance and the new
optimal arrival rate for each source corridor based on
the analytical model. Table 6 meanwhile shows the

sensitivity analysis results reported by Lingo for the
second routing policy.

From Table 6, the dual price of each source corri-
dor except corridor 11 is 0.0000. This indicates that any
changes of arrival rates to the corridor within its allow-
able range will not change the current solution and
the value of the hall throughput since there is still an
unused inflow capacity represented by its slack variable
value. For example, any changes of arrival rates to cor-
ridor 10 within 4.1500 ≤ �10 < ∞ or λ10 ∈ [2.600,
∞) has no effect on the current solution and through-
put value. The dual price of corridor 11 is 1.0000
since its inflow capacity has fully been utilised repre-
sented by its slack variable value of 0.0000. Thus, any
decreases or increases in its arrival rate will decrease or
increase the objective function value to 20.1100+ �11.
This dual price stays valid for λ11 ∈ [4.2500, 6.8600];
i.e. before the current solution mix changes.

The next step is to calculate the new optimal arrival
rate of each source corridor based on its new weighted
travel distance which in turn depends on the optimal
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Table 4. Simulation results for the first routing policy.

Flexible Arrival Rate Same Arrival Rate for Corridor 6, 7, 8 and 9

Corridor Type Corridor λ θ p(c) λ θ p(c)

Source 6 2.6946 2.6980 0.0000 2.3000 2.3002 0.0000
7 1.9216 1.9238 0.0000 2.3000 2.3005 0.0000
8 1.9054 1.9055 0.0000 2.3000 2.3025 0.0000
9 2.6946 2.6925 0.0000 2.3000 2.3009 0.0000
10 1.5730 1.5741 0.0000 0.8000 0.8007 0.0000
11 3.4738 3.4787 0.0000 4.2468 4.2484 0.0000

Intermediate 3a 2.7017 2.6961 0.0017 2.7019 2.6746 0.0104
Exit 1 1.3490 1.3106 0.0277 1.1501 1.1502 0.0000

2 2.3109 2.2885 0.0098 2.3004 2.2697 0.0120
3b 1.3481 1.3480 0.0000 1.3373 1.3372 0.0000
3c 1.3481 1.3479 0.0000 1.3373 1.3372 0.0000
4 2.2990 2.2287 0.0306 2.3017 2.2109 0.0389
5 1.3463 1.3382 0.0048 1.1505 1.1507 0.0000
12 1.2632 1.2611 0.0000 1.2623 1.2615 0.0000
13 1.2632 1.2611 0.0000 1.2623 1.2615 0.0000
14 0.8697 0.8696 0.0000 1.0621 1.0610 0.0000
15 0.8697 0.8696 0.0000 1.0621 1.0610 0.0000

Throughput θSim = 14.1233, θAnalytic = 14.2439 θSim = 14.1009, θAnalytic = 14.2293

Table 5. Flow percentage from source corridors to exit corridors.

New Optimal Arrival Rate

Source Corridor λ Exit Corridor Percentage
NewWeighted Travel

Distance λ θ p(c)

6 1.4900 1 100.00 5.0354 6.0700 6.0130 0.0094
2 0.00

7 5.7400 2 44.95 1.7813 14.4400 14.2799 0.0111
3a 55.05

8 2.5800 3a 0.00 5.0354 4.3600 4.2630 0.0223
4 100.00

9 1.4900 4 0.00 4.1270 4.4400 4.3654 0.0168
5 100.00

10 2.6000 3a 0.00 4.9500 3.6800 3.6230 0.0155
12 50.00
13 50.00

11 6.2100 12 0.00 4.0950 3.4500 3.3781 0.0208
13 0.00
14 68.43
15 31.56

probability. The new optimal arrival rates to the source
corridors are as in Table 6. Observe that the new opti-
mal rate of each source corridor except corridor 11 is
within its allowable range. For corridor 11, its opti-
mal arrival rate which is 3.4500 is out of the range of
[4.2500, 6.8600]. This new right hand side value vio-
lates one of the problem’s constraints. Thus, the prob-
lem has to be re-solved by changing the optimal arrival
rate of source corridor 11 from the current value of

6.2100–3.4500 (which is the optimal value of routing
pedestrians to corridors 14 and 15; i.e. P11 = 0) while
keeping other arrival rates to source corridors 6, 7, 8, 9
and 10.

Re-solving the problem yields xS→6 = 1.4900,
xS→7 = 5.7400, xS→8 = 2.5800, xS→9 = 1.4900,
xS→10 = 2.6000 and xS→11 = 3.4500 and the total
maximum flow of 17.3500, with the conditions
that x6→1 = 1.4900, xS6→2 = 0.0000, x7→2 = 2.5800,

Table 6. Sensitivity analysis for source corridors.

Source Corridor Current Value Slack or Surplus
Allowable
Decrease

Allowable
Increase

Allowable
Range Dual Price

6 14.1800 12.6900 12.6900 Infinity [1.4900,∞) 0.0000
7 14.4600 8.7200 8.7200 Infinity [5.7400,∞) 0.0000
8 10.1100 7.5300 7.5300 Infinity [2.5800,∞) 0.0000
9 10.2900 8.8000 8.8000 Infinity [1.4900,∞) 0.0000
10 6.7500 4.1500 4.1500 Infinity [2.6000,∞) 0.0000
11 6.2100 0.0000 1.9600 0.6500 [4.2500, 6.8600] 1.0000
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Table 7. Analytical results for the second routing policy.

Flexible Arrival Rate Same Arrival Rate for Corridors 6, 7, 8 and 9

Type Corridor Model λ θ p(c) λ θ p(c)

Source 6 real_analytic 1.4900 1.4900 0.0000 2.8250 2.8250 0.0000
real_sim 1.4915 0.0000 2.8241 0.0000

7 real_analytic 5.7400 5.7400 0.0000 2.8250 2.8250 0.0000
real_sim 5.7335 0.0000 2.8274 0.0000

8 real_analytic 2.5800 2.5800 0.0000 2.8250 2.8250 0.0000
real_sim 2.5830 0.0000 2.5805 0.0000

9 real_analytic 1.4900 1.4900 0.0000 2.8250 2.8250 0.0000
real_sim 1.4898 0.0000 2.8259 0.0000

10 real_analytic 2.6000 2.6000 0.0000 2.6000 2.6000 0.0000
real_sim 2.5999 0.0000 2.6008 0.0000

11 real_analytic 3.4500 3.3781 0.0208 3.4500 3.3781 0.0208
real_sim 2.6986 0.2155 2.6592 0.2284

Intermediate 3a real_analytic 3.1599 3.0614 0.0312 1.4899 1.4478 0.0283
real_sim 3.1563 2.4299 0.1790 3.0246 2.3568 0.2202

Exit 1 real_analytic 1.4900 1.4478 0.0283 2.5801 2.5077 0.0280
real_sim 1.4915 1.1417 0.2327 1.4894 1.1327 0.2378

2 real_analytic 2.5801 2.5077 0.0281 3.1600 3.0614 0.0312
real_sim 2.5772 1.8762 0.3220 2.5807 1.9038 0.2612

3b real_analytic 1.5307 1.5020 0.0187 1.5307 1.5020 0.0187
real_sim 1.2150 1.2149 0.0000 1.1784 1.1784 0.0000

3c real_analytic 1.5307 1.5020 0.0187 1.5307 1.5020 0.0187
real_sim 1.2150 1.2149 0.0000 1.1784 1.1783 0.0000

4 real_analytic 2.5800 2.4973 0.0321 2.5801 2.4973 0.0321
real_sim 2.5830 1.8922 0.2665 2.4727 1.9650 0.2042

5 real_analytic 1.4900 1.4478 0.0283 1.5221 1.4364 0.0563
real_sim 1.4900 1.1323 0.2382 1.4904 1.1374 0.2350

12 real_analytic 1.3000 1.2792 0.0160 1.3000 1.2792 0.0160
real_sim 1.3000 1.2986 0.0000 1.3004 1.2991 0.0000

13 real_analytic 1.3000 1.2792 0.0160 1.3000 1.2792 0.0160
real_sim 1.3000 1.2986 0.0000 1.3004 1.2991 0.0000

14 real_analytic 1.6891 1.6891 0.0000 1.6891 1.6891 0.0000
real_sim 1.3493 1.3486 0.0000 1.3296 1.3288 0.0000

15 real_analytic 1.6891 1.6891 0.0000 1.6891 1.6891 0.0000
real_sim 1.3493 1.3485 0.0000 1.3296 1.3288 0.0000

Throughput θAnalytic = 16.8412, θSim = 13.7665 θAnalytic = 16.8298, θSim = 13.7514

x7→3a = 3.1600, x8→3a = 0.0000, x8→4 = 2.5800,
x9→4 = 0.0000, x9→5 = 1.4900, x10→3a = 0.0000,
x10→12 = 1.3000 and xS10→13 = 1.3000, x11→12 =
0.0000, x11→13 = 0.0000, x11→14 = 1.7200 and
x11→15 = 1.7200. Based on the flow, P6 = 1.000,
P7 = 0.4495,P8 = 0.0000,P9 = 0.0000,P10 = 0.0000
and P11 = 0.0000. All the flow values of the source
corridors are now within their allowable ranges.
Inputting these values into real_analytic yields the
overall throughput of 16.8412. The detailed perfor-
mance measures of the corridors based on rates are
shown in Table 7. Observe that the main discrepancy
of the overall throughput between the two models is
much influenced by the throughputs of corridors 11,
3a, 1, 2, 4 and 5. As previous reasons, the optimal
arrival rates to the corridors based on the simulation
model are much smaller compared to the analytical
model.

For the simulationmodel, xS→6 = 1.3473, xS→7 =
5.0081, xS→8 = 2.300, xS→9 = 1.3473, xS→10 =
2.5234 and xS→11 = 3.2900 generate the maximum

throughput of 15.8161, with the conditions that
x6→1 = 1.3400, xS6→2 = 0.0000, x7→ 2 = 2.3801,
x7→ 3a = 2.7000, x8→ 3a = 0.0000, x8→ 4 = 2.3000,
x9→ 4 = 0.0000, x9→ 5 = 1.3473, x10→ 3a = 0.0000,
x10→ 12 = 1.2617 and x10→ 13 = 1.2617, x11→ 12 =
0.0000, x11→ 13 = 0.0000, x11→14 = 1.6450 and
x11→ 15 = 1.6450. Thus, P6 = 1.000, P7 = 0.4608,
P8 = P9 = P10 = P11 = 0.0000. The detailed results
of the simulation model and the throughput compar-
ison with the analytical model for these values are
shown in Table 8. If we impose xS→6 = xS→7 = xS→8
= xS→9, then xS→6 = xS→7 = xS→8 = xS→9 =
2.5007, xS→10 = 2.5234 and xS→11 = 3.2900 gen-
erate the maximum throughput of 15.0041 with
the conditions that x6→1 = 1.3473, x6→2 = 1.1534,
x7→2 = 1.1547, x7→3a = 1.3460, x8→3a = 1.3541,
x8→4 = 1.1466, x9→4 = 1.1534, x9→5 = 1.3473,
x10→3a = 0.0000, x10→12 = 1.2617 and xS10→13 =
1.2617, x11→12 = 0.0000, x11→13 = 0.0000, x11→14 =
1.6450 and x11→15 = 1.6450. Thus, P6 = 0.5388,
P7 = 0.4618,P8 = 0.5415,P9 = 0.4612,P10 = 0.0000
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Table 8. Simulation results for the second routing policy.

Flexible Arrival Rate Same Arrival Rate for Corridors 6, 7, 8 and 9

Type Corridor λ θ p(c) λ θ p(c)

Source 6 1.3473 1.3475 0.0000 2.5007 2.5008 0.0000
7 5.0081 5.0082 0.0000 2.5007 2.5011 0.0000
8 2.3000 2.2996 0.0000 2.5007 2.5001 0.0000
9 1.3473 1.3471 0.0000 2.5007 2.5016 0.0000
10 2.5234 2.5250 0.0000 2.5234 2.5251 0.0000
11 3.2900 3.0326 0.0768 3.2900 3.0897 0.0606

Intermediate 3a 2.6999 2.6294 0.0264 2.6999 2.6186 0.0302
Exit 1 1.3475 1.3065 0.0296 1.3474 1.2991 0.0348

2 2.3083 2.2506 0.0238 2.3084 2.2380 0.0296
3b 1.3147 1.3146 0.0000 1.3093 1.3092 0.0000
3c 1.3147 1.3146 0.0000 1.3093 1.3092 0.0000
4 2.2996 2.1077 0.0827 2.3000 2.1547 0.0624
5 1.3471 1.2859 0.0444 1.3479 1.2958 0.0377
12 1.2625 1.2613 0.0000 1.2626 1.2614 0.0000
13 1.2625 1.2613 0.0000 1.2626 1.2614 0.0000
14 1.5163 1.5155 0.0000 1.5449 1.5440 0.0000
15 1.5163 1.5154 0.0000 1.5449 1.5440 0.0000

Throughput θSim = 15.1334, θAnalytic = 15.7904 θSim = 15.2168, θAnalytic = 15.7906

Table 9. Ranking of the best routing policy.

Throughput

Model Policy Analytic Simulation Arrival Rate

Analytical Second Routing Policy 16.8412 13.7665 xS→6 = 1.4900, xS→7 = 5.7400, xS→8 = 2.5800,
xS→9 = 1.4900, xS→10 = 2.6000 and xS→11 = 3.4500
with P6 = 1.000, P7 = 0.4495, P8 = 0.0000,
P9 = 0.0000, P10 = 0.0000 and P11 = 0.0000

First Routing Policy (Alternative) 15.9034 13.1181 xS→6 = 1.0200, xS→7 = 4.1400, xS→8 = 2.1800,
xS→9 = 2.9800, xS→10 = 2.6000 and xS→11 = 3.4500

First Routing 15.1672 13.3806 xS→6 = xS→7 = xS→8 = xS→9 = 2.5800,
xS→10 = 1.1600 and xS→11 = 4.0400

Simulation Second Routing Policy 15.7906 15.2168 xS→6 = xS→7 = xS→8 = xS→9 = 2.5007,
xS→10 = 2.5234 and xS→11 = 3.2900 with
P6 = 0.5388, P7 = 0.4618, P8 = 0.5415, P9 = 0.4612,
P10 = 0.0000 and P11 = 0.0000

First Routing Policy (Alternative) 15.0046 14.6011 xS→6 = 1.1216, xS→7 = 3.4946, xS→8 = 1.9054,
xS→9 = 2.6946, xS→10 = 2.5234 and xS→11 = 3.2900

First Routing 14.2439 14.1233 xS→6 = 2.6946, xS→7 = 1.9216, xS→8 = 1.9054,
xS→9 = 2.6946, xS→10 = 1.5730 and xS→11 = 3.4738

and P11 = 0.0000. The detailed performance mea-
sures for each corridor based on these values are as
in Table 8. For these two sets of values, there are very
small congestions along all routes.

5.3. Recommendation

The detailed ranking of the policies is shown inTable 9.
The policies are ranked based on the highest through-
put generated by the analytical and simulation mod-
els. Notice that we also consider an alternative to
the first policy implementing the same logic consid-
ered in the first policy. The only difference is that we
force all pedestrians in corridor 11 to only travel to
corridors 14 or 15 and that in corridor 10 to only
travel in a single direction to corridors 12 or 13. As
observed, the second policy is the best policy and

should thus be chosen for vacating pedestrians. If the
vacating processes implement the arrival rates and
routing probabilities shown in the first row of Table
9, real_analytic then generates the overall throughput
of 16.8412 peds/s. However, for these values, real_sim
only generates the throughput of 13.7665 peds/s.

The maximum throughput which can be achieved
by real_sim based on the second policy is 15.2168
peds/s. For the suggested arrival rates and routing
probabilities (see the fourth row of Table 9), the
throughput of real_analytic is 15.7906 peds/s and the
flow is smooth in all routes. Since there is a small
throughput discrepancy between the two models, the
flow control based on this strategy is the best option.
For vacating processes, pedestrians should thus be
flowed to enter corridors 6, 7, 8 and 9 with the
arrival rates of 2.5007 peds/s. 54% of pedestrians of
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corridor 6 (P6 = 0.5388) should travel to corridor 1,
46% of pedestrians of corridor 7 (P7 = 0.4618) should
travel to corridor 2, 54% of pedestrians of corridor 8
(P8 = 0.5415) should travel to corridor 3a and 46% of
pedestrians of corridor 9 (P9 = 0.4612) should travel
to corridor 4. For corridor 10, pedestrians should be
flowed to the corridor with 2.5234 peds/s and forced to
only travel to corridors 11 and 13 to exit the hall. For
corridor 11, the pedestrians should be flowed to the
corridor with 3.2900 peds/s and forced to only travel
corridors 14 and 15 to exit the hall.

The time to vacate all of the 1338 occupants from
the hall is approximately 1338/15.2168 ≈ 88 s. This
is the optimal time to vacate the occupants through
the ten exit corridors which can only be achieved
if the optimal arrival rates and routing probabilities
are implemented under a normal condition. Lower
arrival rates reduce the overall throughput at the end.
Higher arrival rates meanwhile increase the blocking
probabilities along the routes instead of improving the
overall throughput at the end.

Observe that in many cases of the computational
experiments, analytical results are very close to simula-
tion results. The results reflect some essential relation-
ships between both models. First, the analytical model
provides a static approximation effect of pedestrian
density on the state of a network while the simula-
tion model imitates pedestrians’ behaviour and inter-
actions while flowing in the network. Simulation is
thus an important tool for getting insight into the
dynamic processes of the state-dependent flow. Sec-
ond, the analytical model measures the performance
of the network using relevant M/G/C/C mathemati-
cal expressions while the simulation model validates
the analytical expressions. Simulation is thus an effec-
tive tool for showing the accuracy of the various con-
sidered settings or configurations. Third, the analyt-
ical model measures the performance based on rele-
vant assumptions (e.g. exponential inter-arrival time)
while the simulation predicts the performance based

on designated flow logic. Simulation is thus an indis-
pensable tool for evaluating further effect of various
scenarios on the network performance over the ana-
lytical model. This includes the impact of changing
arrival rates from an exponential distribution to other
distributions (e.g. triangular or normal) or closing rel-
evant sink nodes with finite capacities after a point of
time on the throughput.

A further important aspect of the models is the
implementation of its policy. The policy is very spe-
cific in terms of its optimal arrival rates and turning
proportions or route fractions. How can the policy
be applied in practice? In reality, we cannot control
the flow to exactly match the suggested values. The
flow in all corridors should thus be properly controlled
within the acceptable ranges of the suggested values to
optimise the overall flow. To measure the arrival rates
to source nodes, a sensor computing the arrival rates
through light array as proposed in previous studies
(Shende, 2008; Shende et al., 2013) can be used. Route
choices can meanwhile be enforced by providing rele-
vant persons at each intersection who will guide the
incoming pedestrians to relevant downstream direc-
tions. Pedestrians can also be recommended to use or
not to use relevant corridors during their movement
using loudspeakers.

5.4. Verification of the proposed policies

Thus far the proposed policies were analysed using
anM/G/C/C model. In literature, there are other state
dependent queuing models which extensively anal-
yse and relate pedestrian speed and density in a con-
strained space based on various sets of secondary
data of pedestrian speed. The models include Green-
shields (1935), Greenberg (1959), Underwood (1960),
Drake et al. (1965), Pipes-Munjal (Pipes, 1967), Drew
(1968), Northwestern (May, 1990), Modified Green-
shields (Jayakrishnan et al., 1995), M/G/C/C linear
(Yuhaski & Smith, 1989) and logistic speed-density

Table 10. Speed-density models.

Model Function Optimal ρ Optimal q

Underwood v(ρ) = vf e
− ρ

ρm ρopt = ρm qopt = ρmvf
e

Pipes-Munjal v(ρ) = vf
[
1 − (

ρ
ρm

)
n
]

ρopt =
[

ρn
m

n+1

] 1
n

qopt =
[

n
n+1

]
vf

[
ρn
m

n+1

] 1
n

Drew (1968) v(ρ) = vf
[
1 − (

ρ
ρm

)
n+ 1

2

]
ρopt =

[
2ρ

n+ 1
2

m
2n+3

] 2
2n+1

qopt = vf

[
2ρ

n+ 1
2

m
2n+3

] 2
2n+1 [

2n+1
2n+3

]
M/G/C/C Linear v(ρ) = vf

ρm
(ρm + 1 − ρ) ρopt = ρm+1

2 qopt = vf
4ρm

(ρm + 1)2
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Figure 8. Speed-density relationships.

Figure 9. Flow-density relationships.
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Figure 10. Throughput-arrival rate relationships for an 8m× 2.5m space.

Table 11. Optimalλ and its impact on theperformancemeasures
of an 8m x× 2.5m space.

Model λ θ PC E(N) E(T)

Underwood 8.1455 6.8758 0.1559 94.7697 13.783
Pipes-Munjal (n= 2) 3.4105 3.3684 0.0123 19.9957 5.9362
Drew (n= 1) 3.8515 3.8027 0.0127 22.0694 5.8035
M/G/C/C Linear 3.1184 3.0787 0.0127 22.2828 7.2377
M/G/C/C Exponential 2.6983 2.6608 0.0139 28.9942 10.8966

(Wang et al., 2011) models. Using these models to
further verify the proposed policies to see how the
hall throughput varies across them is thus crucial. The
functions, derived optimal density and optimal flow
of some of the models are shown in Table 10. Note
that v is the average traffic speed, vf is the free flow

(maximum) speed; i.e. the speed of a lone pedestrian
or vehicle, ρ is the traffic density; i.e. the number of
pedestrians or vehicles per unit area, ρm is the max-
imum or critical density at which a traffic jam will
occur and the speed is near to zero and q = ρ.v is the
flow through the area. Setting vf = 1.5m/s and ρm =
5 peds/m2, the graphical pedestrian speed-density and
flow-density for a 1m× 1m space are respectively
plotted in Figures 8 and 9. Based on the speed-density
relationships, the performance of the space can be
measured using Equations (2) and (3). For example,
the performance of an 8m× 2.5m space in terms of
how arrival rates effect its throughput is plotted in
Figure 10. The optimal arrival rate, λopt and its impact

Table 12. The throughput of the hall based on various speed-density models.

Routing Policy Analytical Simulation

xS→6 = 1.4900, xS→7 = 5.7400, xS→8 = 2.5800,
xS→9 = 1.4900, xS→10 = 2.6000 and xS→11 = 3.4500

with P6 = 1.000, P7 = 0.4495, P8 = 0.0000,
P9 = 0.0000, P10 = 0.0000 and P11 = 0.0000

xS→6 = xS→7 = xS→8 = xS→9 = 2.5007,
xS→10 = 2.5234 and xS→11 = 3.2900 with P6 = 0.5388,
P7 = 0.4618, P8 = 0.5415, P9 = 0.4612, P10 = 0.0000

and P11 = 0.0000

Model θ

Underwood 17.3500 15.8162
Pipes-Munjal (n= 2) 11.9697 12.9886
Drew (n= 1) 14.1554 13.1146
M/G/C/C Linear 17.3490 15.8161
M/G/C/C Exponential 16.8412 15.7906
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on the performance of the space based on the various
speed-density models are meanwhile shown Table 11.

Using the various speed-density models, the best
routing policy of the analytical and simulation mod-
els based on M/G/C/C exponential was further veri-
fied. The speed-density models generate different hall
throughputs as shown in Table 12. As observed, the
hall throughputs based on the best analytical rout-
ing policy are between 11.9697 and 17.3500 while the
throughputs based on the best simulation routing pol-
icy are between 12.9886 and 15.8162 for the various
speed-density models. For both routing policies, the
Pipes-Munjalmodel generates the lowest hall through-
put while the Underwood model generates the highest
hall throughput compared to the other models.

6. Conclusion

The throughput of a network corresponding to its
pedestrian exit time can be optimised by maximising
its pedestrian flow. This paper proposes a framework
for optimising pedestrian flow in a complex topologi-
cal network with multiple entrances (along its source
nodes) and exits using the combination of M/G/C/C
analytical and simulation models and the network
flowmodel. TheM/G/C/Cmodels replicate the speed-
density relationship of pedestrians in all available
nodes in the network. The network flow model mean-
while derives the optimal flow in the source nodes and
routing probabilities of pedestrians to the downstream
nodes maximising the network’s throughput.

Implementing the framework on the DTSP and
comparing its quantitative results with other consid-
ered routing policies shows that the throughput of the
hall can be maximised if the arrival rates of pedestri-
ans to the available entrances and their flow directions
are controlled at relevant levels. This optimal policy
also guarantees that the blocking probabilities along
all available routes are minimised. The framework can
be used to design a routing policy for any state depen-
dent queuing networks; e.g. pedestrian trafficnetworks
and vehicular traffic networks to efficiently flow enti-
ties from the network and to support the evacuation
process during emergency cases in order to reduce the
risks of injuries and death.
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