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A B S T R A C T

In this research paper, a numerical method, named the three-step Ultraspherical wavelet collocation method,
is presented for solving some nonlinear multi-dimensional parabolic partial differential equations. The method
is third-order accurate in time. In this method, the three-step Taylor method is used to get the time derivative,
while the Ultraspherical wavelet collocation method is used to get the space derivatives. Ultraspherical wavelets
have good properties which make useful to carry out this aim. The presented method is developed for Burgers’
equation, Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation, and quasilinear parabolic equation.
Three illustrative numerical problems are solved to demonstrate the efficiency, simplicity, and reliability of
the presented method.
1. Introduction

Wavelets analysis is the decomposition of a function onto shifted
and scaled versions of the basic wavelet. Due to the ability to accurately
represent polynomials to a certain degree and represent functions, it
can be efficiently approximate unknown functions. So, it has been
applied in many different fields of science and engineering. Wavelet
applications have been extensively used to seek a numerical solu-
tion of the differentials equations. During the last decades, methods
based on different wavelet families have been extensively employed
to get numerical solutions of partial differential equations arising in
different disciplines. Some of these methods are methods based on
Gegenbauer wavelets [1–3], a Müntz wavelets collocation method [4],
a Haar wavelet-finite difference hybrid method [5], a three-step Taylor–
Galerkin finite element method [6], a Strang splitting method using
Chebyshev wavelets [7], Chebyshev wavelet collocation method [8],
Legendre wavelets optimization method [9], the Jacobi wavelet col-
location method [10], the collocation method using Wilson wavelets
[11].

Because partial differential equations have practical importance,
many researchers have worked on the numerical solution of different
types of partial differential equations. In this paper, we focus on
Burgers’ Equation, Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–
KPP) and quasilinear parabolic equation, which are parabolic partial
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differential equations.[12–21]. Many numerical methods have been
developed to obtain numerical solutions of these equations, such as
finite difference methods [22], Roessler and Hüssner used finite el-
ement and Galerkin methods to solve two-dimensional Fisher–KPP
equation [23], Macías-Díaz presented implicit finite difference method
for the two-dimensional Fisher–KPP equation [24], Oruc studied the
Chebyshev wavelet collocation method with two different time dis-
cretization schemes to solve two-space dimensional nonlinear Fisher–
KPP equation [25],Saleem et al. combined finite-difference scheme
with Haar wavelet collocation method for solving Burgers’ and quasi-
linear differential equations [26], Haq and Ghafoor used a compos-
ite numerical scheme based upon Haar wavelets and finite differ-
ences to solve multi-dimensional time-dependent Burgers’ equation
[27], Cao et al. suggested a numerical method by combining the dis-
continuous Galerkin method to spatial variables and a finite difference
scheme to temporal variables [28], Khater and Alabdali presented the
rigonometric-quantic B-spline scheme to get the numerical solution of
two-dimensional Fisher–KPP equation [29].

In this research work, inspiring by the ongoing research, we aim
to present the three-step Ultraspherical wavelet collocation method
to seek a numerical solution of some nonlinear multi-dimensional
parabolic partial differential equations. Up to now, the presented
method has not been applied to nonlinear partial differential equations
vailable online 11 November 2021
877-7503/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2021.101487
Received 10 February 2021; Received in revised form 10 September 2021; Accepte
d 11 October 2021

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:neozdemir@gelisim.edu.tr
mailto:asecer@yildiz.edu.tr
mailto:mustafabayram@biruni.edu.tr
https://doi.org/10.1016/j.jocs.2021.101487
https://doi.org/10.1016/j.jocs.2021.101487
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101487&domain=pdf


Journal of Computational Science 56 (2021) 101487N. Ozdemir et al.

2
o

𝑤

c

𝑣

w
d

𝑐

W
f

𝑣

F

𝑣

w

i

𝑣

w
c

𝑐

W

𝑣

i

𝐷

𝜁

and any system of partial differential equations in the literature. We
apply the three-step Taylor method for the time discretization before
discretizing the spatial variables for the numerical scheme. Then, we
use the collocation method with Ultraspherical wavelets for spatial
discretization. The presented method transforms the solution of the
considered partial differential equation into the solution of a nonlinear
system of algebraic equations. The system can be easily solved with a
suitable numerical method. This method does not increase the difficul-
ties for higher-dimensional problems and can be easily applied to solve
various high dimensions problems. The method’s applicability for non-
linear partial differential equations is easy, and the technique provides
numerical solutions for nonlinear partial differential equations.

The three-step wavelet Galerkin method was first used in [30], and
the time discretization technique was used with Daubechies wavelets
in these references. The three-step wavelet collocation method was first
used for linear time-dependent PDEs in [31], and the time discretization
technique was used with Legendre wavelets in this reference.

2. Ultraspherical (Gegenbauer) polynomials and Ultraspherical
(Gegenbauer) wavelets

Ultraspherical polynomials (a special type of Jacobi polynomials) of
an order 𝑛 ∈ 𝑍+ [32], 𝑈 𝛾

𝑛 (𝑥) is defined on [−1, 1], and the Ultraspherical
polynomials can be expressed by the aid of the following recurrence
formulae:

𝑈 𝛾
0 (𝑥) = 1, 𝑈 𝛾

1 (𝑥) = 2𝛾𝑥,

𝑈 𝛾
𝑛+1(𝑥) =

1
𝑛 + 1

(

2 (𝑛 + 𝛾) 𝑥𝑈 𝛾
𝑛 (𝑥) − (𝑛 + 2𝛾 − 1)𝑈 𝛾

𝑛−1(𝑥)
)

,

𝑛 = 1, 2, 3,… , 𝛾 > −1
2

Ultraspherical polynomials are orthogonal with respect to the 𝐿2 inner
product on the interval [−1, 1] that is

∫

1

−1
(1 − 𝑥2)𝛾−

1
2 𝑈 𝛾

𝑚(𝑥)𝑈
𝛾
𝑛 (𝑥)𝑑𝑥 = 𝐿𝛾𝑛𝛿𝑛𝑚, 𝛾 > −1

2

Herein,

𝐿𝛾𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜋21−2𝛾𝛤 (𝑛 + 2𝛾)
(𝑛 + 𝛾)𝛤 (𝑛 + 1) (𝛤 (𝛾))2

, 𝛾 ≠ 0

2𝜋
𝑛2
, 𝛾 = 0

𝜋, 𝛾 = 0, 𝑛 = 0

is called the normalizing factor and 𝛿𝑛𝑚 is the Kronecker symbol.
Chebyshev polynomials of the first kind 𝑇𝑛(𝑥) for 𝛾 = 0, Legendre

polynomials 𝐿𝑛(𝑥) for 𝛾 = 1∕2 and Chebyshev polynomials of the
second-kind 𝑇 ∗

𝑛 (𝑥) for 𝛾 = 1 are all special cases of Ultraspherical
polynomials, and these polynomials are shown the following relations:

𝑇𝑛 =
𝑛
2
lim
𝛾→0

𝑈 𝛾
𝑛
𝛾
, 𝑇𝑛 = 𝑈1

𝑛 , 𝐿𝑛 = 𝑈1∕2
𝑛

Ultraspherical wavelets are defined as:

𝜓𝑛𝑚(𝑡) =

⎧

⎪

⎨

⎪

⎩

1
√

𝐿𝛾𝑚
2
𝑘
2 𝑈 𝛾

𝑚(2𝑘𝑥 − 𝑛̃) , 𝑛̃−12𝑘 ≤ 𝑥 < 𝑛̃+1
2𝑘

0 , otherwise

where 𝑘 = 1, 2, 3,…, is the level of resolution, 𝑛 = 1, 2, 3,… , 2𝑘−1, 𝑛̃ =
𝑛−1 is the translation parameter, and 𝑚 = 0, 1, 2,… ,𝑀−1 is the order
f the Ultraspherical polynomials, 𝑀 > 0.

Ultraspherical wavelets’ weight function is given as:

𝛾
𝑛(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

𝑤(2𝑘𝑥 − 2𝑛 + 1) =
(

1 −
(

2𝑘𝑥 − 2𝑛 + 1
)2
)𝛾− 1

2 ,

𝑥 ∈
[

𝑛−1
2𝑘−1 ,

𝑛
2𝑘−1

)

0 , otherwise
2

⎩

Similarly, Chebyshev wavelets of the first kind 𝑇𝑛(𝑥) for 𝛾 = 0,
Legendre wavelets 𝐿𝑛(𝑥) for 𝛾 = 1∕2 and Chebyshev wavelets of the
second-kind 𝑇 ∗

𝑛 (𝑥) for 𝛾 = 1 are all special cases of Ultraspherical
wavelets.

2.1. Function approximation

Any function 𝑣(𝑥) which is square-integrable on the interval [0, 1)
an be expressed in terms of Ultraspherical wavelets as:

(𝑥) =
∞
∑

𝑛=1

∞
∑

𝑚=0
𝑐𝑛𝑚𝜓𝑛𝑚(𝑥) (1)

here 𝑐𝑛𝑚 values are wavelet coefficients, and these coefficients can be
etermined by the following operation:

𝑛𝑚 = ⟨𝑣(𝑥), 𝜓𝑛𝑚(𝑥)⟩𝑤𝛾𝑛
e approximate 𝑣(𝑥) by truncating the infinite series in Eq. (1) as

ollows:

(𝑥) =
2𝑘−1
∑

𝑛=1

𝑀−1
∑

𝑚=0
𝑐𝑛𝑚𝜓𝑛𝑚(𝑥) = 𝐶𝑇𝛹 (𝑥). (2)

or a more compact expression, Eq. (2) can be rewritten as:

(𝑥) =
𝑚̃
∑

𝑗=1
𝑐𝑗𝜓𝑗 (𝑥)

here 𝑚̃ =
(

2𝑘−1𝑀
)

and 𝑗 =𝑀(𝑛 − 1) + 𝑚 + 1.
In a similar way, the expansion of any function 𝑣(𝑥, 𝑦) ∈ [0, 1)×[0, 1)

n terms of Ultraspherical wavelet series is:

(𝑥, 𝑦) =
∞
∑

𝑛1=1

∞
∑

𝑚1=0

∞
∑

𝑛2=1

∞
∑

𝑚2=0
𝑐𝑛1𝑚1𝑛2𝑚2

𝜓𝑛1𝑚1
(𝑥)𝜓𝑛2𝑚2

(𝑦) (3)

here 𝑐𝑛1𝑚1𝑛2𝑚2
values are the wavelet coefficients, and these coeffi-

ients can be determined by:

𝑛1𝑚1𝑛2𝑚2
=

⟨

⟨

𝑣(𝑥, 𝑦), 𝜓𝑛1𝑚1
(𝑥)

⟩

𝑤𝛾𝑛1
, 𝜓𝑛2𝑚2

(𝑦)

⟩

𝑤𝛾𝑛2

.

e approximate 𝑣(𝑥, 𝑦) by truncating the infinite series in Eq. (3) as:

(𝑥, 𝑦) =
2𝑘−1
∑

𝑛1=1

𝑀−1
∑

𝑚1=0

2𝑘−1
∑

𝑛2=1

𝑀−1
∑

𝑚2=0
𝑐𝑛1𝑚1𝑛2𝑚2

𝜓𝑛1𝑚1
(𝑥)𝜓𝑛2𝑚2

(𝑦). (4)

For a more compact expression, Eq. (4) can be rewritten as:

𝑣(𝑥, 𝑦) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑖𝑗𝜓𝑖(𝑥)𝜓𝑗 (𝑦) (5)

in which 𝑚̃ =
(

2𝑘−1𝑀
)

, 𝑖 =𝑀(𝑛1−1)+𝑚1+1 and 𝑗 =𝑀(𝑛2−1)+𝑚2+1.

3. Operational matrix of derivatives

Theorem. The derivative of 𝛹 (𝑥) can be approximated by:
𝑑
𝑑𝑥
𝛹 (𝑥) = 𝐷𝛹 (𝑥)

n which 𝐷 is called the operational matrix of derivative having order
2𝑘−1𝑀 . 𝐷 can be calculated from the following operation:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜁 0 … 0
0 𝜁 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜁

⎤

⎥

⎥

⎥

⎥

⎦

where 𝜁 is a matrix of order 𝑀 ×𝑀 having (𝑖, 𝑗) elements defined as

𝑖,𝑗 =

⎧

⎪

⎨

⎪

2𝑘+1(𝑗 + 𝛾 − 1)
√

(𝑗−1+𝛾)𝛤 (𝑗)𝛤 (𝑖−1+2𝛾)
(𝑖−1+𝛾)𝛤 (𝑖)𝛤 (𝑗−1+2𝛾)

, 𝑖 = 2, 3,… ,𝑀, 𝑗 = 1, 2,… , 𝑖 − 1, and(𝑖 + 𝑗)odd
⎩0 , otherwise



Journal of Computational Science 56 (2021) 101487N. Ozdemir et al.

e

W
m

𝑣

𝑣

I
e
w

4

4

s

𝑣

A
0
d

𝑣

𝑣

l

p
c
b

𝑣

E

𝑣

i
1
a
t

𝑣

a

B

𝛹

F
w

𝑣

T
a
o

𝑥

W

[33]. The operational matrix of 𝑛𝑡ℎ order derivative of 𝛹 (𝑥) can be
xpressed as:
𝑑𝑛

𝑑𝑥𝑛
𝛹 (𝑥) = 𝐷𝑛𝛹 (𝑥)

4. Numerical method

In this section, the main structure of the three-step Ultraspheri-
cal wavelet collocation method for some nonlinear parabolic partial
differential equations is explained.

Firstly, we consider the nonlinear partial differential equation of the
following form

𝑣𝑡 = 𝐿𝑣 +𝑁𝑓 (𝑣) (6)

subject to the initial condition

𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦)

in which 𝐿𝑣 and 𝑁𝑓 (𝑣) are the linear and nonlinear parts of Eq. (6),
respectively. 𝑓 (𝑣) is nonlinear function. When 𝑣(𝑡) is performed a Taylor
series expansion in time, the following equation is obtained:

𝑣(𝑡 + 𝛥𝑡) = 𝑣(𝑡) + 𝛥𝑡
𝜕𝑣(𝑡)
𝜕𝑡

+ 𝛥𝑡2

2
𝜕2𝑣(𝑡)
𝜕𝑡2

+ 𝛥𝑡3

6
𝜕3𝑣(𝑡)
𝜕𝑡3

+ 𝑂(𝛥𝑡4) (7)

hen Eq. (7) is approximated up to third-order accuracy, the three-step
ethod based on a Taylor series expansion is defined as [17]:
(

𝑡 + 𝛥𝑡
3

)

= 𝑣(𝑡) + 𝛥𝑡
3
𝜕𝑣(𝑡)
𝜕𝑡

(

𝑡 + 𝛥𝑡
2

)

= 𝑣(𝑡) + 𝛥𝑡
2

𝜕𝑣(𝑡 + 𝛥𝑡
3 )

𝜕𝑡
(8)

𝑣 (𝑡 + 𝛥𝑡) = 𝑣(𝑡) + 𝛥𝑡
𝜕𝑣(𝑡 + 𝛥𝑡

2 )

𝜕𝑡
n the numerical scheme, the three-step method based on a Taylor series
xpansion for time discretization is used, whereas the Ultraspherical
avelet collocation method for spatial discretization of Eqs. (8) is used.

.1. Burgers’ equation

.1.1. Time discretization for Burgers’ equation
Consider the Burgers’ equation

𝜕𝑣
𝜕𝑡

+ 𝑣
(

𝜕𝑣
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

= 𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

(9)

ubject to the initial condition

(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1. (10)

ssume that 𝑠 ≥ 0 and 𝛥𝑡 denote the time step such that 𝑡𝑠 = 𝑠𝛥𝑡, 𝑠 =
, 1, 2,… , 𝑆𝑡 and 𝑣(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠. Applying the three-step method for time
iscretization, we get the following system,

𝑠+1∕3 = 𝑣𝑠 + 𝛥𝑡
3

(

𝜕2𝑣𝑠

𝜕𝑥2
+ 𝜕2𝑣𝑠

𝜕𝑦2
− 𝑣𝑠 𝜕𝑣

𝑠

𝜕𝑥
− 𝑣𝑠 𝜕𝑣

𝑠

𝜕𝑦

)

𝑠+1∕2 = 𝑣𝑠 + 𝛥𝑡
2

(

𝜕2𝑣𝑠+1∕3

𝜕𝑥2
+ 𝜕2𝑣𝑠+1∕3

𝜕𝑦2

− 𝑣𝑠+1∕3 𝜕𝑣
𝑠+1∕3

𝜕𝑥
− 𝑣𝑠+1∕3 𝜕𝑣

𝑠+1∕3

𝜕𝑦

)

(11)

𝑣𝑠+1 = 𝑣𝑠 + 𝛥𝑡
(

𝜕2𝑣𝑠+1∕2

𝜕𝑥2
+ 𝜕2𝑣𝑠+1∕2

𝜕𝑦2

− 𝑣𝑠+1∕2 𝜕𝑣
𝑠+1∕2

𝜕𝑥
− 𝑣𝑠+1∕2 𝜕𝑣

𝑠+1∕2

𝜕𝑦

)

Here, 𝑣𝑠+1∕3, 𝑣𝑠+1∕2 and 𝑣𝑠+1 correspond the computed solution at time
evel

(

𝑡 + 𝛥𝑡
)

,
(

𝑡 + 𝛥𝑡
)

and 𝑡 + 𝛥𝑡,respectively.
3

𝑠 3 𝑠 2 𝑠
4.1.2. Spatial discretization for Burgers’ equation
After time discretization, the spatial derivatives of 𝑣(𝑥, 𝑦, 𝑡) are ap-

roximated using Ultraspherical wavelets. The Ultraspherical wavelet
ollocation method is applied in this part. 𝑣(𝑥, 𝑦, 𝑡𝑠) ∈ [0, 1) × [0, 1) can
e expanded in terms of Ultraspherical wavelets as:

(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠 =
2𝑘−1
∑

𝑛1=1

𝑀−1
∑

𝑚1=0

2𝑘−1
∑

𝑛2=1

𝑀−1
∑

𝑚2=0
𝑐𝑠𝑛1𝑚1𝑛2𝑚2

× 𝜓𝑛1𝑚1
(𝑥)𝜓𝑛2𝑚2

(𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦). (12)

q. (12) can be rewritten as:

(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠 =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗𝜓𝑖(𝑥)𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦). (13)

n which 𝑚̃ =
(

2𝑘−1𝑀
)

, 𝑖 = 𝑀(𝑛1 − 1) + 𝑚1 + 1 and 𝑗 = 𝑀(𝑛2 −
) + 𝑚2 + 1. Herein, Ultraspherical wavelets are used to obtain the
pproximate solution. 𝐶𝑠 is the coefficient vector at time 𝑡𝑠. As a result,
he approximation solution at the time 𝑡𝑠+1∕3 is as follows:

𝑠+ 1
3 =

𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐
𝑠+ 1

3
𝑖𝑗 𝜓𝑖(𝑥)𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠+

1
3 𝛹 (𝑦). (14)

Now, using the operational matrix of derivative for 𝑣𝑥 = 𝜕𝑣
𝜕𝑥 , 𝑣𝑦 =

𝜕𝑣
𝜕𝑦 , 𝑣𝑥𝑥 = 𝜕2𝑣

𝜕𝑥2
and 𝑣𝑦𝑦 =

𝜕2𝑣
𝜕𝑦2

, we obtain the following equations.

𝜕𝑣
𝜕𝑥

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗
𝜕𝜓𝑖(𝑥)
𝜕𝑥

𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)𝐷𝑇𝐶𝑠𝛹 (𝑦). (15)

𝜕𝑣
𝜕𝑦

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗𝜓𝑖(𝑥)

𝜕𝜓𝑗 (𝑦)
𝜕𝑦

= 𝛹𝑇 (𝑥)𝐶𝑠𝐷𝛹 (𝑦) (16)

𝜕2𝑣
𝜕𝑥2

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗
𝜕2𝜓𝑖(𝑥)
𝜕𝑥2

𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)
(

𝐷𝑇 )2 𝐶𝑠𝛹 (𝑦). (17)

nd

𝜕2𝑣
𝜕𝑦2

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗𝜓𝑖(𝑥)

𝜕2𝜓𝑗 (𝑦)

𝜕𝑦2
= 𝛹𝑇 (𝑥)𝐶𝑠𝐷2𝛹 (𝑦). (18)

y putting Eqs. (13)–(18) into the first equation of (11), we get

𝑇 (𝑥)𝐶𝑠+
1
3 𝛹 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦) + 𝛥𝑡

3

(

𝛹𝑇 (𝑥)
(

𝐷𝑇 )2 𝐶𝑠𝛹 (𝑦)

+ 𝛹𝑇 (𝑥)𝐶𝑠𝐷2𝛹 (𝑦) −
(

𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦)
) (

𝛹𝑇 (𝑥)𝐷𝑇𝐶𝑠𝛹 (𝑦)
)

−
(

𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦)
) (

𝛹𝑇 (𝑥)𝐶𝑠𝐷𝛹 (𝑦)
))

(19)

irstly, the initial condition can be expanded in terms of Ultraspherical
avelets as:

0(𝑥, 𝑦) = 𝑣(𝑥, 𝑦, 𝑡0) = 𝑣0 = (𝛹 (𝑥))𝑇 𝐶0𝛹 (𝑦). (20)

aking the inner product from both sides of Eq. (20) with
{

𝜓𝑖
}𝑚̃
𝑖=1

nd
{

𝜓𝑗
}𝑚̃
𝑗=1, respectively, the coefficient vector 𝐶0 at the time 𝑡0 is

btained.
By selecting the collocation points as:

𝑗 =
2𝑗 − 1
2𝑚̃

, 𝑗 = 1, 2,… , 𝑚̃

and by starting from the solution obtained at the time 𝑡0, when we put
the collocation points into Eq. (19), we can get a system of nonlinear
algebraic equations with 2𝑘−1𝑀 × 2𝑘−1𝑀 unknown variables, 𝑐

𝑠+ 1
3

𝑖𝑗 .

hen we solve this system, we can acquire 𝐶𝑠+
1
3 . To find the vectors

𝐶𝑠+
1
2 and 𝐶𝑠+1, the similar process is applied for the second and third

equations in Eq. (11). The solution 𝐶𝑠+1 is the vector coefficient in the
numerical solution of 𝑣(𝑥, 𝑦, 𝑡 ) in each step for 𝑠 = 0, 1, 2, 3,….
𝑠
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4.2. Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation

4.2.1. Time discretization for Fisher–KPP equation
Consider the Fisher–KPP equation

𝜕𝑣
𝜕𝑡

= 𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝑣(1 − 𝑣) (21)

ubject to the initial condition

(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1.

ssume that 𝑠 ≥ 0 and 𝛥𝑡 denote the time step such that 𝑡𝑠 =
𝛥𝑡, 𝑠 = 0, 1, 2,… , 𝑆𝑡 and 𝑣(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠. We begin the numerical
ethod with the discretization of the time using the three-step method

hown in Eq. (8),

𝑠+1∕3 = 𝑣𝑠 + 𝛥𝑡
3

(

𝜕2𝑣𝑠

𝜕𝑥2
+ 𝜕2𝑣𝑠

𝜕𝑦2
+ 𝑣𝑠 (1 − 𝑣𝑠)

)

𝑣𝑠+1∕2 = 𝑣𝑠 + 𝛥𝑡
2

(

𝜕2𝑣𝑠+1∕3

𝜕𝑥2
+ 𝜕2𝑣𝑠+1∕3

𝜕𝑦2
+ 𝑣𝑠+1∕3(1 − 𝑣𝑠+1∕3)

)

(22)

𝑣𝑠+1 = 𝑣𝑠 + 𝛥𝑡
(

𝜕2𝑣𝑠+1∕2

𝜕𝑥2
+ 𝜕2𝑣𝑠+1∕2

𝜕𝑦2
+ 𝑣𝑠+1∕2(1 − 𝑣𝑠+1∕2)

)

Here, 𝑣𝑠+1∕3, 𝑣𝑠+1∕2 and 𝑣𝑠+1 correspond the computed solution at time
level

(

𝑡𝑠 +
𝛥𝑡
3

)

,
(

𝑡𝑠 +
𝛥𝑡
2

)

and 𝑡𝑠 + 𝛥𝑡,respectively.

.2.2. Spatial discretization for Fisher–KPP
After time discretization, the spatial derivatives of 𝑣(𝑥, 𝑦, 𝑡) are

approximated using the Ultraspherical wavelets. Ultraspherical wavelet
collocation method is applied in this part.

𝑣(𝑥, 𝑦, 𝑡𝑠) ∈ [0, 1) × [0, 1) can be expanded in terms of Ultraspherical
wavelets as:

𝑣(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠 =
2𝑘−1
∑

𝑛1=1

𝑀−1
∑

𝑚1=0

2𝑘−1
∑

𝑛2=1

𝑀−1
∑

𝑚2=0
𝑐𝑠𝑛1𝑚1𝑛2𝑚2

× 𝜓𝑛1𝑚1
(𝑥)𝜓𝑛2𝑚2

(𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦). (23)

Eq. (23) can be rewritten as:

𝑣(𝑥, 𝑦, 𝑡𝑠) = 𝑣𝑠 =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗𝜓𝑖(𝑥)𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦). (24)

in which 𝑚̃ =
(

2𝑘−1𝑀
)

, 𝑖 = 𝑀(𝑛1 − 1) + 𝑚1 + 1 and 𝑗 = 𝑀(𝑛2 − 1) +
𝑚2+1. Here, Ultraspherical wavelets are used to obtain the approximate
solution. 𝐶𝑠 is the coefficient vector at the time 𝑡𝑠. As a result, the
approximation solution at time 𝑡𝑠+1∕3 is as follows:

𝑣𝑠+
1
3 =

𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐
𝑠+ 1

3
𝑖𝑗 𝜓𝑖(𝑥)𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠+

1
3 𝛹 (𝑦). (25)

Now, using the operational matrix of derivative for 𝑣𝑥𝑥 = 𝜕2𝑣
𝜕𝑥2

and

𝑦𝑦 =
𝜕2𝑣
𝜕𝑦2

, we obtain the following equations.

𝜕2𝑣
𝜕𝑥2

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗
𝜕2𝜓𝑖(𝑥)
𝜕𝑥2

𝜓𝑗 (𝑦) = 𝛹𝑇 (𝑥)
(

𝐷𝑇 )2 𝐶𝑠𝛹 (𝑦). (26)

and

𝜕2𝑣
𝜕𝑦2

(𝑥, 𝑦, 𝑡𝑠) =
𝑚̃
∑

𝑖=1

𝑚̃
∑

𝑗=1
𝑐𝑠𝑖𝑗𝜓𝑖(𝑥)

𝜕2𝜓𝑗 (𝑦)

𝜕𝑦2
= 𝛹𝑇 (𝑥)𝐶𝑠𝐷2𝛹 (𝑦). (27)

By putting Eqs. (24)–(27) into the first equation of (22), we get

𝛹𝑇 (𝑥)𝐶𝑠+
1
3 𝛹 (𝑦) = 𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦) + 𝛥𝑡

3

(

𝛹𝑇 (𝑥)
(

𝐷𝑇 )2 𝐶𝑠𝛹 (𝑦)

+𝛹𝑇 (𝑥)𝐶𝑠𝐷2𝛹 (𝑦) +
(

𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦)
)

−
(

𝛹𝑇 (𝑥)𝐶𝑠𝛹 (𝑦)
)2) (28)

Firstly, the initial condition can be expanded in terms of Ultraspher-
ical wavelets as:

𝑣 (𝑥, 𝑦) = 𝑣(𝑥, 𝑦, 𝑡 ) = 𝑣 = 𝛹 (𝑥) 𝑇 𝐶0𝛹 (𝑦). (29)
4

0 0 0 ( )
Table 1
Comparison of the absolute errors for 𝛥𝑡 = 0.01 and 𝛾 = 1∕2.
|

|

|

𝑣𝑒𝑥𝑎𝑐𝑡 − 𝑣𝛾=1∕2
|

|

|

(𝑥, 𝑦) 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

(0.1, 0.1) 7.388 × 10−7 5.256 × 10−7 6.9260 × 10−6 1.1127 × 10−4

(0.2, 0.2) 5.143 × 10−7 1.522 × 10−7 7.8531 × 10−6 7.8900 × 10−5

(0.3, 0.3) 2.088 × 10−7 1.316 × 10−6 1.1799 × 10−5 9.0113 × 10−5

(0.4, 0.4) 1.701 × 10−7 2.916 × 10−6 1.8389 × 10−5 1.3795 × 10−4

(0.5, 0.5) 1.785 × 10−7 1.110 × 10−6 4.3000 × 10−6 2.3228 × 10−5

(0.6, 0.6) 1.830 × 10−7 4.827 × 10−7 3.4491 × 10−6 6.1673 × 10−5

(0.7, 0.7) 5.227 × 10−7 1.998 × 10−6 1.0881 × 10−5 1.4301 × 10−4

(0.8, 0.8) 8.395 × 10−7 3.415 × 10−6 1.7893 × 10−5 2.1970 × 10−4

(0.9, 0.9) 1.113 × 10−6 4.714 × 10−6 2.4390 × 10−5 2.9068 × 10−4

Table 2
Comparison of the absolute errors for 𝛥𝑡 = 0.01 and 𝛾 = 5∕2.
|

|

|

𝑣𝑒𝑥𝑎𝑐𝑡 − 𝑣𝛾=5∕2
|

|

|

(𝑥, 𝑦) 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

(0.1, 0.1) 1.1827 × 10−6 4.4166 × 10−6 1.7165 × 10−5 1.5816 × 10−4

(0.2, 0.2) 8.7570 × 10−7 3.1333 × 10−6 1.1879 × 10−5 1.2121 × 10−4

(0.3, 0.3) 5.4420 × 10−7 1.6680 × 10−6 5.3078 × 10−6 6.4626 × 10−5

(0.4, 0.4) 1.9010 × 10−7 4.0800 × 10−8 2.3837 × 10−6 8.3603 × 10−6

(0.5, 0.5) 1.4561 × 10−6 1.0066 × 10−5 5.1227 × 10−5 3.9124 × 10−4

(0.6, 0.6) 1.1504 × 10−6 9.0264 × 10−6 4.7921 × 10−5 3.7355 × 10−4

(0.7, 0.7) 1.0250 × 10−6 8.8658 × 10−6 4.9401 × 10−5 4.1767 × 10−4

(0.8, 0.8) 1.1122 × 10−6 9.7613 × 10−6 5.6684 × 10−5 5.3923 × 10−4

(0.9, 0.9) 1.5117 × 10−6 1.1952 × 10−5 7.0996 × 10−5 7.5555 × 10−4

Taking the inner product from both sides of Eq. (29) with
{

𝜓𝑖
}𝑚̃
𝑖=1

and
{

𝜓𝑗
}𝑚̃
𝑗=1, respectively, the coefficient vector 𝐶0 at the time 𝑡0 is

btained.
By selecting the collocation points as:

𝑗 =
2𝑗 − 1
2𝑚̃

, 𝑗 = 1, 2,… , 𝑚̃

and by starting from the solution obtained at the time 𝑡0, when we put
the collocation points into Eq. (28), we can get a system of nonlinear
algebraic equations with 2𝑘−1𝑀 × 2𝑘−1𝑀 unknown variables, 𝑐

𝑠+ 1
3

𝑖𝑗 .

hen we solve this system, we can acquire 𝐶𝑠+
1
3 . To find the vectors

𝐶𝑠+
1
2 and 𝐶𝑠+1, the similar process is applied for the second and third

equations in Eq. (22). The solution 𝐶𝑠+1 is the vector coefficient in the
numerical solution of 𝑣(𝑥, 𝑦, 𝑡𝑠) in each step for 𝑠 = 0, 1, 2, 3,….

. Test problems

For measuring efficiency of the presented method, the absolute error
nd the maximum error 𝐿∞ at some points are used [33–35].

est Problem 1. As a first case, we consider the Burgers’ equation :

𝜕𝑣
𝜕𝑡

+ 𝑣
(

𝜕𝑣
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

)

= 𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

. (30)

The analytical solution of this problem is given in [26]:

𝑣(𝑥, 𝑦, 𝑡) = 1
1 − 𝑡

(

1 − 𝑥 − 𝑦
2

)

.

For 𝑘 = 2,𝑀 = 3 and different 𝛾 values, applying the presented
solution procedure to Eq. (30), we obtain the numerical results in the
Tables 1, 2, and 3. In Table 3, the comparison of the error norms using
different 𝛾 values is shown according to [26] for 𝛥𝑡 = 0.01. According
o Table 3, it is obvious that the presented method is more accurate
nd has faster convergence than the Haar wavelet collocation method
n [26]. For 𝑘 = 2,𝑀 = 3, 𝛥𝑡 = 0.01 and 𝛾 = 1∕2, graphs of the obtained
umerical and exact solutions are shown at the final time 𝑡 = 0.9 in

Fig. 1.
Test Problem 2. Let us consider the Fisher–KPP equation :

𝜕𝑣 = 𝜕2𝑣 + 𝜕2𝑣 + 𝑣(1 − 𝑣). (31)

𝜕𝑡 𝜕𝑥2 𝜕𝑦2
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Fig. 1. Comparison of the exact and approximate solutions with 𝛾 = 1∕2 and 𝛥𝑡 = 0.01 at the time 𝑡 = 0.9 for Test Problem 1.
Fig. 2. Comparison of the exact and approximate solutions with 𝛾 = 1∕2 and 𝛥𝑡 = 0.005 at the time 𝑡 = 0.5 for Test Problem 2.
Table 3
Comparison of the three-step Ultraspherical wavelet collocation method with the Haar
wavelet collocation method.
𝛥𝑡 = 0.01

𝑡 Suggested method
(𝛾 = 1∕2)

Suggested method
(𝛾 = 3∕2)

Suggested method
(𝛾 = 5∕2)

[26]

0.1 4.7220 × 10−7 5.0090 × 10−7 5.5380 × 10−7 7.5480 × 10−5

0.2 1.4315 × 10−6 1.5623 × 10−6 1.5117 × 10−6 1.0783 × 10−4

0.3 3.3271 × 10−6 3.7422 × 10−6 4.6844 × 10−6 1.5907 × 10−4

0.4 7.2238 × 10−6 8.3827 × 10−6 1.1952 × 10−5 2.4867 × 10−4

0.5 1.5964 × 10−5 1.9213 × 10−5 2.8731 × 10−5 4.2063 × 10−4

0.6 3.8330 × 10−5 4.7730 × 10−5 7.0996 × 10−5 7.9658 × 10−4

0.7 1.0825 × 10−4 1.3921 × 10−4 1.9868 × 10−4 1.7984 × 10−3

0.8 4.2752 × 10−4 5.6479 × 10−4 7.5555 × 10−4 5.5532 × 10−3

0.9 4.0702 × 10−3 5.5108 × 10−3 6.8810 × 10−3 3.5729 × 10−2

The exact solution of the problem is given by the following [25]:

𝑣(𝑥, 𝑦, 𝑡) =

⎛

⎜

⎜

⎜

⎝

1 + 𝑒𝑥𝑝

⎛

⎜

⎜

⎜

⎝

(

𝑥 − 𝑦∕
√

2
)

−
(

5∕
√

6
)

𝑡
√

6

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

−2

.

For 𝑘 = 2,𝑀 = 2 and 𝛾 = 1∕2, we apply the presented solution
procedure to Eq. (31). For 𝑘 = 2,𝑀 = 2, 𝛥𝑡 = 0.005 and 𝛾 = 1∕2, graphs
of the obtained numerical and exact solutions are shown at 𝑡 = 0.5 in
5

Table 4
Comparison of the absolute errors for 𝛥𝑡 = 0.01 and 𝛾 = 1∕2.
|

|

|

𝑣𝑒𝑥𝑎𝑐𝑡 − 𝑣𝛾=1∕2
|

|

|

(𝑥, 𝑦) 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

(0.1, 0.1) 4.0324 × 10−3 7.3954 × 10−3 9.7839 × 10−3 1.0966 × 10−2

(0.2, 0.2) 3.8092 × 10−3 7.3159 × 10−3 9.8855 × 10−3 1.1272 × 10−2

(0.3, 0.3) 3.8675 × 10−3 7.4579 × 10−3 1.0128 × 10−2 1.1624 × 10−2

(0.4, 0.4) 4.2075 × 10−3 7.8218 × 10−3 1.0513 × 10−2 1.2020 × 10−2

(0.5, 0.5) 4.8875 × 10−3 8.4836 × 10−3 1.1131 × 10−2 1.2564 × 10−2

(0.6, 0.6) 4.3295 × 10−3 8.1106 × 10−3 1.1006 × 10−2 1.2735 × 10−2

(0.7, 0.7) 4.0767 × 10−3 7.9901 × 10−3 1.1059 × 10−2 1.2992 × 10−2

(0.8, 0.8) 4.1294 × 10−3 8.1226 × 10−3 1.1292 × 10−2 1.3336 × 10−2

(0.9, 0.9) 4.4877 × 10−3 8.5083 × 10−3 1.1705 × 10−2 1.3768 × 10−2

Fig. 2. Applying the solution procedure on Section 4 to Eq. (31) for
𝑘 = 2,𝑀 = 2, 𝛥𝑡 = 0.01 and 𝛾 = 1∕2, we get the results in Table 4.

Test Problem 3. We consider the following Quasilinear Parabolic
equation :

𝜕𝑣
𝜕𝑡

= 𝑣
(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

. (32)

The analytical solution of this problem is given in [26]:

𝑣(𝑥, 𝑦, 𝑡) = 1
(

1 + 𝑥2 + 𝑦2
+ 𝑥𝑦 + 𝑥 + 𝑦

)

.

1 − 𝑡 4
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Table 5
Maximum errors for 𝛥𝑡 = 0.001 and different values of 𝛾.
𝑡 Suggested method (𝛾 = 1∕2) Suggested method (𝛾 = 3∕2)

0.01 8.0000 × 10−8 2.5000 × 10−8

0.02 3.1600 × 10−7 7.3000 × 10−8

0.03 7.6200 × 10−7 1.5300 × 10−7

0.04 1.5070 × 10−6 2.2600 × 10−7

0.05 2.5730 × 10−6 3.4700 × 10−7

0.06 4.1040 × 10−6 5.3000 × 10−7

0.07 6.2490 × 10−6 8.4200 × 10−7

0.08 9.1300 × 10−6 1.3200 × 10−6

0.09 1.2979 × 10−5 1.9880 × 10−6

Table 6
Errors norms for 𝑘 = 2,𝑀 = 3, 𝛾 = 1∕2, 𝛾 = 3∕2 and different values of 𝛥𝑡 at 𝑡 = 0.1.
𝛥𝑡 𝐿∞ (𝛾 = 1∕2) 𝐿∞ (𝛾 = 3∕2)

0.001 4.215 × 10−6 2.836 × 10−6

0.01 6.621 × 10−6 1.062 × 10−5

0.1 4.833 × 10−4 4.844 × 10−4

When Table 5 is examined, it can be said that there is not much change
between the obtained errors for 𝛾 = 1∕2 and 𝛾 = 3∕2. According to
Table 6, the error norm decreases when the time step 𝛥𝑡 is reduced
from 0.1 to 0.001.

6. Conclusion

In this research paper, for the solution of some nonlinear multi-
dimensional parabolic partial differential equations, a numerical
method using a combination of the three-step Taylor method with the
Ultraspherical wavelet collocation method is presented. Since there
is no complex methodology in this method, the application of the
presented method is quite simple. Moreover, this method is flexible,
reliable, fast, and convenient alternative method for partial differential
equations. To show the achievement of the presented method, we
applied the presented method to three problems. All of the calculations
of the presented method were executed successfully by MAPLE.
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