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Abstract: The main purpose of the study is to investigate the vibration behaviors of carbon nanotube
(CNT) patterned double-curved construction elements using the shear deformation theory (SDT).
After the visual and mathematical models of CNT patterned double-curved construction elements
are created, the large amplitude stress–strain relationships and basic dynamic equations are derived
using the first order shear deformation theory (FSDT). Then, using the Galerkin method, the problem
is reduced to the nonlinear vibration of nanocomposite continuous systems with quadratic and cubic
nonlinearities. Applying the Grigolyuk method to the obtained nonlinear differential equation, large-
amplitude frequency-amplitude dependence is obtained. The expressions for nonlinear frequencies
of homogenous and inhomogeneous nanocomposite construction members such as plates, panels,
spherical and hyperbolic-paraboloid (hypar) shells in the framework of FSDT are found in special
cases. The accuracy of the results of the current study has been confirmed by comparing them with
the reliable results reported in the literature. Original analyses are carried out to examine the effects
of nonlinearity, CNT patterns and volume fraction changes on frequencies in the framework of shear
deformation and classical shell theories.

Keywords: CNT; nanocomposite constructions; shear deformation theory; large amplitude frequency

1. Introduction

Theoretical studies on the analysis of dynamic behavior of thin and moderately thick
construction elements are based on several provisions of geometric and physical nature.
One of the most important geometric features of construction elements is the mid-surface,
which is taken as a design model. In contemporary technology, mainly such shells are used,
the middle surface of which is determined by continuous and adequately differentiable
functions. One of these types of construction elements is double-curved shells. The fact
that double-curved shell-type constructions have a wide area of use under dynamic loads
in various industries as the main construction element has made it advisable to investigate
their large amplitude behavior in the framework of developed theories and to find new
solution methods. Although the classical shell theory (CST) gives reasonable results for thin
homogeneous isotropic construction elements, it turns out that relatively thick composite
shells do not give sufficiently realistic results in vibration problems. This factor prompted
researchers to use shear deformation theories instead of classical shell theory for relatively
thick construction elements in nonlinear vibration problems. In addition to the assumptions
in the classical shell theory, various shear deformation theories (SDTs) have been developed
considering the effect of transverse shear deformations [1–3]. In the framework of SDTs,

Materials 2021, 14, 3843. https://doi.org/10.3390/ma14143843 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8406-4882
https://orcid.org/0000-0001-7678-6351
https://doi.org/10.3390/ma14143843
https://doi.org/10.3390/ma14143843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14143843
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14143843?type=check_update&version=2


Materials 2021, 14, 3843 2 of 19

derivation and solution of nonlinear basic differential equations of shell-type construction
elements becomes significantly complicated. For these reasons, the number of studies on
the solution of linear and nonlinear vibration problems of construction elements consisting
of traditional and new generation composites is greater in the framework of CST.

Significant advances in nanoscale science and technology in the last two decades have
led to the production of various nanoscale materials and have enabled the discovery of
their superior physical, optical, electrical and mechanical properties. CNTs, one of such
nanoscale materials, have attracted great interest in application in various fields of modern
technology due to their outstanding properties [4–7].

One of the most important engineering applications of carbon nanotubes is that they
can be used as reinforcing elements in polymer matrices. The design and modeling of CNT
patterned composites, physical interactions at the CNT-polymer interface and the determi-
nation of macroscopic elastic properties of CNT patterned polymers have been studied by
many researchers [8–12]. CNT patterned polymer composites have been widely used in
the mechanical engineering, automotive and marine industries over the past few decades
due to their low weight and superior mechanical properties. As aerospace engineering is
considered one of the leading disciplines of the future, nanocomposites represent a new
generation of functionally graded materials that could change the traditional structure of
this favorite industry. With the shuttle decommissioning and the wider use of composite
materials in modern and future commercial aircraft such as the Boeing 787 and Airbus
A380, the potential applications and benefits of functionally graded nanocomposites in the
aeronautical and aerospace industry are today indisputable [13–15].

The first attempt at the formulation, mathematical modeling and solution of nonlinear
problems of CNT patterned composite construction elements was made in 2009, and this
research served as a guide for solving various stability and vibration problems in the
following periods (see Shen [16]). Following this study, studies on the solution of linear
and nonlinear vibration problems of CNT patterned construction elements continue until
the present day. Pouresmaeeli and Fazelzadeh [17] presented the linear frequency analysis
of doubly curved functionally graded carbon nanotube-reinforced composite panels based
on the FSDT. Wang et al. [18,19] studied the linear vibration of CNT patterned composite
double-curved panels and shells of revolution using FSDT. Braun et al. [20] presented bulk
modulus and natural frequency of fullerene and nanotube carbon structures using the
Galerkin method and Abaqus software. Ansari et al. [21] investigated flexural and free
vibration analysis of CNT-reinforced functionally graded plate. Tran et al. [22] studied free
vibration analysis of smart laminated functionally graded CNT reinforced composite plates
via new four-variable refined plate theory. Qin et al. [23] presented a general approach for
linear free vibration analysis of CNT patterned cylindrical shells with arbitrary boundary
conditions by using Chebyshev polynomials. Sofiyev and coauthors studied linear free
and forced vibration and stability problems of CNT patterned cylindrical and conical shells
based on the classical and shear deformation shell theories in different media [24–26].
Azarafza et al. [27] investigated the linear free vibration of CNT- patterned grid-stiffened
composite cylindrical shell within FSDT and using the ABAQUS CAE software. Cornac-
chiaet al. [28] presented an analytical solution of linear vibrations and buckling of cross-
and angle-ply nano plates using strain gradient theory. Vinyas et al. [29] reported the
linear vibration analysis of CNT patterned magneto-electro-elastic plates with different
electromagnetic conditions using higher order finite element methods.

In the abovementioned studies, the vibration behavior of CNT patterned construc-
tions is formulated in small displacements, and linear frequency values are obtained in
different environments and using various approaches. Large displacements or geometrical
nonlinearity in constructions composed of CNT patterned polymers create considerable
qualitative and quantitative changes in their dynamic behaviors, as well as complicating
modeling, solutions and analysis. Although these reasons limited the number of pub-
lications on the nonlinear problems of CNT patterned constructions in the early years,
research on this subject has gained momentum in recent years. Shen and Xiang [30] pro-
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posed a solution to nonlinear vibration of composite cylindrical shells patterned with
nanotubes in thermal environment. Nguyen et al. [31] presented nonlinear vibrations and
dynamic response of composite truncated conical shells with CNT patterns in various
media using a two-component deflection function. Zghal et al. [32] presented large deflec-
tion response-based geometrical nonlinearity of CNT pattern nanocomposite structures
using a finite element method. Dat et al. [33] used an analytical approach to solve the
nonlinear magnetoelastic vibration of an intelligent sandwich plate on an elastic founda-
tion. Zhang et al. [34] analyzed the geometrically nonlinear behavior of CNT patterned
composite plates with piezoelectric layers. Huang et al. [35] presented geometric nonlinear
analysis of auxetic hybrid laminated beams containing CNT reinforced composite mate-
rials. Avey and Yusufoglu [36], within the framework of classical shell theory, studied
large-amplitude vibrations of double-curved shallow shells based on carbon nanotubes.
Yusufoglu and Avey [37] presented nonlinear dynamic behavior of hyperbolic paraboloidal
shells reinforced by carbon nanotubes with various distributions. Chakraborty and Day [38]
investigated a nonlinear stability analysis of CNT-patterned composite cylindrical shells
subjected to the thermomechanical load. Yadav et al. [39] investigated a semi-analytical
solution of nonlinear vibrations of CNT patterned circular cylindrical shells using the
harmonic balance method. Liew et al. [40] examined and evaluated in detail the latest
developments of functionally graded CNT-reinforced composites and structures.

In the abovementioned studies, the nonlinear behavior of CNT patterned construction
elements is generally discussed using numerical methods, while analytical solutions are
presented within the framework of classical shell theory. The sensitive and complex nature
of nanocomposite double-curved construction elements further increases the difficulty
of mathematical operations in the formulation, modeling and solution of their nonlinear
vibration problems in the framework of SDTs. These factors prevented the nonlinear
free vibration problem of CNT patterned composite construction members from being
adequately investigated analytically. In this research, we aim to solve the problem in an
analytical way.

2. Formulation of Problem

Mathematical Modelling of Constructions with CNT Patterns.
Figure 1 shows a double-curved CNT patterned shell with the xyz coordinate system

located on the mid-surface, the origin of which is in the left corner. The z coordinate is
normal to the xy surface and is directed towards the inside of the shell. The lengths of the
shell in the x and y directions are indicated as a and b, respectively, and the thickness as
h. In the chosen coordinate system, shallow shells are defined as the three-dimensional
region,Λ, as follows:

Λ = {x, y, z : (x, y, z) ∈ [0, a]× [0, b]× [−h/2, h/2]} (1)Materials 2021, 14, x FOR PEER REVIEW 4 of 22 
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While denoting the displacements in the directions of the x and y axes with the
symbols u and v, respectively, the displacement in the direction of the z-axis is indicated as
w. When the curvatures of the shells in the x and y directions are represented by k1 and k2,
respectively, k1 = 1

s1
and k2 = 1

s2
for a spherical shell, k1 = − 1

s1
and k2 = 1

s2
for a hypar

shell, k1 = 0 and k2 = 1
s2

for a cylindrical panel, k1 = k2 = 0 for a rectangular plate will be
valid. Here, s1 and s2 are the radii of curvature in the x and y directions, respectively (see
Figure 2).
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The volume fraction of carbon nanotubes is modelled as a linear function of the
thickness coordinate as follows:

Vcnt
z = f cnt

z Vcnt
∗ (z = z/h) (2)

where V∗cnt is the total volume fraction of CNTs and is defined as:

V∗cnt =
Mcnt

Mcnt +
ρcnt
ρm

(1−Mcnt)
(3)

Mcnt is the mass fraction of CNTs and f (z) is a continuous function and it is defined
as three different linear functions as follows [16]:

f cnt
z =


1 + 2z
1− 2z

4|z|
(4)

in which corresponding to the CNT patterns in the matrix, we will denote the case
f cnt
z = 1 + 2z by the symbol V, the case f cnt

z = 1 − 2z by the symbol O and the
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case f cnt
z = 4|z| by the symbol X. In addition, the case f cnt

z = 1 corresponds to the
uniform distribution of the CNTs in matrix and is denoted by U.

The cross-section of CNT patterned construction elements is illustrated in Figure 3.
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The mechanical properties of CNT patterned construction elements are modeled
mathematically as the linear functions of the thickness coordinate as follows [16,30]:

E11
z = µ1Vcnt

z E11
cnt + VmEm,

µ2

E22
z

=
Vcnt

z
E22

cnt
+

Vm

Em
,

µ3

G12
z

=
Vcnt

z
G12

cnt
+

Vm

Gm
, G13

z = G12
z , G23

z = 1.2G12
z (5)

where µk(k = 1, 2, 3) indicates the efficiency parameters, Vm indicates volume fraction
of the matrix, Em, Eij

cnt and G12
cnt indicate the elastic moduli of the matrix and CNTs, respec-

tively. The volume fractions of constituents are related as Vcnt
z + Vm = 1, while Poisson

ratio and density of nanocomposites do not depend on the position and are expressed as:

ν12 = Vcnt
∗ ν11

cnt + Vmνm, ρ = Vcnt
∗ ρcnt + Vmρm (6)

in which is satisfied the following equality:

E11
z

ν12 =
E22

z
ν21 (7)

3. Basic Relations

The mathematical model of stress–strain relationships for CNT patterned functionally
graded construction elements based on the FSDT is expressed as [25,26]: σ11

σ22

σ12

 =

 Q11
z Q12

z 0
Q21

z Q22
z 0

0 0 Q66
z

  e11

e22

e12

 (8)

and [
σ13

σ23

]
=

[
Q55

z 0
0 Q44

z

] [
e13

e23

]
(9)
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where [σ] and [e] are the stress and strain tensors and Qij
z (i = 1, 2, j = 1, 2, 3) are the

mechanical characteristics of CNT patterned constructions and are defined as:

Q11
z =

E11
z

1−ν12ν21 , Q12
z =

ν21E11
z

1−ν12ν21 =
ν12E22

z
1−ν12ν21 = Q21

z , Q22
z =

E22
z

1−ν12ν21

Q44
z = G23

z , Q55
z = G13

z , Q66
z = G12

z

(10)

As suggested in Ref. [1], based on the assumptions of the first order shear deformation
theory, the transverse shear stresses can be expressed by the rotation angle functions for
the normal of the mid-surface, ψ1(x, y, t) and ψ2(x, y, t) as follows:

σ13 =
dϕss

z
dz

ψ1(x, y, t), σ23 =
dϕss

z
dz

ψ2(x, y, t) (11)

where ϕss
z indicates the shear strain function and t is a time.

In this study, by considering von Kármán kinematic nonlinearity, assumptions (11) and
using Donnell-type nonlinear theory, the relationship between strains with displacements
and angles of rotation for CNT patterned constructions with double curvature can be
constructed as follows [1,36,41]:

e11 = e11
0 − z ∂2w

∂x2 + J1
z

∂ψ1
∂x , e22 = e22

0 − z ∂2w
∂y2 + J2

z
∂ψ2
∂y

e12 = e12
0 − 2z ∂2w

∂x∂y + J1
z

∂ψ1
∂y + J2

z
∂ψ2
∂x

(12)

where

e11
0 =

∂u
∂x
− w

s1
+

1
2

(
∂w
∂x

)2
, e22

0 =
∂v
∂x
− w

s2
+

1
2

(
∂w
∂y

)2
, e12

0 =
∂w
∂x

+
∂w
∂y

+
∂w
∂x

∂w
∂y

(13)

J1
z = h

z∫
0

1
G13

z

dϕss
z

dz
dz, J2

z = h
z∫

0

1
G23

z

dϕss
z

dz
dz (14)

The forces and moments for CNT patterned construction elements are found from the
following integrals [1,41]:

(
Tkp, qp

)
= h

1/2∫
−1/2

(
σkp, σ1p1

)
dz, Mkp = h2

1/2∫
−1/2

σkpzdz (k, p = 1, 2, p1 = 2, 3) (15)

where in-plane and shear forces are denoted by Tkp and qp, respectively and moments by Mkp.
With the Airy stress function, φ, in-plane forces are defined as follows [1,41]:

T11 = h
∂2φ

∂y2 , T22 = h
∂2φ

∂x2 , T12 = −h
∂2φ

∂x∂y
(16)

After substituting the Relations (8) and (9) in (15), considering the Equations (12) and
(16) in these integrals, we obtain the following expressions for moments, shear forces and
strains on the mid-surface:

M11

M22

M12

 =


m11 m12 0

m21 m22 0

0 0 m31




φ,yy

φ,xx

−φ,xy

−


m13 m14 0

m23 m24 0

0 0 m32




w,xx

w,yy

w,xy

+


m15 0 0

m25 0 0

0 0 m35




ψ1,x

0

ψ1,y

+


m18 0 0

m28 0 0

0 0 m38




ψ2,y

0

ψ2,x

 (17)
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[
q1
q2

]
=

[
J3 ψ1
J4 ψ2

]
(18)


e11

0

e22
0

e12
0

 =


n11 n12 0

n21 n22 0

0 0 n31




φ,yy

φ,xx

−φ,xy

−


n13 n14 0

n23 n24 0

0 0 n32




w,xx

w,yy

w,xy

+


n15 0 0

n25 0 0

0 0 −n35




ψ1,x

0

ψ1,y

+


n18 0 0

n28 0 0

0 0 −n38




ψ2,y

0

ψ2,x

 (19)

where the comma indicates the partial derivative with respect to the appropriate coor-
dinates, mkp, nkp(k = 1, 2, 3, p = 1, 2, . . . , 8) and Jk(k = 3, 4) are described in Appendix A
(Equations (A1) and (A2)).

4. Basic Equations and Solution

The nonlinear deformation compatibility equation of construction elements with
double curvature is expressed as follows [41]:

∂2e11
0

∂y2 +
∂2e22

0
∂x2 −

∂2e12
0

∂x∂y
=

(
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2 −

(
1
s2

∂2w
∂x2 +

1
s1

∂2w
∂y2

)
(20)

To derive the nonlinear deformation compatibility equation for the CNT patterned con-
structions, the Equation (19) is substituted in the Equation (20), and after some operations
it transforms into the following form:

h
[
n11

∂4φ

∂y4 + (n12 + n21 + n31)
∂4φ

∂x2∂y2 + n22
∂4φ

∂x4

]
− n23

∂4w
∂x4 − (n24 + n13 − n32)

∂4w
∂x2∂y2

−n14
∂4

∂y4 +
(

1
s2

∂2w
∂x2 + 1

s1
∂2w
∂y2

)
−
(

∂2w
∂x∂y

)2
+ ∂2w

∂x2
∂2w
∂y2

+n25
∂3ψ1
∂x3 + n15

∂3ψ1
∂x∂y2 + n35

∂3ψ1
∂x∂y2 + n28

∂3ψ2
∂x2∂y + n38

∂3ψ2
∂x2∂y + n18

∂3ψ2
∂y3 = 0

(21)

The Equation (21) will be solved in the following simply supported boundary condi-
tions [41]:

w = M11 = ψ2 = ∂2φ

∂y2 = 0, when x = 0 and a

w = M22 = ψ1 = ∂2φ

∂x2 = 0, when y = 0 and b

(22)

The functions w, ψ1, ψ2 that satisfy the boundary conditions (22) are sought as
follows [25]:

w = w0(t) sin(i1x) sin(j1y), ψ1 = ψ01(t) cos(i1x) sin(j1y), ψ2 = ψ02(t) sin(j1x) cos(j1y) (23)

where w0(t) and ψ0k(t) (k = 1, 2) are functions of the time and i1 = iπ
a , j1 = jπ

b , in
which (i, j) is vibrational mode in the x and y directions.

Substituting (23) into Equation (21), the following expression is found for the φ from a
particular solution of the nonhomogeneous differential equation:

φ = θ1 cos(2i1x) + θ2 cos(2j1y) + θ3 sin(i1x) sin(j1y) (24)

where the following definitions apply:

θ1 =
δ14w2

0

32i41δ3
, θ2 =

δ14w2
0

32j41δ1
, θ3 =

δ11w0 + δ12ψ01 + δ13ψ02

δ1 j41 + δ2i21 j21 + δ3i41
(25)
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in which

δ1 = n11h, δ2 = (n12 + n21 + n31)h, δ3 = n22h,

δ11 = n23i41 + (n24 + n13 − n32)i21 j21 + n14 j41 +
i21
s2
+

j21
s1

,

δ12 = −n25i31 − (n15 + n35)i1 j21, δ13 = −(n28 + n38)i21 j1 − n18 j31, δ14 = i21 j21

(26)

The mathematical model of nonlinear motion equations of double-curved construction
elements is expressed as follows [41]:

∂M11
∂x + ∂M12

∂y − q1 + ρ1
∂3w

∂x∂t2 − ρ2
∂2ψ1

∂t2 = 0

∂M21
∂x + ∂M22

∂y − q2 + ρ1
∂3w

∂y∂t2 − ρ3
∂2ψ2

∂t2 = 0

∂q1
∂x + ∂q2

∂y + T11
s1

+ T22
s2

+ T11
∂2w
∂x2 + 2T12

∂2w
∂x∂y + T22

∂2w
∂y2 = ρh ∂2w

∂t2

(27)

where ρk(k = 1, 2, 3) are coefficients of the normal and rotary inertia and are defined as:

ρ1 = ρ

h/2∫
−h/2

z2dz, ρ2 = ρ

h/2∫
−h/2

zJ1
z dz, ρ3 = ρ

h/2∫
−h/2

zJ2
z dz (28)

To derive the nonlinear dynamic equation of nanocomposite construction members
with double curvature, the Equations (16)–(18) are substituted in the set of Equation (27),
and after some mathematical operations, it transforms into the following form:

L11(φ) + L12(w) + L13(ψ1) + L14(ψ2) = 0

L21(φ) + L22(w) + L23(ψ1) + L24(ψ2) = 0

L31(φ) + L32(w) + L33(ψ1) + L34(ψ2) + L35(φ, w) = 0

(29)

where the nonlinear differential operators Lkp(k = 1, 2, 3, p = 1, 2, . . . , 5) are given in
Appendix A (Equation (A3)).

By applying the Galerkin method to the system of partial differential Equation (29),
after integration, the following set of nonlinear ordinary differential equations is obtained:

c11w0 + cnl
11w0

2 + ct
11

d2w0
dt2 + c12ψ01 + ct

12
d2ψ01

dt2 + c13ψ02 = 0,

c21w0 + cnl
21w0

2 + ct
21

d2w0
dt2 + c22ψ01 + c23ψ02 + ct

23
d2ψ02

dt2 = 0,

ρh d2w0
dt2 + c31w0 + cNL

31 w0
2 + c32w0

3 + c33ψ01 + c34ψ02 = 0

(30)

where ckp(k = 1, 2, 3, p = 1, 2, 3, 4) are coefficients depending on the properties of nanocom-
posite structural members with double curvature and are given in Appendix A
(Equations (A4) and (A5)).

Due to the smallness of the inertia terms with the upper index t, ignoring these terms
in Equation (30), and eliminating the functions ψ01 and ψ02 from the obtained equations, it
is transformed into the following nonlinear ordinary differential equation with quadratic
and cubic nonlinearities:

d2w0

dt2 +
(

Ωn f
sdt

)2
w0 + u1w0

2 + u2w0
3 = 0 (31)
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where Ωn f
sdt is the linear or natural frequency for CNT patterned construction members

with double curvature in the scope of FSDT and defined as:

Ωn f
sdt =

√
c∗31

(Vcnt∗ ρcnt + Vmρm)h
(32)

where
u1 =

c∗nl
31

(Vcnt∗ ρcnt+Vmρm)h
, u2 = c32

(Vcnt∗ ρcnt+Vmρm)h
,

c∗31 = c31 − c21c34
c23

+
(

c33 − c22c34
c23

)
c11c23−c21c13
c22c13−c23c12

c∗nl
31 = cnl

31 −
c34cnl

21
c23

+
(

c34c22
c23
− c33

)
cnl

11c23−c13cnl
21

c12c23−c13c22

(33)

The initial conditions are described as:

w0 = w0,
dw0

dt
= 0 as t = 0 (34)

In the current study, the Grigolyuk method is applied to the solution of Equation (31).
The Grigolyuk method is a variational method [42]. This method is used to solve the
nonlinear ordinary differential equation. To determine the nonlinear frequency-amplitude
dependence for nanocomposite construction members with double curvature patterned by
CNTs within the FSDT, each part of Equation (31) is multiplied by cos(Ωt) and integrated
in one quarter of the period (from 0 to T/4), satisfying the orthogonality condition:

T/4∫
0

[
d2w0

dt2 +
(

Ωn f
sdt

)2
w0 + u1w0

2 + u2w0
3
]

cos(Ωt)dt = 0 (35)

where, the symbol T = 2π/Ω indicates the large amplitude vibration period and Ω = Ωnl
sdt

indicates the nonlinear frequency of CNT patterned nanocomposite construction elements
with double curvature in the framework of SDT.

When the expression of T = 2π/Ω is substituted at the upper limit of the integral (35),
it turns into the following equation:

π/2Ω∫
0

[
d2w0

dt2 +
(

Ωn f
sdt

)2
w0 + u1w0

2 + u2w0
3
]

cos(Ωt)dt = 0 (36)

The trial function is expressed as follows:

w0(t) = w0 cos(Ωt) (37)

where w0 = wmax is the maximum amplitude of the displacement w.
Substituting (37) into (36), after integrating, for the amplitude-frequency characteristics

of the nonlinear free vibration, the following dependence is obtained:

Ωnl
sdt =

[(
Ωn f

sdt

)2
+

8u1

3π

A
h
+

3u2

4

(
A
h

)2
]1/2

(38)

where u1 = u1h and u2 = u2h2.
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The following dependence is used for the ratio of nonlinear frequency to linear fre-
quency for CNT patterned construction elements with double curvature:

Ωnl
sdt

Ωn f
sdt

=

1 +
8u1

3π
(

Ωn f
sdt

)2
A
h
+

3u2

4
(

Ωn f
sdt

)2

(
A
h

)2


1/2

(39)

The Equations (32), (38) and (39) are transformed expressions for linear and nonlinear
frequencies and their ratios, respectively, within the CST when transverse shear deforma-
tions are eliminated from the basic relations and equations of CNT patterned construction
elements with double curvature.

5. Discussion
5.1. Comparative Studies

In this section, the accuracy of analytical formulas obtained for frequencies in our
study is checked by comparing them with other results in the literature.

The magnitudes of dimensionless frequency parameter, Ωn f
1sdt = Ωn f

sdt
a2

h

(
ρm
Em

)1/2
for

construction elements such as spherical and hypar shells, cylindrical panels and plates
patterned by CNTs are compared with the results of Pouresmaeeli and Fazelzadeh [17] with
(i, j) = (1, 1), a = 20h, b = 20h, a/s1 = 0.5 and tabulated in Table 1. The Equation (32)
is applied to obtain the linear frequency values that are used in this comparison. The
mechanical properties of constructions made of the poly methyl methacrylate (PMMA)
used as a matrix and CNTs used as additives, respectively, are as follows: Em = 2.1 × 109 Pa,
νm = 0.34, ρm = 1.15× 103 kg/m3 and E11

cnt = 5.6466 × 1012 Pa,E22
cnt = 7.08× 1012 Pa,

G12
cnt = 1.9445× 1012 Pa, ν12

cnt = 0.175, ρcnt = 1.4× 103 kg/m3. The efficiency parameters
of CNTs in the constructions are taken from Ref. [17]: µ1 = 0.149, µ2 = µ3 = 0.934 for
Vcnt
∗ = 0.11, µ1 = 0.15, µ2 = µ3 = 0.941 for Vcnt

∗ = 0.14 and µ1 = 0.149, µ2 = µ3 = 1.381
for Vcnt

∗ = 0.17. It is seen that the magnitudes of dimensionless linear frequency presented
for different construction elements patterned by CNTs in Table 1 are in very good agreement.

Table 1. Comparison eigenvalues for CNT patterned construction elements with the results of Ref. [17].

Construction
Elements V*(1)

cn

Ω
nf
1sdt = Ω

nf
sdt

a2

h ( ρm
Em

)1/2

U V X

Ref. [17] Present
Study Ref. [17] Present

Study Ref. [17] Present
Study

Spherical
shells

0.11 20.238 20.286 18.543 18.685 22.432 22.493
0.14 21.655 21.756 19.779 19.966 23.997 24.064
0.17 25.021 25.158 22.951 23.165 27.883 27.893

Hypar shells
0.11 17.106 17.332 14.809 15.114 19.588 19.853
0.14 18.626 18.924 16.181 16.544 21.225 21.512
0.17 21.093 21.423 18.225 18.645 24.274 24.524

Cylindrical
panels

0.11 18.126 18.116 16.060 16.150 20.548 20.545
0.14 19.628 19.670 17.391 17.524 22.179 22.178
0.17 22.380 22.415 19.799 19.949 25.488 25.408

Rectangular
Plates

0.11 18.008 17.332 15.701 15.113 20.624 19.853
0.14 19.608 18.924 17.147 16.544 22.349 21.512
0.17 22.207 21.424 19.315 18.645 25.557 24.524

In the second example, our results are compared with those of Alijani et al. [43] and
Bich et al. [44] for dimensionless linear frequency parameters of homogeneous isotropic con-
struction elements in the framework of SDTs (see Table 2). The Equation (32) is applied to
obtain the magnitudes of linear frequency that are used in this comparison. The mechanical



Materials 2021, 14, 3843 11 of 19

properties of constructions are as follows: E11 = E22 = Em = 7 × 1010 Pa, ν12 = νm = 0.3177,
ρm = 2702 kg/m3 a = 10h, b = 10h. Table 2 is an indication that our results are in good
agreement with the results of Refs. [43,44].

Table 2. Comparison of dimensionless linear frequency parameters of homogeneous isotropic
construction elements within SDTs.

Construction
Elements

s1/a s1/b
Ω

nf
1sdt=Ω

nf
sdth( ρm

Em
)1/2

Ref. [43]. Ref. [44]. Present
Study

Spherical shell 2 2 0.0779 0.0767 0.0769
Rectangular plate ∞ ∞ 0.0597 0.0581 0.0584
Cylindrical panel ∞ 2 0.0648 0.0632 0.0636

5.2. New Numerical Analyses and Interpretations

In this subsection, unique numerical analyses and interpretations for different volume
fractions, geometric characteristics and vibration modes are presented to examine the
nonlinear vibration behavior of CNT patterned homogenous and inhomogeneous con-
structions, such as plate, panel, spherical and hypar shells in the framework of CST and
SDT. The Equations (38) and (39) are used to calculate the magnitudes of the nonlinear
frequency and the ratio of the nonlinear frequency to the linear frequency. In the figures,
the abbreviations for classical theory and shear deformation theory are shown as (cst) and
(sdt), respectively. The shear stresses function constructions with CNT patterns are used as
ϕss

z,z = 1− 4z2 [1]. A negative sign in ratios means that the frequency values in functionally
graded distributions are less than the frequency values in the uniform distribution. The
following expressions are used for percentages of the effects of inhomogeneity and shear
strains on frequencies: ΩHT−ΩU

ΩU
× 100% and Ωcst−Ωsdt

Ωcst
× 100%. In the numerical analysis,

while, Em = 2.5 × 109 Pa, νm = 0.34, ρm = 1150 kg/m3 and E11
cnt = 5.6466 × 1012 Pa,

E22
cnt = 7.08× 1012 Pa, G12

cnt = 1.9445× 1012 Pa, ν12
cnt = 0.175, ρcnt = 1400 kg/m3 are

used for the mechanical properties of PMMA and CNTs, respectively; the data for the total
volume fractions and efficiency parameters of CNTs are presented in Table 3 [16].

Table 3. Volume fractions and efficiency parameters of the CNTs.

Vcnt
∗ µ1 µ2 µ3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

Figure 4 shows the variation of nonlinear frequency values (NLFVs) for the spherical
and hypar shells, cylindrical panel and plate patterned by CNTs against the A/h. The
analysis uses the constructions with U and V patterns, taking into account the following
data: Vcnt

∗ = 0.12, s1/a = 1, a = b = 20h, (i, j) = (1, 1). Depending on the increase
of A/h, the NLFVs for plates and hypar shells increase while those for spherical shells
with U and V patterns decrease. The NLFVs of cylindrical panels first decrease, and
after reaching the minimum value, they increase. The shear strains effect on NLFVs for
composite constructions with the V pattern is smaller than for composite constructions
with the U pattern. For example, starting from the highest, the shear strains effect difference
between U and V patterns in percentage is: (3.68%), (3.56%), (3.56%) and (3.34%) for the
spherical shell, hypar shell, plate and cylindrical panel, respectively. Due to the increase
of A/h, the V pattern effect on the NLFVs of the plate and hypar shell decreases, while
this effect increases for the spherical shell, and for the cylindrical panel the V pattern effect
first increases and then decreases within SDT. For example, depending on the rise of A/h
from 0 to 1, the influence of the V pattern on NLFVs for the hypar shell (8.68%) and the
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plate (5.15%) decreases, while for the spherical shell it increases (4.39%) within the SDT.
Likewise, this effect first increases slightly (about 0.1%) and then decreases (1.89%) for the
cylindrical panel within the SDT. The transverse shear strains reduce the V pattern effect
on NLFVs compared to the CST. The largest V pattern effect difference between CST and
SDT appears in the spherical shell (3.67%), in the hypar shell and plate (3.42%), while in
the cylindrical panel (3.29%).
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The change of nonlinear frequency to linear frequency ratio of spherical and hypar
shells with O patterns in the framework CST and SDT against the A/h for different
vibration modes (i, j) and Vcnt

∗ = 0.12 are presented in Figures 5 and 6. Other parametric
data are given in figures. As can be seen from Figures 5 and 6, the effect of nonlinearity in
hypar shells with the O pattern increases depending on the increase of A/h for all modes
(i, j), while that of spherical shells with the O pattern decreases for the mode (i, j) = (1, 1).
Additionally, the influences of nonlinearity of spherical shells with the O pattern decrease in
the range of A/h ≤ 0.3 for mode (i, j) = (1, 3); it increases in other cases. Depending on the
passes of n from 1 to 2, the influence of nonlinearity in the spherical shell increases, while
that in the hypar shells with the O pattern decreases. As the wave number j passes from 2
to 3, it arises vice versa from previous cases. Likewise, as the wave number i passes from 1
to 2, the influence of nonlinearity in spherical shells increases, whereas in hypar shells it
decreases. As the wave number i passes from 2 to 3, the influence of nonlinearity increases
in hypar shells, while it decreases in spherical shells with the O pattern for A/h ≤ 0.2 and
then increases for A/h > 0.2. When both shallow shells with the O pattern are compared
with each other, the influences of nonlinearity in hypar shells are more considerable than
those of spherical shells. While the nonlinear frequency to linear frequency difference
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between shallow shells with the O pattern increases depending on the increase of A/h,
it first decreases and takes its lowest value and then increases continuously due to the
increase of wave numbers.
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The influence of geometrical nonlinearity in spherical shells within CST is greater than
that within SDT; in all other cases, it is vice versa, as (i, j) = (1, 1). When both shallow
shells with the O pattern are compared, the shear strains effect on the nonlinear frequency
to linear frequency ratios for hypar shells is greater than that of spherical shells. With the
increase of A/h from 0 to 1, the shear strains effect differences between spherical and hypar
shallow shells increase except for modes (i, j) = (1, 1) and (i, j) = (3, 1). The largest shear
strains effect differences between spherical and hypar shallow shells are (3.15%), (0.66%),
(0.81%), (2.15%) and (4.51%) for modes (i, j) = (1, 1), (1,2), (1,3), (2,1) and (2,3), respectively.

The variations of NLFVs of spherical and hypar shells with U, V, O and X patterns
within CST and SDT against the A/h for different a/h are presented in Figures 7 and 8,
respectively. Analyses are performed for Vcnt

∗ = 0.12, a/h = b/h = 20, 25, 30, s1/a = 1
and (i, j) = (1, 1). With the increase of A/h from 0 to 1, the NLFVs of CNT patterned
hypar shells increase, while those of CNT patterned spherical shells decrease. For fixed
values of A/h, with the increase of a/h from 20 to 30, the NLFVs of both shells with CNT
patterns decrease. When the NLFVs for shallow shells with CNT patterns are compared
to each other, the NLFVs of CNT patterned spherical shells in the range of A/h < 0.5 are
greater than those of hypar shells for fixed a/h. While the NLFVs difference between CNT
patterned shallow shells first decreases and then increases with the increase of A/h for
fixed a/h, this difference decreases with the increase of a/h for fixed A/h.
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Figure 7. Variation of NLFVs of spherical shells with U, V, O and X patterns within CST and SDT against the A/h for
different a/h.

With the increase of A/h, the shear strains effect on NLFVs increases in CNT patterned
spherical shells, whereas it decreases in CNT patterned hypar shells. For instance, the
influences of shear strains on the NLFVs increases from (9.13%) to (15.87%) for spherical
shells and decreases from (17.1%) to (7.3%) for hypar shells with the X pattern, as the A/h
increases from 0 to 1, at a/h = 20. Although the shear strains effect on NLFVs for both
shallow shells decreases when the a/h ratio increases, this decrease is more pronounced in
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CNT patterned spherical shells. For example, as the a/h increases from 20 to 30 for fixed
A/h (= 0.8), the shear strains effects decrease from (9.93%) to (2.97%) and from (5.06%) to
(2.1%) for the U, from (6.47%) to (1.72%) and from (2.95%) to (1.16%) for the V, and from
(6.59%) to (1.65%) and from (2.92%) to (1.15%) for the O patterned spherical and hypar
shells, respectively.
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Figure 8. Variations of NLFVs of hypar shells with U, V, O and X patterns within CST and SDT against the A/h for different a/h.

With the increase of A/h, the effect of CNT patterns on NLFVs for spherical shells
decreases, while for hypar shells it increases for both shell theories. For instance, a/h = 30
and depending on the increase of A/h from 0 to 1, the O pattern effect on the NLFVs
for spherical shells increases from (−4.14%) to (−9.14%) within SDT and from (−4.92%)
to (−10.5%) within CST. The O pattern effect on NLFVs for hypar shells decreases from
(−13.96%) to (−3.54%) within SDT and from (−15.67%) to (−4.33%) within CST.

With the increase of a/h, the V pattern effect on NLFVs in spherical shells decreases
in the framework of both shell theories, while the V pattern effect in hypar shells increases
within SDT and decreases in the framework of CST. For example, with the increase of a/h
from 20 to 30, the effect of V pattern on NLFVs in spherical shells decreases from (−3.95%)
to (−2.4%) within SDT and from (−6.5%) to (−3.23%) within CST at A/h = 0.2. In the X
pattern spherical shells, it decreases from (7.05%) to (5.54%) and from (11.75%) to (7.26%)
within SDT and CST, respectively. Likewise, in the V pattern hypar shells, while the V effect
on NLFVs increases from (−8.92%) to (−9.43%) within SDT, it decreases from (−12.11%) to
(−10.96%) within CST. In the X pattern hypar shells, while the X effect on NLFVs decreases
from (16.46%) to (15.09%), within CST, it increases from (10.46%) to (12.01%) within SDT.

6. Conclusions

In this paper, the large amplitude vibration behavior of CNT patterned double-curved
construction elements is studied. First, the large amplitude basic relations and dynamic
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equations are derived in the framework of FSDT. Then, using the Galerkin method, the
problem is reduced to the nonlinear vibration of nanocomposite continuous systems
with quadratic and cubic nonlinearities. By applying Grigolyuk method to the obtained
nonlinear differential equation, the nonlinear frequency-amplitude dependence is obtained.
The expressions for nonlinear frequencies of inhomogeneous nanocomposite construction
members such as plates, panels and spherical and hypar shells within shear deformation
and classical shell theories are found from these expressions in special cases. The accuracy
of the results of the current study has been confirmed by comparing them with the reliable
results reported in the literature. The effects of nonlinearity, CNT patterns and volume
fraction on frequencies are analyzed in terms of quality and quantity within the framework
of shear deformation and classical theories.
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Appendix A

Here mkp, nkp(k = 1, 2, 3, p = 1, 2, . . . , 8) and Jk(k = 3, 4) are defined as,

m11 = a111n11 + a121n21, m12 = a111n12 + a121n11, m13 = a111n13 + a121n23 + a112,
m14 = a111n14 + a121n24 + a122, m15 = a111n15 + a121n25 + a151, m18 = a111n18 + a121n28 + a181,
m21 = a211n11 + a221n21, m22 = a211n12 + a221n22, m23 = a211n13 + a221n23 + a212,
m24 = a211n14 + a221n24 + a222, m25 = a211n15 + a221n25 + a251, m28 = a211n18 + a221n28 + a281,
m31 = a661n35, m32 = a661n32 + 2a662, m35 = a351 − a661n35, m38 = a381 − a661n38,

Jk =
h/2∫
−h/2

dϕsd
z

dz dz, (k = 3, 4)

(A1)

where
n11 = a220

∆ , n12 = − a120
∆ , n13 = a120a211−a111a220

∆ , n14 = a120a211−a121a220
∆ ,

n15 = a250a120−a150a220
∆ , n18 = a280a120−a180a220

∆ , n21 = − a210
∆ , n22 = a110

∆ ,
n23 = a111a210−a211a110

∆ , n24 = a121a210−a221a110
∆ , n25 = a150a210−a250a110

∆ ,
n28 = a180a210−a280a110

∆ , n31 = 1
a660

, n32 = − 2a661
a660

, n35 = a350
a660

, n38 = a380
a660

,

a11k1 =
h/2∫
−h/2

Q11
z zk1 dz, a12k1 =

h/2∫
−h/2

Q12
z zk1dz, a21k1 =

h/2∫
−h/2

Q21
z zk1dz,

a22k1 =
h/2∫
−h/2

Q22
z zk1 dz, a66k1 =

h/2∫
−h/2

Q66
z zk1dz, k1 = 0, 1, 2, a15k2 =

h/2∫
−h/2

J1
z Q11

z zk2 dz,

a18k2 =
h/2∫
−h/2

J2
z Q12

z zk2dz, a25k2 =
h/2∫
−h/2

J1
z Q21

z zk2dz, a28k2 =
h/2∫
−h/2

J2
z Q22

z zk2dz,

a35k2 =
h/2∫
−h/2

J1
z Q66

z zk2dz, a38k2 =
h/2∫
−h/2

J2
z Q66

z zk2dz, k2 = 0, 1, ∆ = a110a220 − a120a210.

(A2)



Materials 2021, 14, 3843 17 of 19

Here Lkp(i = 1, 2, 3, p = 1, 2, . . . , 5) are defined as:

L11(φ) = h
[
(m11 −m31)

∂4

∂x2∂y2 + m12
∂4

∂x4

]
, L12(w) = ρ1

∂4

∂x2∂t2 + m13
∂4

∂x4 − (m14 + m32)
∂4

∂x2∂y2 ,

L13(ψ1) = m15
∂3

∂x3 + m35
∂3

∂x∂y2 − J3
∂

∂x − ρ2
∂3

∂x∂t2 , L14(ψ2) = m18
∂3

∂x2∂y + m38
∂3

∂x2∂y ,

L21(φ) = hm21
∂4

∂y4 + h(m22 −m31)
∂4

∂x2∂y2 ,

L22(w) = −(m32 + m23)
∂4

∂x2∂y2 −m24
∂4

∂y4 + ρ1
∂4

∂x2∂t2 ,

L23(ψ1) = m35
∂3

∂x∂y2 + m25
∂3

∂x∂y2 , L24(ψ2) = m38
∂3

∂x2∂y + m28
∂3

∂y3 − J4
∂

∂y − ρ3
∂3

∂y∂t2 ,

L31(φ) = h
(

1
s2

∂2

∂x2 +
1
s1

∂2

∂y2

)
, L32(w) = −

(
Vcnt
∗ ρcnt + Vmρm

)
h ∂2

∂t2 ,

L33(ψ1) = J3
∂

∂x , L34(ψ2) = J4
∂

∂y , L35(φ, w) = h
(

∂2

∂y2
∂2

∂x2 − 2 ∂2

∂x∂y
∂2

∂x∂y + ∂2

∂x2
∂2

∂y2

)
.

(A3)

Here ckp(k = 1, 2, 3, p = 1, 2, . . . , 5) are described as

c11 = i12{θ03hδ11
[
(m11 −m31)j12 + m12i12]−m13i12 − (m14 + m32)j12},

cnl
11 = − 64θ01hm12

3ab
i13

j1

[
1− (−1)i − (−1)j + (−1)i+j

]
,

ct
11 = −ρ1i12, c12 = i1

(
m15i12 + m35 j12 + J3

)
, ct

12 = ρ2i1, c13 = (m18 + m38)i12 j1,
c21 = j12{δ11hθ03

[
m21 j12 + (m22 −m31)i12]− (m32 + m23)i12 −m24 j12},

cnl
21 = − 64θ02m21h

3ab
j13

i1

[
1− (−1)i − (−1)j + (−1)i+j

]
, ct

21 = −ρ1 j12,
c22 = (m25 + m35)i1 j12, c23 = j1

(
m28 j12 + m38i12 + J4

)
, ct

23 = ρ3 j1,

c31 = θ03hδ11

(
i12

s2
+ j12

s1

)
, c32 = 2i12 j12h(θ01 + θ02), c33 = J3i1, c34 = J4 j1

cnl
31 = − 8h

3ab

[
2
(

θ01
s2

i1
j1
+ θ02

s1

j1
i1

)
+ i1 j1δ11θ03

][
1− (−1)i − (−1)j + (−1)i+j

]
,

(A4)

where
θ01 =

δ14

32i41δ3
, θ02 =

δ14

32j41δ1
, θ03 =

1
δ1 j41 + δ2i21 j21 + δ3i41

(A5)
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