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a Istanbul Gelişim University, Electrical and Electronics Engineering, 34315, Istanbul, Turkey 
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A B S T R A C T   

With the development of remote sensing techniques, the fusion of multimodal data, particularly hyperspectral- 
Light Detection And Ranging (HS-LiDAR) and hyperspectral-SAR, has become an important research field in 
numerous application areas. Multispectral, HS, LiDAR, and Synthetic Aperture Radar (SAR) images contain 
detailed information about the monitored surface that are complementary to each other. Thus, data fusion 
methods have become a promising solution to obtain high spatial resolution remote-sensing images. The main 
point of this review paper is to classify hyperspectral-LiDAR and hyperspectral-SAR data fusion with approaches. 
Moreover, recent achievements in the fusion of hyperspectral-LiDAR and hyperspectral-SAR data are highlighted 
in terms of faced challenges and applications. Most frequently used data fusion datasets that include IEEE GRSS 
Data Fusion Contests are also described.   

1. Introduction 

Obtaining high spatial and high spectral resolution images is a 
fundamental task in many applications of remote sensing, such as 
ground cover classification, target recognition, environmental moni-
toring, etc. Recent improvements in remote sensing technology have 
attempted to obtain high spatial and high spectral resolution images 
able to provide high accuracy in the classification, change detection, and 
other applications. Remote sensors can be categorized in two classes: 
active ones such as light detection and ranging (LiDAR) and synthetic 
aperture radar (SAR), and passive ones (Multispectral - MS, Hyper-
spectral - HS). Passive sensors use natural illumination, whereas active 
sensors use their own illumination sources and can operate during the 
night and in shaded areas. These sensors provide useful information 
about the structure on the surface (SAR), height of the material (LiDAR), 
and material composition (MS, HS). Thus, HS, LiDAR, and SAR images 
present different characteristics of information about objects or events 
on the observed scene from a different viewpoint. Therefore, HS, LiDAR, 
and SAR images have different advantages in the classification and other 
applications of the urban area. However, although these valuable 
modules have great advantages, they have some limitations. For 
example, HS images can characterize the spectral and spatial charac-
teristics of objects, which is suitable for urban land use/ land cover 

(LULC) classification. But it is difficult to distinguish the objects with 
similar spectral characteristics but different elevation information such 
as roof and road that are both made of concrete. Compared with HS 
images, LiDAR data have accurate three-dimensional information, 
which can classify the objects by using height information. However, as 
it lacks the semantic information of objects, LiDAR data have poor 
ability to classify the objects with similar elevation and different spectral 
information. For example, two roads with the same height but made of 
different materials. Therefore, it will greatly improve classification 
result by fusing the two types of data. HS data provide spectral infor-
mation on different wavelengths while PolSAR data represent a scat-
tering mechanism about the observed scene in the polarization 
signatures. These polarization signatures reflect the physical charac-
teristic and geometric structure of the observed scene. This means that 
PolSAR data have information that may not be captured by optical im-
ages. Thus, using the complementarity of LiDAR data or SAR data with 
HS spectral data, the performance of HS unmixing may be improved and 
it provides more comprehensive interpretation for tree species mapping. 
In this review paper, LiDAR and SAR data have been considered as an 
auxiliary modalities that support HS data. Recent researches have shown 
the potential of combining multisource remote sensing data when 
dealing with the land use and land cover classification tasks. A consid-
erable amount of literature has proved the effectiveness of joint use of 
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HS and LiDAR. Recently, deep learning-based methods have aroused 
wide attention for their capability to extract high-level features. 
Different features were extracted from HS and LiDAR datasets to further 
improve the classification performance by using DCNN. Deep learning- 
based features add significant complementary information to the HS 
data and improves the land cover classification accuracy. Compared 
with traditional classification methods, deep-learning-based classifiers 
have great potential to obtain high classification performance for mixed 
and complex inputs. 

There are numerous literature reviews about data fusion of multi-
modal images. Zhang [1] reviews popular approaches of multimodal 
remote sensing data fusion. He also discusses challenges and future 
trends in terms of hierarchical classification, such as pixel/data level, 
feature level, and decision level. M. Dalla Mura et al. [2] present a 
detailed discussion about the main challenges and perspectives of 
multimodal data fusion. They also highlight the results of the outcomes 
of the Data Fusion Contests organized by the IEEE Geoscience and 
Remote Sensing Society from 2006 to 2014. V. V. Klemas [3] reviews 
recent developments in wetland remote sensing, such as change detec-
tion and wetland mapping. Q. Man et al. [4] categorize fusion ap-
proaches of HS-LiDAR images for forest biomass estimation into three 
classes: pixel-level, feature-level, and decision-level. They also formu-
late some major challenges and some future research topics. L. 
Gómez-Chova et al. [5] present a review of the existing schemes for 
multisource classification of remote-sensing images. They emphasize the 
recent developments that exploit the synergistic usage of signal pro-
cessing and machine learning, such as kernel-based fusion, sparse 
methods, manifold alignment, and Markov modeling. They also show 
several methods for solving challenging problems in the field of remote 
sensing. B. Wu and S. Tang [6] present a systematic review of the 
geometrical fusion of remote sensing data and laser scanning data that is 
used for better 3D mapping in various applications. They also analyze 
the advantages and limitations of the methods and discuss future 
research directions in this area. 

In this survey, our main contributions can be summarized as follows:  

• This study presents a comprehensive literature overview on the data 
fusion of HS-LiDAR and HS-SAR images and also classifies them 
based on used methods. As opposed to other existing taxonomies 
(pixel/data level, feature level, and decision level), in this paper, we 
classify multimodal data fusion on remote sensing imagery in terms 
of the following categories: feature-based, object-based, pixel-based, 
geometric-based, graph-based, kernel-based, statistical-based, 
ensemble-based, convolutional-based, hybrid-based, and filter- 
based approaches. For each category, we also present the most recent 
references.  

• In addition to providing summary tables of multimodal data fusion 
approaches, we also summarize significant points of each approach 
as a guide for future researches.  

• We give a brief description of multimodalities and their features, 
advantages, and limitations.  

• We address challenges for multimodal data fusion in remote sensing 
such as cloud shadow regions and we also introduce most frequently 
used data fusion datasets that include IEEE GRSS Data Fusion Contest 
Datasets. 

This paper is organized as follows: in section 2, multimodalities and 
their features are introduced. In section 3, some application areas and 
challenges of multimodal data fusion are explained. Based on used ap-
proaches, the classification of data fusion of HS-LiDAR is presented in 
Section 4 and similarly, the classification of data fusion of HS-SAR is 
introduced in Section 5. Lastly, section 6 concludes this review. 

2. Modalities in Remote Sensing 

In remote sensing HS imaging collects and processes information 

from the observed scene across the electromagnetic spectrum. HS sen-
sors reflect vast portions of the electromagnetic spectrum to the objects. 
In this way, HS sensors collect data across a wide range of the spectrum 
(VNIR-LWIR plus TIR) at small spectral resolution (5-15 nm) and high 
spatial resolution (1-5 m). This allows detailed spectral signatures to be 
identified for different imaged materials. HS imagery can be collected 
through different types of platforms. HS imager mounted on a fixed 
platform that can move or scan with a calibrated circular mechatronic 
rotation stage. Different remote-sensing platforms can be used to 
conduct environmental monitoring and surveillance in an urban envi-
ronment. The dispersed energy is received by a digital camera attached 
to the back of the spectrograph. This process is called HS image acqui-
sition mechanism that includes the camera synchronization. The 
acquisition of data is a fundamental step in all types of application areas. 
HSI data preprocessing step aims to achieve a denoised image with less 
intraclass variability and greater spatial smoothness. It is very important 
to know HS image data structure to be able to apply the appropriate 
preprocessing technique. A brief and broad overview of the main spec-
tral preprocessing techniques, denoising, scatter correction, and de-
rivatives must be highlighted. 

2.1. Overview of Hyperspectral Data 

Multimodal sources provide information about different aspects of 
an observed scene. For instance, HS images provide horizontal detailed 
spectral information about an imaged scene. Therefore, it is easy to 
distinguish between water, soil, or vegetation in that pixel [7]. In 
contrast to MS sensors, HS sensors are able to accurately discriminate 
similar classes [8] and land surface classification [9]. HS imaging can 
also identify asphalt and other road elements by using the spectral sig-
natures of transport networks on trafficable areas [10]. However, HS 
images cannot distinguish different objects produced from the same 
material (e.g., concrete road and concrete roof). Furthermore, HS im-
aging suffers under cloudy weather conditions. Numerous features can 
be extracted from HS data, such as spectral features (spectral reflectance 
and spectral indexes) and spatial features (morphological features - 
MoAPs). The most generally used HS features are explained briefly in the 
following. Generally, morphological operators are applied in remote--
sensing imagery to extract important information about the observed 
scene, such as the extraction of spatial information from the GSD 
normalized difference vegetation index (NDVI) and open street map 
(OSM) “building” images. Morphological profiles (MPs) compose of 
opening and closing processes with a structural element (SE), contains 
low-level features such as shape and size information. Attribute profile 
(AP) is defined as a generalization of the morphological profile and uses 
a series of morphological attribute filters. AP extracts the most infor-
mative features of an image such as the length, shape, and area of objects 
[11]. APs can also model middle-level features such as homogeneity and 
textures. Multivariate attribute (multi-attribute) profile (MAP) contains 
the area and the standard deviation as two types of attributes. Extended 
multi-attribute profiles (EMAPs) consist of n thinning and n thickening 
transformations of the related principal component (PC) with four at-
tributes: length of diagonal of the bounding box, area, standard devia-
tion, and moment of inertia. EMAPs also perform a multilevel 
decomposition of the input image and model the spatial information of 
the adjacent pixels by using attribute filters. AP can be applied only on a 
gray-scale image. To adapt the AP concept to HS image, a feature 
reduction technique (such as PCA) or a feature extraction (independent 
component analysis - ICA) approach can be performed on the HS data 
and EMAP that exploits the most important PCs as base images. Subse-
quently, APs can be applied to the first PCs. In [12], a strategy has been 
proposed to classify HS images in terms of spectral and spatial infor-
mation with the aid of EMAP. Also, the cloud map can be revealed by 
using features extracted from HS (EMAPshsi) [13]. In 2016, to extend the 
concept of the AP, P. Ghamisi et al. proposed extinction profiles (EPs). 
EPs are generated by applying several extinction filters (EFs) such as a 
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series of thinning and thickening transformations. In this process, 
threshold values are increased progressively. EPs are performed to 
obtain the spatial and contextual information from an HS image. It has 
also been shown that extinction filters perform more efficiently as 
compared to attribute filters remote sensing panchromatic images [14]. 
An extended EP (EEP) has been proposed in [15]. EEP may be obtained 
in two ways: either by reducing the dimensionality of the data with a 
generic transformation or by applying EPs on the important character-
istics. These mentioned features are mostly applied to particularly the 
data fusion of HS-LİDAR. A more comprehensive explanation will be 
given in later sections. 

2.2. Overview of LiDAR Data 

LiDAR gives precise vertical and horizontal point cloud data, which 
can capture the 3D structure of the Earth’s surface and geometric in-
formation (i.e., height, slope, orientation, curvature, tree height, and 
tree profile) in all weather conditions [16]. This geometric information 
gives an important knowledge for land and forestry applications. For 
example, to distinguish elevated features such as buildings and plants. 
Compared to MS and HS data, LiDAR data present several advantages. 
LiDAR data provide high-accuracy structural data that can be used to 
distinguish different classes with different heights, for instance, roads 
and buildings in urban areas [17, 18]. However, LiDAR cannot separate 
different objects that have the same altitude (e.g., a grass field and a 
swimming pool). Also, because of the provision of a narrow range of 
spectral information, the single usage of LiDAR data is limited for 
land-use classification [19]. It is crucial to decide which information 
should be extracted from the LiDAR for used application areas. There 
exist many LiDAR-derived features such as spatial distances, heights, 
canopy penetration, and elevation of the observed surface as model--
driven LiDAR-derived features such as Digital Surface Model (DSM), 
Digital Terrain Model (DTM), Digital Elevation Model (DEM), Canopy 
Height Models (CHMs), and Ground Height Difference (GHD). In addi-
tion, OSM [20] can be extracted from LiDAR data for extracting site 
description and full-waveform LiDAR (FWL) [21] can also be derived 
from LiDAR data for generating ortho-waveforms to estimate shallow 
water bathymetry. Furthermore, elevation information (morphological 
features) extracted on LiDAR features can be obtained as MPs [22]. To 
model the elevation information from the LiDAR image, AP can also be 
applied. An attribute thinning performs on bright materials with high 
elevation in the LiDAR image, for example the top of a roof, while 
attribute-thickening performs on dark objects with low height in the 
LiDAR image, such as swimming pools. APs of LiDAR image is not 
effected by clouds. By using EMAP, spatial, and elevation information 
can be computed from LiDAR data. EPs are also performed to obtain 
elevation information from LiDAR. 

2.3. Overview of SAR Data 

SAR is an active imaging sensor and works under all weather con-
ditions such as fog, smoke, rain, and clouds. SAR images give texture, 
amplitude, phase, land structure information, and features about the 
shape of the objects with the high radiometric and geometric resolution, 
which is mainly beneficial in military and forestry applications. With 
this characteristic, SAR provides important information that comple-
ments information provided by optical systems. Soil moisture content 
can be obtained from SAR data for geological applications. SAR data also 
give accurate timber volume information and is influenced by speckle 
noise that should be suppressed. However, because of speckles, the 
adequate usage of SAR data is not easily processed for fusing techniques 
between optical and SAR data. Feature normalization is a fundamental 
task before fusing the two multimodal data. Fusion and clustering of 
multimodal data are preprocessing steps for developing a forest moni-
toring system [23]. HS imagery cannot measure topographic mapping 
capabilities. Using imaging radar interferometry, the DEM data can be 

generated. DEM data, produced by the IFSAR measurements, yield a 
better detection of the earth topography. HS images also have coarser 
resolution than the AIRSAR data. P. Gamba and B. Houshmand [24] 
studied the data fusion of HS and IFSAR for 3D urban characterization. 
Polarimetric Synthetic Aperture Radar (PolSAR) is used to make mea-
surements in different polarization waves. 

The geometric structure of the land surface and soil moisture affects 
the sensitivity of SAR data. SAR images have several drawbacks such as 
backscatter saturation with complex stand structure, topography effect 
in mountainous regions, and limited data acquisition speed. Several 
features can be extracted from SAR image, for instance, canopy cover, 
timber volume, and terrain features. Polarimetric features such as 3 
polarimetries (HH/HV/VV), polarimetric entropy, averaged alpha 
angle, anisotropy, and three scattering components can also be extracted 
from Phased Array type L-band Synthetic Aperture Radar (PALSAR) 
sensor. These features can be used for terrain characterization and 
camouflage net detection. The PolSAR data are used to measure forest 
mapping characteristics. HS data provide spectral information on 
different wavelengths, while PolSAR data represent a scattering mech-
anism about the observed scene in the polarization signatures. These 
polarization signatures reflect physical characteristics and the geometric 
structure of the observed scene [25]. This means that PolSAR data have 
information that may not be captured by optical images. There are some 
challenges in the fusion of PolSAR and HS images. For example, SAR 
data are acquired with slant-range geometry. However, optical images 
are acquired with nadir-looking geometry. When geometric features are 
different, the same pixels of two datasets show different ground targets 
at the same coordinate. ALOS PALSAR, TerraSAR-X (TSX), Radarsat-2 
(RS2), Sentinel-1, and Tandem-L provide PolSAR data globally. 
Although SAR data have a good spatial resolution, phase information, 
frequency bands, and polarizations of SAR data are different for each 
SAR sensors. Therefore, the comparison between different papers is a 
difficult task. The results and optimal combination of channels are 
changed. In addition, the dielectric constant impacts the SAR back-
scatter object signals. Thus, metal objects reflect high returns. Hence, 
the SAR signal provides information not only from the surface roughness 
and geometry but also from the observed material property. There are 
several feature extraction methods for the PolSAR images. These are: 
H/A/α decomposition, Freeman decomposition, Yamaguchi decompo-
sition, etc. In addition, PolSAR data provide polarization signatures. 
These signatures contain information about the geometric characteristic 
and physical properties of the surface. 

3. Application Areas and Challenges of Multimodal Data Fusion 

3.1. Application Areas of Multimodal Data Fusion 

3.1.1. Classification of urban scenes 
Getting information about urban land surface structure fast and 

accurately is also an important target for regional governments. This can 
allow better environmental management and better urban planning and 
disaster response in view of economic and ecological interest in the 
urban scene [26] and the expansion of the urban populations [27]. In 
addition, mapping of urban LULC and updating these maps are very 
important for environmental monitoring, telecommunication, and 
urban planning [28]. In practice, it is also necessary to monitor the 
changes in coastal wetlands for wetland protection [3]. Urban areas are 
usually a complex and dynamic environment and contain a challenging 
mosaic of different materials, which yields the confusion spectrum of 
objects. This complexity makes it difficult to meet all urban application 
requirements for a single sensor in remotely sensed data [29]. Therefore, 
to provide all important information about feature extraction and clas-
sification purposes, a single sensor is not enough [30]. Hence, various 
research studies have been carried out in urban land use classification by 
using HS imagery and LiDAR data fusion to improve classification per-
formance in remote-sensing technology [31, 32, 33]. Recently, several 
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local climate zone classification frameworks were also proposed for 
making easier urban climate studies. 

3.1.2. Environmental Monitoring, Treatment, and Management 
Across the world, many forests are increasingly subject to fire, 

drought, insect outbreak, and disease due to climate change. Forest 
structure measurements and vegetation classification are significant 
research fields for numerous applications such as forest inventories. 
Hence, for sustainable forest management, the monitoring of forests 
from remote sensing data is an effective technology. Therefore, the joint 
usage of HS and LiDAR data for the analysis of complex environments in 
forest areas has been studied deeply by many researchers. The combi-
nation of HS and LiDAR data is used for the assessment and prediction of 
forest fire risk and fire behavior for forest fire management [34]. Forests 
with varying tree density and canopy cover to represent a gradient of 
vegetation and topography [31]. W. A. Marcus and M. A. Fonstad [32] 
investigate high-resolution LiDAR, HS, and MS data collected from un-
manned aerial vehicles for controlling forests with varying tree density 
and canopy cover. Specifically, it is demonstrated that high spatial and 
spectral resolution data from UAVs are used to classify vegetation at the 
species level. MS-HS images and bathymetric LiDAR data are widely 
used in remote sensing technologies for this purpose [32]. In addition, 
forest resources are one of the most significant sinks for the global 
carbon cycle [6]. Furthermore, remote sensing mapping of river ba-
thymetry is extensively used in hydrodynamic modeling. For a better 
understanding of fluvial processes, remote sensing images make a sig-
nificant contribution to rivers for accurate quantitative water depth and 
bottom composition observations [33]. Z. Pan et al. [21] analyze the 
approach of voxelized bathymetric FWL to estimate shallow water ba-
thymetry and turbidity. T. Matsuki et al. [35] present a framework for 
tree species classification using HS imagery and LiDAR-derived CHM 
data. Y. Du et al. [36] introduce an effective information extraction 
model about aboveground biomass estimation of wetland vegetation 
Suaeda salsa by using MS, HS, and LiDAR data. In addition, the classi-
fication of tree species in forest areas is a major challenge for forest 
management [37]. With the improvements of remote sensing imagery, 
the classification of individual tree species and the identification of in-
dividual trees [38] are the next target of the research for forestry ap-
plications. For example, the tree species, heights, site qualities, 
diameters at breast height, ages, and so forth. Furthermore, the esti-
mation of stem diameters can be very helpful for forest inventory [39]. 
Several approaches have been developed for the fusion of both HS and 
LiDAR data for tree species mapping: F. M. B. Van Coillie et al. [40] use 
HS and LiDAR data for tree species mapping purposes. Also, T. D. Pham 
et al. [41] provide a comprehensive review for mapping mangrove 
species, assessing changes, and estimating their biomass, with summa-
rizing the studies that have been undertaken since 2010. They also 
highlighted some future directions. 

3.2. Challenges of Multimodal Data Fusion 

Classification of HS image is a challenging task. These challenges are 
the high dimensionality of the feature space, the restricted number of 
training sample examples, the existence of mixed pixels, and a high 
degree of correlation between sequential feature bands [42]. These 
challenges bring about the necessity of extra information from other 
sources. There have been lots of attempts to combine complementary 
multisource modalities. Moreover, the fusion of multiple types of data is 
not an easy task [43]. Combining some of these technologies can cause 
some challenges such as the cloud shadow region, selecting the best 
subset of features, curse of dimensionality, etc. 

3.2.1. Cloud Shadow Region Problem 
Doing data fusion between multimodal data comes with some chal-

lenges. For instance, in view of the shortage of direct illumination, ob-
jects under shadows reflect considerably fewer photons into an HS 

remote optic sensor. This mainly causes lower radiance levels near to 
noise in the cloud shadow areas. Therefore, shadow areas are affected by 
the reliable classification results. HS images cannot be sufficient for 
detecting or classifying an object under shadows. This process can be 
particularly challenging [44]. Hence, cloudy regions in HS images need 
to be modified for accurate classification performance. There have been 
several attempts to perform object classification in these shadow areas 
[45, 46]. Moreover, because of clouds emerging and moving irregularly, 
it is highly unpredictable to model their action. The shadow region and 
extracted shadow region can be easily seen from the University of 
Houston campus data in Figure 1. [47]; 

The spectral information under the cloud shadow region is 
completely different from the normal spectral signature of the sampled 
objects. This negatively affects the performance of the classification. For 
example, assume a region where there are partially occluding trees on a 
road. The differences in the elevation cause single pixels to have energy 
reflected from both the tree leaves and the road. The shade affects these 
pixels. This problem requires additional information resources to 
decrease these negative effects. Unlike HS sensors, LiDAR data can 
provide accurate data under almost any meteorological conditions 
without the requirement of any external source of illumination. Once 
these multimodal data are combined, it can make a supplementary effect 
for a more detailed interpretation of the land surface materials. The 
cloud-covered regions are categorized accurately by using features 
extracted from LiDAR data. For instance, extracted EMAPslid features 
from LiDAR data can be used for improving cloud-shadow region clas-
sification performance. Because LiDAR data cannot be influenced by the 
clouds. Radiances of materials in cloud shadow and noncloud shadow 
areas are very different from each other and can be easily seen in 
Figure 2. [47]. 

The cloud shadow region problem is a specific problem for HS-LiDAR 
data fusion. There are also several general problems that are related to a 
data fusion problem and also other kinds of data-processing problems. 

Figure 1. Shadow region on June 2012 over the University of Houston campus 
a) False RGB image of HS data and b) Extracted cloud shadow map [47]. 

Figure 2. Shadow and nonshadow regions have different reflectance values 
in [47]. 
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3.2.2. The selection of the best subset of features 
A fundamental step to obtain a powerful classifier in classification is 

to select the discriminative features. As there are many available attri-
butes (such as spectral, spatial, morphological, geometrical, topological, 
and textural features), the precise extraction of useful information is 
very difficult. The optimal feature subset selection should be optimized 
for reliable classification performance. To extract valuable features, a 
variety of approaches have been developed. For example, Random for-
ests (RF) provides a natural way to select features. In addition, fused 
features can be used to obtain accurate classification results. Some re-
searchers think that the fused features give better performance results in 
a lower dimensional subspace [48]. 

3.2.3. Curse of Dimensionality 
The increase in diverse number of features may lead to a high 

dimensionality problem on input features. Accordingly, spectral, spatial, 
and elevation features from different data modalities may lead to the 
excessive computational time and the problem of the curse of dimen-
sionality [49, 50]. To overcome this issue, different feature reductions 
[51], feature extraction [52], and feature selection approaches [53] can 
be performed. To address this problem, several studies have been re-
ported in the literature. In this review, these approaches have been 
categorized in terms of the applied technique. 

3.3. Available Datasets 

There are numerous HS-LiDAR and HS-SAR datasets. Several HS- 
LiDAR data sets are Tama Forest Science Garden in Tokyo-Japan, 
Samford ecological research facility, Queensland-Australia, Eastern 
part of Brussels, San Francisco-USA, Bosco della Fontana, Po Plain 
Mantua-Italy, Dafeng District Yancheng, Jiangsu Province China, Italian 
Alps, Municipality of Pellizzano, Trento-Italy, Forested area Wijnondale- 
Belgium, Extremadura-Spain, Mid Atlantic region of the USA, Palm 
species, Washintonia, California, Gulfport Mississippi, Optech Gemini 
LiDAR, Oregon State University-Valley Library, Gulfport Mississippi, 
and Univ. of Florida. HS-SAR data sets include Downtown area Winni-
peg Canada, Shimokawa Town, Hokkaido-Japon, Vicksburg Mississippi, 
The city of Munich-Berlin-Germany, Lobburi Nakhon, Ratchasima and 
Saraburi Thailand, Wilkinunich-Berlin, IKONOS Landsat & Radarsat 
Hyperion & HyMap AVIRS, Fontainebleau, forest South of Paris-France, 
Sanya region, Kjeller Norway, Radarsat-I and OMIS-I north suburb of 
Beijing-China, and ALOS PALSAR Vancouver Island British Columbia- 
Canada. HyMap HyEurope campaign DLR, TopoSys-DSMDatasets are 
provided by The Data Fusion Technical Committee (DFTC) of IEEE 

Geoscience and Remote Sensing Society are mostly used in the remote 
sensing data fusion community. This Society services as a multidisci-
plinary network for geospatial data fusion. DFTC also connects people 
and resources since 2006. The most frequently used datasets, provided 
by DFTC, are introduced in Table 1. 

4. The Classification of HS-LiDAR Data Fusion 

Data fusion is considered as the integration of several images into a 
new image using algorithms. Recently, it has become a new trend to 
apply multimodal data fusion in remote sensing applications. Several 
methods have been examined for the fusion of HS and LiDAR data for 
solving the problem of exploiting the information coming from multiple 
features. As Hossain et al. [67] said, there is no single remote sensing 
technology that is convenient for all remote sensing tasks. During the 
last decades, several researchers have performed the integration of HS 
and LiDAR data in different application areas such as the separation of 
vegetation classes, identification of tree species, forest structure anal-
ysis, shallow water bathymetry, classification of urban areas, forest fire 
management, above-ground biomass estimates, microclimate modeling, 
and fuel type mapping, etc. 

Different types of multimodal data fusion approaches have been 
studied. The data fusion approaches of HS-LiDAR can be categorized 
into several subtitles. These are feature-based, object-based, pixel-based, 
geometric-based, graph-based, kernel-based, ensemble-based, statisti-
cal-based, convolutional-based, and hybrid-based. 

4.1. Feature-based HS-LiDAR Data Fusion 

Features are the most fundamental characteristics in image pro-
cessing, including remote sensing applications. Therefore, the feature- 
level multimodal fusion framework is performed based on the extraction 
of several multimodal spectral and structural features from HS and 
LiDAR data. The general rationale of the feature-based multimodal data 
fusion approach is illustrated in Figure 4.1. Generally, a dimension 
reduction approach is applied to HS data, such as PCA or ICA. EAP/AP/ 
MP is performed on a reduced image. At the same time, EAP/AP/MP is 
applied to LiDAR data. The obtained features are given to the SVM 
classifier. Figure 3 shows the general rationale of the main idea of the 
feature-based HS-LiDAR data fusion as a flowchart. 

Next, we will consider feature-based HS-LiDAR data fusion ap-
proaches. Liao et al. [68] compare multiple-level features used for the 
fusion of HS-LiDAR data for classification of the urban area. They also 
demonstrate that approaches based on middle-level morphological 

Table 1 
IEEE GRSS Data Fusion Contest Data Sets  

Year Sensor Dataset Description Ref. 

2006 QuickBird, Pléiades MS and PAN Focus on pansharpening [54] 
2007 ERS, Landsat SAR and MS Land cover urban mapping [55] 
2008 ROSIS-03 HS Classification of HS data on urban area [56] 
2009- 

2010 
SPOT, ERS-1 Optical and SAR Change detection and the detection of flooded areas [57] 

2011 WorldView-2 MS, PAN, and LiDAR-DSM Object tracking [58] 
2012 QuickBird, WorldView-2, 

TerraSAR-X, DigitalGlobe 
MS, SAR, and LiDAR-DEM (i) Assessing urban density by MS-LiDAR, (ii) SAR-LiDAR data for change detection and 

image interpretation, and (iii) surface reflectance retrievals 
[59] 

2013 NSF-funded Center HS and 
LiDAR-DSM 

Unsupervised and supervised classification [60] 

2014 LWIR, VIS RGB data and long-wave 
(thermal) infrared HS 

Land cover classification [61] 

2015 CISS RGB images and 3-D 
LiDAR point cloud 

ISO containers identification in the 3-D [62] 

2016 Deimos-2 and Iris camera RGB images, PAN, and 
MS 

Registration, semantic segmentation, and change detection [63] 

2017 Landsat 8, Sentinel-2, and OSM MS and Vector data Local climate zones classification [64] 
2018 NCALM MS-LiDAR and HS Urban land use and land cover classification [65] 
2019 WorldView-3 and DigitalGlobe PAN, MS, and LiDAR semantic 3D reconstruction and stereo using machine intelligence and deep learning, 

Urban Semantic 3D data 
[66]  
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attribute features outperform methods based on high-level deep learning 
features. Hasani et al. [69] propose as an effective metaheuristic opti-
mization algorithm cuckoo search for feature-level fusion strategy by 
using a hybrid classification system for urban area classification. M. 
Khodadadzadeh et al. [70] propose a multiple feature learning strategy 
for fusion HS and LiDAR data for urban area classification. Hence, they 
integrate multiple types of features obtained from HS and the LiDAR 
data. These data contain spectral information and different types of MPs 
calculated for these datasets. This method also does not require any 
regularization parameter. Because these different types of features could 
be exploited and combined, R. Luo et al. [47] propose a framework that 
performs HS and LiDAR data classification based on feature fusion and 
decision fusion by merging characterization of spectral, spatial, and 
elevation features for the cloudy region. The proposed method includes 
three steps: (1) The extraction of cloud shadow regions, (2) feature 
fusion of spectral and spatial information (extracted from HS image) and 
elevation information (extracted from LiDAR data), and 3) decision 
fusion of cloud shadow and noncloud shadow regions. The elevation 
features are used as an input for RoF classifiers. They also emphasize 
that cloud shadow and noncloud shadow regions have different contri-
butions on the feature maps as per Equation (1) [13]: 

fij = gij × aij +
(
1 − gij

)
× bij (1) 

This means that this framework exploits two different contributions 
of two classification maps. Classification is performed separately in two 
regions: cloud shadow regions and noncloud shadow regions, by 
combining spectral (obtained from HS image), spatial (obtained 
morphological features extracted from HS image), and elevation (ob-
tained from morphological features extracted from LiDAR) features 
[47]. The final classification map is achieved by the combination of 
results of the cloud shadow and noncloud shadow regions. M. Pederg-
nana et al. [71] consider an AP for modeling the spatial information of 
LiDAR and HS data for the classification of urban areas by using the RF 
classifier. This classifier uses the features extracted from EAPs by 
exploiting optical and LiDAR data. F. M. B. Van Coillie et al. [40] present 
a feature fusion approach using different data sources in the PCA domain 
using HS and LiDAR data. This technique is tested for tree species 
mapping in forest canopy areas. This approach also uses the LiDAR 
height information for both the forest and tree species levels. S. 
Samiappan et al. [72] introduce a new fusion approach based on 

morphological AP and random feature selection (RFS) algorithms. They 
also use elevation information from the LiDAR data to resolve complex 
classes. F. Priem and F. Canters [73] combine HS data with LiDAR fea-
tures for shadow detection in urban scenes. They used 
intensity-brightness thresholding with the DSM method, which is 
applied for shadow detection. Two datasets are used from the Eastern 
part of Brussels for experimental studies. These are high-resolution 
APEX HS imagery and a discrete waveform LiDAR data. B. Rasti et al. 
[74] extract spatial and elevation information from HS and LiDAR data 
by using EPs. Then, they fuse extracted spectral, spatial, and elevation 
features from HS imagery and LiDAR by using orthogonal total variation 
component analysis (OTVCA). OTVCA can estimate the fused features in 
a lower-dimensional subspace at the same time. Obtained classification 
maps by using OTVCA preserve the structure, because of the exploitation 
of TV. M. Dalponte et al. [75] propose an approach to estimate forest 
characteristics for the fusion of HS and airborne laser scanning (ALS) 
data. They also perform the estimation of both the stem volume and the 
stem diameter at breast height. The fusion of these data is applied for 
individual tree crown (ITC) levels by using the ITC delineation module 
and grid search strategy. HS and ALS features are combined in both the 
estimation and classification steps. The authors claim that with this 
approach, all the required parameters for a forest inventory can be 
estimated accurately. W. Liao et al. [76] fuse the multiscale features by 
modeling the local spatial information for tree species mapping on HS 
and LiDAR data. They generate multiscale features by considering the 
diameter and the height information of different tree species on multi-
modal data. This fuses the multiscale feature fusion that generates better 
tree species mapping results. X. Xu et al. [77] use a multiple morpho-
logical component analysis (MMCA) method to extract textural features 
in the HS data. These features are combined with the height features in 
the LiDAR data to get more accurate classification performance. Then, 
they perform a classification by using the multinomial logistic regression 
classifier (MLR). B. Rasti et al. [48] suggest a sparse and low-rank 
component analysis (SLRCA) approach for the fusion of HS and 
LiDAR-derived features. The approach consists of two steps: First, the 
extraction of spatial and elevation information from HS and LiDAR data 
is executed by using EPs. Second, the estimation of low-rank fused fea-
tures is done by the utilization of a sparse and low-rank method. T. 
Matsuki et al. [35] propose a strategy that involves the combination of 
HS imagery and LiDAR data for individual tree classification. They also 
obtain spectral features of trees using PCA transformation on the HS 
data. The size and shape information of individual trees are acquired 
from the LiDAR data. Both spectral and tree-crown features are fused 
and used as an input SVM classifier. By using this tree-crown informa-
tion and shadow correction, the classification performance is improved. 
The general behaviors of feature-based classification of HS-LiDAR data 
fusion are summarized in Table 2. 

4.2. Object-based HS-LiDAR Data Fusion 

Object-oriented classification is a developing technology that is 
considered as the understanding of objects versus pixels. An image ob-
ject can be considered as a homogeneous set of pixels of similar spectral 
attributes [78]. Classification based on objects has three steps: (1) seg-
mentation of image objects, (2) extraction of object-based scales, and (3) 
classification using object-oriented scales such as shape, compactness, 
texture, and other attributes [79]. In the object-based approach, 
different shape characteristics of the segmented objects are incorporated 
into geometrical information. In [80], LiDAR data are used for seg-
mentation and then HS image is used to classify these segments. P. R. 
Marpu and S. S. Martinez [81] perform multiple-level image segmen-
tation for the fusion of HS-LiDAR data. First, they carry out image seg-
mentation on the extracted features from HS data. Later, information 
extracted from the LiDAR data is used for the classification process. Z. 
Zhu and C. E. Woodcock [46] investigate the object detection and 
classification process under shadow areas. They introduce simple 

Figure 3. Flowchart of the main idea of the feature-based multimodal 
data fusion. 
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radiance correction methods such as Tmask (multi-temporal mask) and 
Fmask (Function of mask) to compare spectral signatures of pixels with 
and without sunlight areas. A. V. Kanaev et al. [82] present a man-made 
target detection approach by using HS detection score localization 
metric in object-level to find man-made objects. First, a LiDAR sensor 
remotely selects objects to fit into a physical dimension. Later, the 
spectral signature of each object is obtained by computing the correla-
tion score obtained with detection methods such as including the 
adaptive cosine/coherence estimator and the spectral matched filter 
(MF). M. Alonzo et al. [83] investigate the crown-object level fusion of 
an HS image and structural metrics extracted from the 3-D LiDAR point 
cloud. First, a watershed segmentation algorithm is used to delineate 
individual crowns from a gridded canopy maxima model. Later, spectra 
are extracted for each segment by using NDVI and structural metrics. 
After performing fusion, crowns are classified by canonical discriminant 
analysis. F. Leonardi et al. [84] propose a methodology that jointly 
employs cognitive approaches (i.e., semantic net) and data mining (i.e., 
genetic algorithms) for land cover urban area mapping. Height infor-
mation derived from LiDAR data is used to the MS images to help the 
discrimination between targets with similar spectral objects. 

K. Kiani et al. [85] introduce a classification strategy in an iterative 
Segmentation-Classification-Merging (SCM) process for object-based 
classification. In each iteration step, image objects are defined by 
using their spectral, height, and geometric characteristics. The general 
behaviors of object- based classification of HS-LiDAR data fusion are 
summarized in Table 3 above. 

4.3. Pixel-based HS-LiDAR Data Fusion 

Pixel-based data fusion becomes an evolving technology that is used 
by operating pixel by pixel. There are many pixel-based data fusion 
approaches. For pixel-based fusion, a fundamental pre-processing step is 
the spatial alignment of the LiDAR and optical data, which is known as 
image registration. H. Aytaylan and S. E. Yuksel [86] introduce a novel 
semantic segmentation approach. They simultaneously cluster and label 
pixels. They also introduce an MRF-based approach by combining 
spectral information from HS image and elevation and intensity infor-
mation from the LiDAR data for improving classification results. R. Luo 
et al. [13] present a framework for cloudy HS and LiDAR data classifi-
cation. This framework contains three steps: (1) cloud shadow extrac-
tion, (2) feature fusion between spectral, spatial (from HS), and 
elevation (from LiDAR) features, and (3) decision fusion of cloud and 
noncloud regions. Y. Liu et al. [87] propose a new spectral-spatial 
classification method by jointly using HS and LiDAR data. They 
perform data fusion in three levels: 1) the superpixel generation method 
is used for image partitioning, 2) for feature extraction a multimodal 
framework is generated, and 3) a convex framework with vectorial and 
superpixel-based graph total variation regularizers are performed. A. 
Castrodad et al. [88] suggest a sparse modeling approach by using a 
point cloud LiDAR and HS data for subpixel mapping and classification. 
They propose an unsupervised algorithm that learns a structured dic-
tionary. This dictionary expresses each pixel as a sparse linear combi-
nation of its atoms. This provides better abundance mapping estimation. 

Table 2 
Feature-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Multiple kernel features Morphological and deep learning 
features 

Urban area classification 2013 IEEE GRSS Contest data [68] 2017 

Feature level fusion, cuckoo search, and 
hybrid classification 

Spectral and structural features Urban area classification 2013 IEEE GRSS Contest data [69] 2017 

Multiple feature learning Multiple types of features Urban area classification 2013 IEEE GRSS Contest data [70] 2015 
Multiple feature classification AP,MAP,EAP, EMAP, and MoAPs Classification 2013 IEEE GRSS Contest data [47] 2017 
Feature fusion and classification of features EAPs and GLCM features Rural area classification Urban area of the city of Trento, Italy [71] 2012 
Feature fusion PCA transformed features Tree species mapping Forest reserve Wijnondale, Belgium [40] 2015 
RFS MAPs, area, STD, and inertia Land cover classification Samford ecological research facility, 

Queensland, Australia 
[72] 2016 

Shadow detection method based on LiDAR 
intensity brightness 

Height, slope, and roughness 
features 

Urban land cover mapping Eastern part of Brussels [73] 2016 

OTVCA-based feature fusion EPs Urban area and rural region 
Classification 

Houston-USA and Trento-Italy [74] 2017 

ITCs delineation module and grid search 
strategy 

CHM and ALS features Classification of tree species Italian Alps, Municipality of Pellizzano, 
Trento-Italy 

[75] 2014 

Multiscale features fusion, Multiscale features Tree species mapping Forested area Wijnondale, Belgium [76] 2017 
MMCA and MLR classifier Textural and height features Classification Extremadura, Spain [77] 2016 
SLRCA and RF EPs Classfication 2013 IEEE GRSS Contest data, Trento- 

Italy 
[48] 2017 

Shadow correction and individual tree 
crown delineation 

CHM, DSM, tree-crown features, 
size, and shape 

Tree species classification Tama Forest Science Garden, Tokyo [35] 2015  

Table 3 
Object-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Multiple level image segmentation Spectral and spatial Urban area classification 2013 IEEE GRSS Contest data [81] 2015 
Tmask, Fmask, and simple radiance correction 

method 
Spectral and contextual information Cloud, cloud shadow, and 

snow detection 
Northeastern, United States [46] 2014 

Detection score localization metric and spectral MF DEM Man-made target/object 
detection 

Mid Atlantic region of the USA [82] 2011 

Watershed segmentation, gridded canopy maxima 
model, and crown object level fusion 

Crown and structural features Urban tree species mapping Palm species, Washintonia, 
California 

[83] 2014 

Genetic algorithm and cognitive approaches DHM, DSM, DTM, spectral, 
geometric, topological, textural 

Urban area mapping Uberlandia city, Southeastern, 
Minas, Gerais, Brazil 

[84] 2012 

SCM spectral, height, and geometric Object-based classification 2013 IEEE GRSS Contest data [85] 2014  
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H. Wang et al. [89] propose a voxelization method to use raw FWL data 
with HS image by the division of the waveform information into voxels. 
Later, they synthesize all waveforms that intersect a voxel into one 3D 
superposition waveform. Finally, they compare the synthesized wave-
form with a nadir LiDAR waveform with the voxel of interest. T. Uezato 
et al. [90] present a strategy that incorporates LiDAR-DSM spatial 
neighborhood information into HS spectral unmixing by using the 
spatial regularization. Results showed that the use of LiDAR data can 
improve the abundance estimation and robustness. Mahmoudabadi 
et al. [91] present an algorithm for feature extraction. They use the 
advantage of both colorimetric and geometric data. This approach 
contains three main phases: 1) a Simple Linear Iterative Clustering 
(SLIC) superpixel algorithm is performed for clustering and then 
dividing the colorimetric data, 2) a plane-fitting technique is used on 
each smaller cluster to obtain a set of normal vectors, and 3) the Least 
Squares Multi-class Support Vector Machine (LSMSVM) is used for 
classifying each cluster. E. Puttonen et al. [92] test The Finnish Geodetic 
Institute’s (FGI) HS-LiDAR (HSL) system for differentiating man-made 
objects from natural ones by using their spectral response. They clas-
sify spatially delineated objects by using the k-nearest neighbor algo-
rithm for each pixel spectra. They show that HS laser scanning systems 
have clear potential in changing lighting conditions. S. Y. Sadjadi and S. 
Parsian [93] perform the fusion of HS and LiDAR data at the pixel level 
by using a machine learning algorithm. They apply the ensemble 
learning method on the fused data for building extraction. They also use 
a sequence of classifiers and then take the average value of the obtained 
results to assign the label to each pixel. Thus, high accuracy in building 
detection is achieved. 

The general behaviors of pixel-based classfication of HS-LiDAR data 
fusion are summarized in Table 4. 

4.4. Geometric-based HS-LiDAR Data Fusion 

In geometrical-based HS-LiDAR data fusion, the geometrical features 
are obtained through different kinds of ways before the performance of 

the fusion process. T. Matsuki et al. [94] propose an approach that uses 
HS data with morphological information of LiDAR-CHM data for tree 
species classification in Japanese forests. They perform star-shaped 
geometrical estimation on ITC delineation LiDAR-CHM data. Later, 
they perform classification by SVM and post-processing with a 
smoothing filter. J. Broadwater and A. Banerjee [95] merge standard 
atmospheric compensation techniques with LiDAR DSM data and Elab-
oration Likelihood Model (ELM) to improve reflectance estimates of HS 
data. They also measure scene geometry by using color image showing 
locations by the aid of LIDAR data. D. Lemp and U. Weidner [96] 
introduce an approach for the classification of roof surfaces by using 
geometrical and spectral segmentation. Laser scanning provides the 
necessary geometric information. They use geometrical segmentation 
with the aid of the eCognition software tool for roof surface patches. C. 
Dechesne et al. [97] investigate the fusion of LiDAR and MS images by 
using the information about the tree species obtained from MS images 
and geometric information obtained from 3D LiDAR point clouds data 
for forest segmentation and mapping. They perform the fusion in three 
different steps with a semantic segmentation framework: over-
segmentation, classification, and regularization. The obtained results 
indicate that oversegmentation can be performed either on LiDAR or 
optical images for better classification results. The general behaviors of 
geometric-based classification of HS-LiDAR data fusion are summarized 
in Table 5. 

4.5. Graph-based HS-LiDAR Data Fusion 

To obtain better clustering performance, the similarity relationship 
between pixels can be described by using graphs. The similarity between 
two vertices can be defined by using a single similarity function. This 
function can be fed different features extracted from images. There are 
some graph-based multimodal data fusion studies in the literature. W. 
Liao et al. [98] propose a generalized version of a graph-based feature 
fusion method for the classification process. In this fusion method, they 
use spectral, spatial, and elevation information to better model the 

Table 4 
Pixel-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Semantic segmentation algorithm Fisher vector, spectral, elevation, and 
intensity 

Classification 2013 IEEE GRSS Contest data [86] 2016 

Feature fusion and decision fusion APs, EMAPs, DSM, spectral, spatial, and 
elevation 

Urban area classification 2013 IEEE GRSS Contest data [13] 2016 

Superpixel-based graph total variation 
regularizers 

APs, EAPs, and spatial Classification 2013 IEEE GRSS Contest data [87] 2017 

Sparse modelling algorithm Geometric and spectral Sub-pixel mapping and 
classification 

Gulfport Mississippi [88] 2012 

Voxelization method FWL measurements Preserve the characteristics of 
objects 

Optech Gemini LiDAR [89] 2013 

Spatial regularization DSM Improvement abundance 
estimaton 

2013 IEEE GRSS Contest data [90] 2018 

SLIC clustering, plane fitting technique, and 
LSMSVM 

Geometric and colorimetric data Segmentation an classification Oregon State University, Valley 
Library 

[91] 2013 

FGI-HSL Red-edge feature Detecting man-made targets Southern Finland, Helsinki [92] 2015 
Decision tree and machine learning 

algorithm 
Height, elevation, spatial, size, shape, and 
orientation 

Detect buildings 2013 IEEE GRSS Contest data [93] 2017  

Table 5 
Geometric-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Shadow correction and individual 
tree crown delineation 

CHM, spectral, and morphological 
information 

Tree species classification Tama Forest Science Garden in Tokyo, 
Japan 

[94] 2014 

3D model are combined with 
ELM 

Geometric properties (line-of-side) and DSM Atmospheric compensation Gulfport Mississippi, Univ. of Florida [95] 2013 

Geometric segmentation using 
eCognition software 

Geometry, slope, exposition, size, DSM, and 
spectral 

Urban roof surface 
classification 

HyMap HyEurope campaign DLR, 
TopoSys-DSM 

[96] 2005 

Semantic segmentation, 
classification, and regularization 

Geometric features-LiDAR ponit cloud DSM Forest inventory and 
mapping 

Forest in the east of France, Optech [97] 2017  
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actual similarity of the connected nodes in multimodal data. They also 
applied a graph-based feature fusion method and decision fusion 
method on the same datasets for better classification accuracies [99] W. 
Liao et al. [100] present a semi-supervised graph-based fusion by using 
the morphological features from HS and LiDAR data for classification. 
They project the spatial, spectral, and elevation features onto a lower 
subspace through a semi-supervised graph-based feature fusion pro-
cedure. The obtained results show improvement of the classification. 
The general behaviors of graph-based classification of HS-LiDAR data 
fusion are summarized in Table 6. 

4.6. Kernel-based HS-LiDAR Data Fusion 

The kernel fusion framework has been used to solve the classification 
problems in multisource data fusion. There are several studies about 
kernel-based multimodal data fusion. M. Khodadadzadeh et al. [101] 
propose a generalized composite kernel strategy for the fusion of HS and 
LiDAR data for classification purposes over a rural area in Extremadura, 
Spain. To carry out fusion, first, they extract morphological features 
from the LiDAR intensity image. Then, these LiDAR-derived feature 
vectors and the spectral vectors derived from HS imagery are integrated 
with each other in a generalized composite kernel structure. The results 
of multinomial logistic regression generalized composite kernel 
(MLR-GCK) results outperform the results of SVM classifier. P. Ghamisi 
et al. [102] derive a multisensor composite kernel (MCK) approach by 
using extreme learning machine to fuse the complementary information 
of HS and LiDAR data. Then, they propose a feature fusion strategy 
named HS Stein’s unbiased risk estimator (HySURE)-MCKs . They use 
EPs to obtain spatial and elevation information from HS and LiDAR data, 
respectively. Moreover, they also use HySURE to extract the subspace 
spectral, spatial, and elevation features. Finally, the obtained features 
are used as an input to the MCK to extract the final classification map. Y. 
Gu et al. [103] present a multiple-kernel learning (MKL) model by 
integrating heterogeneous features (HF-MKL) from HS spectral images 
and LiDAR data for urban classification. They integrate multiscale 

kernels with different features by using a linear combination strategy 
and then perform the optimization between this kernel and conventional 
to obtain a better classifier. The general behaviors of kernel-based 
classification of HS-LiDAR data fusion are summarized in Table 7. 

4.7. Statistical-based HS-LiDAR Data Fusion 

Different kinds of statistical approaches have been employed for 
fusing HS and LiDAR data. We will now give a literature survey about 
statistical-based HS-LiDAR data fusion approaches. L. Ni et al. [104] 
propose an edge-constrained Markov random field (EC-MRF) procedure 
for urban area land cover classification. They use HS and LiDAR data for 
pixel-wise classification. They also use MRF for spatial regularization. 
EC-MRF approach controls the smoothness and preserves the class 
boundaries. Results obtained with the EC-MRF approach show highly 
accurate spectral–spatial classification results. B. Abbasi et al. [105] 
extract features and then Maximum Likelihood (ML) classifiers are 
performed independently on both HS and LiDAR data. Finally, a decision 
fusion method is applied to obtain better classification results. M. Dal-
ponte et al. [106] use Gaussian maximum likelihood (GML) with 
leave-one-out-covariance algorithm (GML-LOOC) for complex forest 
area classification. The proposed system provides effective classification 
results with high accuracy in complex forest classes. H. Wu and S. Prasad 
[107] employ a decision fusion system based on logarithmic opinion 
pools (LOGP) by using an infinite Gaussian mixture model (IGMM) 
based classifier (IGMM-LOGP) for accurate geospatial image classifica-
tion. The general behaviors of statistical-based classification of 
HS-LiDAR data fusion are summarized in Table 8. 

4.8. Ensemble-based HS-LiDAR Data Fusion 

In recent years, the ensemble method is a very popular approach for 
image classification. This method does not apply to one particular 
classifier. Instead, a series of classifiers are used, before the results’ 
average is used to assign the label of a pixel. What follows is a literature 

Table 6 
Graph-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Generalized graph-based fusion method MPs, spectral, spatial, and elevation characteristics Classification 2013 IEEE GRSS Contest data [98] 2015 
Graph-based feature fusion MPs and spectral Classification 2013 IEEE GRSS Contest data [99] 2014 
Semi-supervised graph-based fusion framework MPs and spectral information Classification 2013 IEEE GRSS Contest data [100] 2015  

Table 7 
Kernel-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

MLR-based generalized composite kernel 
and MLR-GCK 

Spectral, spatial, height, morphological 
features, and intensity 

Classification Extremadura, Spain [101] 2015 

MCKs, KELM-CK, and HySURE-MCKs EPs, DSM, and spectral Complex scene 
classification 

Houston Univ., Trento Italy [102] 2019 

HF-MKL feature fusion HF, elevation, MPs, and NDSM Urban classification San Francisco-USA, 2012 IEEE GRSS 
Contest data 

[103] 2015  

Table 8 
Statistical-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

EC-MRF DSM Urban area land cover 
classification 

2013 IEEE GRSS Contest 
data 

[104] 2015 

Texture feature extraction on GLCM, minimum noise fraction 
dimension reduction, and ML classification 

Geometric information, 
elevation, and spectral 

Classification in urban 
areas 

2013 IEEE GRSS Contest 
data 

[105] 2015 

GML-LOOC Elevation, intensity, and DTM Classification of complex 
forest areas 

Bosco della Fontana, Po 
Plain Mantua, Italy 

[106] 2008 

Decision fusion and IGMM-LOGP Statistical, geometric, and 
structure 

Geospatial image 
classification 

2013 IEEE GRSS Contest 
data 

[107] 2013  
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survey about ensemble-based HS-LiDAR data fusion approaches. S. 
Sukhanov et al. [108] present an ensemble-based approach based on MS, 
LiDAR, HS, and RGB imagery for urban land use and land cover classi-
fication. This approach contains Random Forest (RF) and Gradient 
Boosting Machines (GBM) classifiers and Convolutional Neural Net-
works (CNNs). Sukhanov et al. [109] apply the same technique in [108] 
for automatic local climate zones classification, the fusion of MS images 
from Landsat-8, and Sentinel-2 satellites with site description extracted 
from OpenStreetMap layers from LiDAR data. J. Xia et al. [110] propose 
a novel ensemble classifier using morphological features for HS and 
LiDAR data. This ensemble classifier includes PCA, linearity preserving 
projection, and unsupervised graph fusion methods. Experimental re-
sults show that the proposed ensemble classifier approach is effective. Y. 
Du et al. [36] suggest a new approach to classify the local climate zones 
based on ensemble learning methods on Landsat-8 data and open street 
map data. They extract spectral-spatial features, such as spectral in-
dexes, morphological profiles, and spectral reflectance. For the classi-
fication steps, Rotation Forests and Canonical Correlation Forests are 
used. This technique reaches a relatively reliable accuracy. Table 9 
summarizes ensemble-based classification of HS-LiDAR data fusion. 

4.9. Convolutional-based HS-LiDAR Data Fusion 

Since the last decades, traditional classification techniques such as 
SVM and RF classifiers used in several ensemble approaches have been 
changed by more sophisticated architectures of Neural Networks 
allowing one to consider different aspects of multimodal data. Recently, 
deep learning-based methods have aroused wide attention for their 
capability to extract high-level features. There exist some studies about 
convolutional-based HS-LiDAR data fusion. M. Salman ve S.E. Yüksel 
[111] extract MP maps from the HS and LiDAR images. Then, they 
integrate HS spectral data and MP with each other. They filter elevation 
information from LiDAR data by using the filters in the first convolution 
layer of AlexNet, which has a highly efficient deep convolutional ar-
chitecture in image processing. P. Ghamisi et al. [112] develop the deep 
CNN with logistic regression. They use EPs and deep learning to fusion 
features extracted from HS and LiDAR data for the classification of land 
cover classes. Y. Chen et al. [113] present a new feature fusion strategy 
using a deep neural network (DNN). They use the 3D CNN for extracting 
the spectral-spatial features from HS data and a deep 2D CNN for 
extracting the altitude features of LiDAR data. Finally, they apply lo-
gistic regression to generate the final classification map. J. Xia et al. 

[114] introduce a fusion strategy by using Deep Forest (DF) classifier on 
HS and LiDAR datasets with morphological features. DF has more ad-
vantages such as achieving better results with shorter computational 
time than deep neural networks. Moreover, DF classifier has fewer pa-
rameters to be set. Experimental results show that the DF can achieve 
better classification results. Compared with traditional classification 
methods, deep learning-based classifiers have great potential to obtain 
high classification performance for mixed and complex inputs. There are 
several deep fusion methods in the literature that integrate multisensor 
data for classification, with significant improvements over current deep 
feature fusion architecture. These deep fusion methods confirm that 
combining HS and LiDAR data has significantly improved the classifi-
cation accuracy using CNN features [140-145], deep NETs [142], fully 
convolutional networks [145], based on Dual-Branch CNN [141], and 
high-level deep learning features [140]. The classification performance 
of CNNs increases when HSI and LiDAR data are combined at the pixel 
level [143]. With the graph-based fusion method, deep learning fusion 
gets much better classification accuracies than raw data fusion. In all 
those works, the use of LiDAR along with optical data leads to better 
results with respect to classification accuracies, and it indicates that the 
CNN is an efficient tool for the fusion of LiDAR and HS data. 

The general behaviors of convolutional-based classification of HS- 
LiDAR data fusion are summarized in Table 10. 

4.10. Hybrid-based HS-LiDAR Data Fusion 

The hybrid-based multimodal data fusion approach uses more ap-
proaches in a combined usage at the same time. For example, pixel- 
based and feature-based approaches. The pixel and object-based classi-
fiers are used by Q. Mana et al. [115] for urban land use classification. In 
their work, maximum likelihood classification (MLC), the SVM, and 
object-based classifiers are applied for the classification of LiDAR and HS 
imagery. Their derived features such as the normalized digital surface 
model (nDSM), NDVI, and texture measures are also used. The obtained 
results demonstrate that the combination of LiDAR nDSM, intensity 
data, and HS data with combined pixel- and object-based classification 
gives better land use classification performance. 

The general behaviors of hybrid-based classification of HS-LiDAR 
data fusion are summarized in Table 11. 

Table 9 
Ensemble-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

RF classifer, GBM ensemble-based classifier, and 
CNN 

DSM, DEM, NDVI, and morphological 
texture contrast (MTC) 

Urban land cover 
classification 

2018 IEEE GRSS Contest data [108] 2018 

CNN, RF, and GBM Spatial, NDI, NDMI, OSM, AVI, MNF, and 
SI 

Local climate zone 
classification 

2017 IEEE GRSS Contest data [109] 2017 

PC analysis, linearity preserving projection, and 
unsupervised graph fusion 

DSM, morphological, spatial, and 
elevation 

Classification 2013 IEEE GRSS Contest data [110] 2018 

Canonical correlation and rotation forest DEM, DSM, CHM, Spectral, and structural Wetland vegetation 
classification 

Dafeng District Yancheng, 
Jiangsu Province China 

[36] 2019  

Table 10 
Convolutional-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Deep convolutional architecture MPs and EMAPs Classification and semantic 
segmentation 

2013 IEEE GRSS Contest 
data 

[111] 2018 

Deep learning, graph-based feature fusion, and 
CNN with logistic regression 

MP, EPs, APs, EMEP, MEP, and DSM Classification 2013 IEEE GRSS Contest 
data, Trento Italy 

[112] 2017 

DNN, 3D-CNN, and logistic regression Elevation, spectral, spatial, and invariant 
features 

Classification 2013 IEEE GRSS Contest 
data 

[113] 2016 

Deep learning classifier method and DF classifier DSM, CHM, morphological, spatial, and 
elevation features 

Classification Tama forest, Tokyo, Japan [114] 2018  
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4.11. Filter-based HS-LiDAR Data Fusion 

C. Demirkesen et al. [116] present a multimodal architecture by 
separation of the region shadow and nonshadow areas, respectively. 
They use polynomial fitting-based DEM feature extraction approach. 
They implement a filter for deriving shadow invariant features from a 
pixel spectrum in one dimension. They also use height profile evaluation 
techniques and context-based correction for post-processing steps. The 
general behaviors of filter-based classification of HS-LiDAR data fusion 
are summarized in Table 12. 

5. The Classification of HS-SAR Data Fusion 

Different types of multimodal data fusion approaches have been 
studied about HS and PolSAR data. A. S. P. Bhogall et. al. [117] present a 
study that assesses forest attribute determination by using HS-SAR data 
fusion over the Greater Victoria Watershed District test site on Van-
couver Island, BC, Canada. To identify spatially homogeneous objects, 
they use segmentation techniques to measure the forest attributes. They 
also compute forest biomass by using MS, HS, and SAR data sets. 

The data fusion approaches of HS-SAR can be categorized into 
several subtitles. These are feature-based, object-based, pixel-based, 
kernel-based, convolutional-based, and filter-based approaches. A 
graphical representation of the general rationale of the HS-SAR multi-
modal data fusion approach is illustrated in Figure 5.1. Generally, band 
selection/transformation/segmentation/ Normalized cut (NCUT) can be 
applied to HS data and segmentation/NCUT can be performed to SAR 
data, simultaneously. Later, these results are combined and are given as 
an input to SVM/RF classifier. We can see the most frequently used 
classifiers for HS-SAR data fusion i.e., the minimum distance (MD), a 
support vector machine (SVM), ML, and artificial neural network (ANN) 
classifiers. 

Feature normalization is an important step before fusing the datasets. 
As optical and SAR sensors have different imaging mechanisms, most of 
the normalization techniques are not favorable for optical and SAR data 
fusion. H. Zhang et al. [118] investigate the effects of feature normali-
zation during the data fusion process on the LULC classification between 
optical and SAR data. They use MD, ML, ANN, and SVM methods for 
comparison. They conclude that feature normalization has no influence 
on the results when using these classifiers. All proposed approaches have 
tried to overcome some difficulties by using correlation or dependencies 
between two sensor data. In this part of this review paper, HS-SAR Data 
Fusion approaches are categorized in terms of their utilized methods. 
The main idea of the HS-SAR data fusion is introduced as a flowchart in 
Figure 4. Spectral/spatial information obtained from HS data and 
structural/textural information can be extracted from PolSAR data, 
respectively. Later, band selection/transformation/segmen 
tation/NCUT could be applied to HS data and segmentation/NCUT 
could be applied to PolSAR data on these feature-extracted images, 
respectively. Finally, SVN/RF/MD classifier can be applied to obtain a 

fused image. 

5.1. Feature-based HS-SAR Data Fusion 

Features extracted from multiple modalities can provide comple-
mentary information. SAR and MS have potential synergies, because 
they give complementary information about the Earth’s surface. While 
MS gives chemical characteristic information of materials, SAR sensors 
provide scattering properties of the objects in the observed scene. Hence, 
image fusion is a very effective process to remove individual sensor 
limitations [119]. Multisensor remotely sensed imagery is a very 
powerful data for the extraction of forest feature information. In the 
feature-level data fusion, noise can be avoided by using the feature 
extraction approaches. For example, feature extraction double nearest 
proportion can be applied for noise reduction [120]. There are several 
studies about HS-SAR feature-based data fusion in the literature. T. Li 
et al. [121] propose a fusion approach with a synergic use of HS and 
PolSAR data. They use parallel feature fusion combination strategy by 
combining the feature-level fusion and decision-level fusion. The feature 
fusion classification technique relies on a parallel feature combination, 
while the decision level classification depends on the fuzzy set theory. 
Experimental results demonstrate that the proposed synergic method 
has better classification performance results. K. Yoshida et al. [122] 
implement forest monitoring schemes using HS images and PALSAR 
observations. They use two sparse regularization techniques to estimate 
species. These are sparse discrimination analysis (SDA) and LASSO 
regression analysis. The features, such as canopy cover, timber volume, 
and the height of trees are extracted from PALSAR. Later, these features 

Table 11 
Hybrid-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Pixel and object-based classifiers and 
MLC 

DSM, DEM, intensity, height,spatial, nDSM, NDVI, and 
texture measures 

Urban land use 
classification 

2013 IEEE GRSS Contest 
data 

[115] 2015  

Table 12 
Filter-based Classification of HS-LiDAR data fusion  

Approach Feature Description Datasets Ref. Year 

Multimodal architecture and polynomial 
fitting-based DEM feature extraction 

DEM shadow invariant 1-D feature NDWI, DSM, DTM, slope, 
curvature, and polinomial surface fitting-based features 

Land cover and land use 
classification 

2013 IEEE GRSS 
Contest data 

[116] 2014  

Figure 4. Flowchart of the main idea of the HS-SAR data fusion.  
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are combined and are given as an input to the sparse regularization 
machine learning technique. The obtained results demonstrate that 
sparse regularization can predict forest conditions with better accuracy. 
P. Chouinard et al. [10] investigate the trafficability areas in terms of the 
complementary nature of SAR and HS data. They perform fusion at the 
feature and decision levels to decide the trafficability areas. Su M. Hsu 
et al. [123] apply PCA on HS data to perform spectral dimension 
reduction and feature extraction for terrain characterization and cam-
ouflage net detection in the forest background. HS-SAR fusion is ach-
ieved with a coregistration of the images using references and a 
significant reduction of SAR false alarms is obtained. 

A. Jouan and L. M. Canada [124] introduce the synergistic feature 
fusion between SAR and HS imagery for land use mapping. This data 
fusion module integrates PolSAR and HS data using the evidence theory 
suggested by Dempster-Shafer. They indicate that this synergistic fusion 
improves the description of land cover. The general behaviors of fea-
ture-based classification of HS-SAR data fusion are summarized in 
Table 13. 

5.2. Object-based HS-SAR Data Fusion 

Discriminatory object information could be obtained from SAR im-
ages features. Object-level multimodal data fusion approaches based on 
optical and SAR data provide novel aspects for the automated detection 
of different kinds of materials. There are some literature studies about 
object-based HS-SAR data fusion. J. Hu et al. [125] present an 
object-based fusion approach for the joint use of PolSAR and HS imagery 
for land use classification. They perform the extraction of features from 
both datasets based on an object level. This approach overcomes the 
geometrical mismatch problem between these two complementary 
datasets. Experimental results show that this approach uses scattering 
information of PolSAR and spectral information of HS image efficiently. 
K. Spröhnle et al. [126] investigate the automatic detection of dwelling 
types in a refugee camp through object-based image analysis technique 
by using very high spatial resolution optical WorldView-2 and single--
polarized TSX SAR satellite data. As SAR data give an efficient charac-
teristic for the detection of metal sheet housings, they use this property 

efficiently. First, they examine independently the optical data and SAR 
data and then they perform fusion by applying two steps: 1) the detec-
tion of optical- and SAR-based dwelling is performed with an overlay 
operation-based approach and 2) a feature-based analysis approach is 
performed. 

The general behaviors of object-based classification of HS-SAR data 
fusion are summarized in Table 14. 

5.3. Pixel-based HS-SAR Data Fusion 

In pixel-based image fusion methods, image pixels are combined 
directly to get enhanced spatial-spectral information [127]. Generally, 
the pixel-level data fusion approach is not appropriate for SAR data 
because of the speckle noise. It requires high computational cost. C. 
Sukawattanavijit et al. [128] perform the GA-SVM algorithm for the 
fusion of multiple image modalities at a pixel level. In this approach, the 
genetic algorithm and SVM classifier are used for labeling the data. They 
classify multifrequency RS2 SAR images and Thaichote (THEOS) MS 
images. The experimental results demonstrate that the GA-SVM 
approach gives better performance results than that of the grid search 
algorithm. L. Dabbiru et al. [129] apply the pixel-level fusion ap-
proaches on polarimetric radar and HS images to examine the advan-
tages of fusion for advanced classification of coastal vegetation 
contaminated by oil. Then they use the SVM classification algorithm 
with the gray-level co-occurrence matrix features. The multisensor 
fusion strategy with an overall accuracy of the fused feature set shows 
better classification performance results. The general behaviors of 
pixel-based classification of HS-SAR data fusion are summarized in 
Table 15. 

5.4. Kernel-based HS-SAR Data Fusion 

N.M. Nasrabadi [130, 131] implement a new nonlinear joint fusion 
and detection algorithm for locating anomalies from SAR and HS sensor 
data by using the kernel RX algorithm. In this approach, they exploit 
nonlinear correlation or dependencies between the two sensors to 
simultaneously fuse and detect the mines. As an anomaly detector, the 

Table 13 
Feature-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

Feature and decision level fusion and parallel 
feature combination strategy 

Polarimetric features and HS features Classification Downtown area Winnipeg 
Canada 

[121] 2013 

SDA and LASSO regression Tree height, canopy cover, timber volume, 3 
polarimetries, and HH/HV/VV 

Forest management Shimokawa Town, 
Hokkaido, Japon 

[122] 2011 

Feature and decision-level fusion Vegetation terrain, slope, hydrology, 
transportation networks, and DEMs 

Trafficability assesment HyMap and NASA Jet 
Propulsion Lab. 

[10] 2006 

PC for dimension reduction and feature 
extraction 

Eigenvalues, eigenvectors, and terrain features Terrain mapping and 
camouflage net detection 

Vicksburg Mississippi [123] 1999 

Feature fusion and Dempster-Shafer evidence 
theory 

Textural and fusion features Land use mapping Indian-Head 
Saskatchewan 

[124] 2004  

Table 14 
Object-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

Segmentation by using NCUT HH/HV features and derived 
probability features 

Land use classification The city of Munich, Germany [125] 2016 

Segmentation, feature selection, and rule-based 
classification 

Material structure and dwelling density Dwelling detection in refugee 
camps 

AI Zaatari refugee camps, 
Jordan, Syria 

[126] 2017  
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RX algorithm is extended to investigate fusion and detection at the pixel 
level. Therefore, they perform the fusion nonlinearly for the detection of 
surface and buried mines. The general behaviors of kernel-based clas-
sification of HS-SAR data fusion are summarized in Table 16. 

5.5. Convolutional-based HS-SAR Data Fusion 

R. Fernandez-Beltran et al. [127] investigate the application of 
probabilistic latent semantic analysis (pLSA) and latent Dirichlet allo-
cation to SAR and MS data for land cover categorization. They perform 
pLSA-based approach to use feature patterns from SAR and MS data for 
fusing. In that way, they perform an effective fusion of MS and SAR data 
in the land cover categorization field. R. Fernandez-Beltran et al. [132] 
introduce a hierarchical multimodal probabilistic latent semantic anal-
ysis (HMpLSA) techique for fusing SAR and MS data for unsupervised 
land cover categorization tasks. In this model, they use the advantage of 
two different modalities in terms of semantic patterns. They show that 
pLSA-based models provide better land cover categorization results than 
LDA. J. Hu et al. [133] use a two-stream deep CNN to combine spectrum 
information of the HS imagery and the scattering mechanisms of PolSAR 
data for urban classification. These are feature extraction and feature 
fusion steps. They fuse the feature maps of the HS image and the PolSAR 
stream. Furthermore, they apply for the first time, a deep CNN for the 
fusion of HS imagery and SAR data. Hence, they obtain higher classifi-
cation accuracy. M. Chiarella et al. [134] implement the effectiveness of 
the Neural Fusion toolset for the remote sensing aided feature extraction 
(AFE). They also summarize the approaches used in Neural Fusion to 
create its deep files. In this way, pattern learning and recognition is 
performed. Thus, they demonstrate that Neural Fusion can ingest mul-
tiple layers and can discover salient features for utilizing image mining. 
E. Volden et al. [135] investigate the classification of forest areas by 
fusing SAR data and spectrometer. They employ a GML classifier. 
Combining two data sets by using GML gives good performance results. 

Also, the possibility to use the amplitude of polarimetric features for 
land cover mapping is investigated. W. Xianghai et al. [136] present an 
algorithm based on sparse representation and an adaptive neural 
network in the nonsubsample shearlet transform space for SAR and MS 
image pansharpening. This approach is specific to region orientation 
features in the high-frequency subband. They also suggest an adaptive 
pulse coupled neural network (PCNN) analysis model. Therefore, the 
algorithm gives a better spatial resolution of the MS image. By the way, 
the spectral information of the fusion image is also guaranteed. A. H. S. 
Solberg et al. [137] introduce a new method based on a Bayesian 
formulation for the fusion of remotely sensed MS image and SAR data. 
Their fusion model improves the classification error rates when it is 
compared to the single-source classifiers. They reduce the error rate 
from 33% to 22% fusion of SAR and MS images from different dates. 
They achieve only minor improvements in the classification error rates 
when fusing a SAR and MS image captured at the same date. 

The general behaviors of convolutional-based classification of HS- 
SAR data fusion are summarized in Table 17. 

5.6. Filter-based HS-SAR Data Fusion 

Q. Zhou et al. [138] proposed a speckle reduction appoach for HS 
and SAR image fusion. They combine the coherent portions from mini-
mum noise fraction (MNF) transformation for HS image and the SAR 
image. They use the Correlation Simulating Analysis Model (CSAM) to 
smooth the image. Therefore, they present a speckle reduction approach 
that relies on HS and SAR image fusion. Experimental results demon-
strate that the presented model in this paper smoothes the noise and 
keeps both the features well. D. G. Goodenough et al. [139] investigate 
integration and fusion approaches of polarimetric SAR, HS, and LiDAR 
data for the extraction of useful forest information. With this study, they 
emphasize the usage of fully polarimetric SAR to perform land cover 
classifications and forest change monitoring. The general behaviors of 

Table 15 
Pixel-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

GA-SVM Algorithm and 
PCA 

Regularization parameter C and width of kernel Land cover classification Lobburi Nakhon, Ratchasima and 
Saraburi Thailand 

[128] 2017 

PCA-SVM and pixel-level 
fusion 

GLCM features, 3 band (HH/HV/VV), entropy, 
inertia, and variance 

Analyzing the impact of the 
oil spill 

Wilkinson Bay Louisiana Gulf of Mexico [129] 2015  

Table 16 
Kernel-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

Kernel RX-anomaly detector Mean and covariance Mines detection HS-SAR mine image [130-131] 2008  

Table 17 
Convolutional-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

pLSA-based image fusion and 
LDA 

Optical features based on gray-level 
cooccurence matrix and polarimetric 

Land cover categorization Munich, Berlin, Germany [127] 2018 

HMpLSA Correlation semantic and local-primitive Land cover categorization tasks Wilkinunich, Berlin, Roma [132] 2018 
Deep CNN for extracting features HH/HV, entropy, mean, and eigenvalue Urban scene classification Munich, Germany [133] 2017 
Neural Fusion methods for AFE Context, contour, periodic textures, gray- 

scale variance, and curvature 
Image mining IKONOS, Landsat & Radarsat 

Hyperion & HyMap AVIRS 
[134] 2003 

GML classifier Mean, HH/VV polarization Classification of forest and 
discrimination of tree species 

Fontainebleau, forest, South of 
Paris, France 

[135] 1998 

Adaptive NN and sparse 
representation and PCNN 

NSST and high frequency subband 
coefficient, geometric texture information, 

pansharpening Sanya region [136] 2018 

Bayesian Formulation feature vector, and textural features Land use classification Kjeller Norway [137] 1994  
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filter-based classification of HS-SAR data fusion are summarized in 
Table 18. 

6. Discussion 

In this study, we propose a taxonomy of data fusion of HS-LiDAR and 
HS-SAR based on utilized approaches and summarize the faced chal-
lenges. This allows new perspectives on current approaches. In this part 
of this paper, we summarize significant points of each approach as a 
guide for future researches. Each approach is categorized in terms of 
tackled problem and used features of HS-LiDAR and HS-SAR data fusion 
in Table 19 and Table 20, respectively. We can see that all these 
conclusion tables give complementary information that can improve the 
classification performance results. This also means that the classification 
results could be improved by using multimodal data fusion, particularly 
this review paper is focused on HS-LiDAR and HS-SAR data fusion. 

In this part, we provide brief summary tables of our findings and 

discuss the results: 

7. Conclusion 

In this research field, a comprehensive literature overview is per-
formed for the multisource data fusion approaches of HS-LiDAR and HS- 
SAR images. First, some brief explanations about HS, LiDAR, and SAR 
have been introduced with the application areas. In addition, applica-
tion areas and some problems are summarized to perform data fusion 
between HS LiDAR and SAR data. We also give available datasets that 
presented the scientific results of the IEEE GRSS Data Fusion Contest, 
organized by the IEEE GRSS IADF TC between 2006 and 2019. We 
describe the datasets and the aims in Table 1. These data descriptions are 
very useful and important for the authors who conduct further studies on 
the HS LiDAR and SAR data fusion. Then, according to the utilized 
method, HS LiDAR and SAR data fusion studies were categorized. In 
addition, many helpful strategies are identified with conclusion tables. 

Table 18 
Filter-based Classification of HS-SAR data fusion  

Approach Feature Description Datasets Ref. Year 

MNF transformation and CSAM Radiometric, textural, covariance, and eigenvalue Speckle reduction 
method 

Radarsat-I and OMIS-I north suburb of 
Beijing, China 

[138] 2010 

Jong-Sen Lee Algorithm, Shane 
Cloude Decomposition 

Quad-pol feature, DEM, DSM, DCM, stem density, 
crown-closure, and height 

Forest information 
extraction 

ALOS PALSAR Vancouver Island 
British Columbia, Canada 

[139] 2008  

Table 19 
Synthesize table for HS-LiDAR data fusion  

Method Tackled Problem Features Approach Ref. 

Feature Urban-area classfication and tree 
species mapping 

Morphological, deep learning, spectral, structural, 
spatial, elevation, AP, MAP, EAP, EMAP, MoAPs, 
GLCM, PCA transformed features, height, size, shape, 
slope, roughness, and CHM 

Feature fusion, decision fusion, cuckoo search, 
Hybrid classification, multiple feature learning, 
RFS, OTVCA, ITCs,Grid search, MCA, MLR, and 
SLRCA 

[35,40,47, 
48,68-77] 

Object Urban-area classfication, tree species 
mapping, snow, and target and 
object detection 

Spatial, spectral, structural, topological, textural, 
contextual, geometric, DEM, DHM, DSM, DTM, 
individual crown object scale, and height 

Hierarchical image segmentation, TMask, 
FMask, Score Localization metric, spectral 
matched filter, watershed segmentation 
algorithm, genetic algorithm, and SCM 

[46, 81-85] 

Pixel Urban-area classification, sub pixel 
mapping, and detect buildings 

Fisher vectors, spectral, apatial, elevation, height, 
orientation, geometric, intensity, EMAPs, EAPs, DSM, 
FWL measurements, and red edge feature 

Semantic segmentation, Feature fusion, decision 
fusion, superpixel generation method, sparse 
modelling, voxelization method, SLIC clustering, 
and LSMSVM 

[13, 86-93] 

Geometric Tree species and urban roof surface 
classification, atmospheric 
compensation, forest inventory, and 
mapping 

CHM, spectral, morphological, geometric, DSM, 
slope, expostion, size, and surface materials 

Shadow correction, individual tree crown 
delineation, IPF, and semantic segmentation 

[94-97] 

Graph Classification MPs, spectral, spatial, elevation, and morphological Generalized graph-based fusion method, semi 
supervised graph-based (feature) fusion, feature 
fusion, and decision fusion 

[98-100] 

Kernel Urban and complex scene 
classification 

spectral, spatial, height, elevation, morphological, 
intensity, HFs, MPs, and nDSM 

Generalized composite kernel strategy, MKL, 
HF-MKL, MCKs, KELM-CK, and HySURE-MCKs 

[101-103] 

Statistical Urban area, land cover classification, 
classification of complex forest 
areas, and geospatial image 
classification 

DSM, DTM, geometric, elevation, spectral, intensity, 
statistical, and structure 

EC-MRF, texture feature extraction based on 
GLCM, Minimum noise fraction based dimension 
reduction, ML classfier, GML-LOOC, IGMM, and 
IGMM-LOGP 

[104-107] 

Ensemble Urban land use land cover and local 
climate zone classification and 
wetland mapping 

DSM, DEM, NDVI, NDMI, morphological, texture, 
contrast, MNF, and CHM 

RF, GBM ensemble based classifier, CNN, 
linearity preserving projection, unsupervised 
graph fusion, canonical correlation forest, and 
rotation forest 

[36, 
108-110] 

Convolutional Classification and semantic 
segmentation problem 

APs, EPs, MPs, EMAP, EMEP, MEP, DSM, CHM, 
spatial, elevation, and invariant 

Deep convolutional architecture, deep learning, 
graph-based feature fusion, DNN, 3D-CNN, lo-
gistic regression, and deep DF classifier 

[111-114] 

Hybrid Urban land use classification DSM, DEM, intensity, height, nDSM, NDVI, texture 
measures, and spatial attributes 

Pixel and object-based classifier, SVM, MLC, and 
object-based classfier 

[115] 

Filter Land cover land use classification DSM, DEM, DTM, NDWI, and shadow invariant 1-D 
feature 

multimodal architecture and polinomial fitting- 
based DEM feature extraction 

[116]  
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Ideas and approaches deriving from computer vision and machine 
learning need to be enhanced. 

In future studies, we will plan to do a detailed review about DNN 
architecture with multimodal data fusion. Future directions should 
include machine learning-based approaches such as deep learning-based 
approaches. 
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Table 20 
Synthesize tables for HS-SAR data fusion  

Method Tackled Problem Features Approach Ref. 

Feature Land cover classfication, forest  
management, and terrain mapping 

EPs, DEMs, polarimetric, tree 
high canopy cover, timber 
volume, and 3 polarimetries 
(HH/HV/VV), eigenvalue, 
eigenvector, terrain, and 
textural 

Feature-level fusion, decision-level fusion, and parallel feature  
combination strategy, fuzzy-set theory, SDA, LASSO regression, 
principal components, feature fusion, and Dempster-Shafer 
evidence theory 

[10, 121-124] 

Object Land use classification and dwelling  
detection in refugee camps 

HH/HV, derived probability 
features, structure, material, 
and dwelling density 

NCUT, segmentation, feature selection, and  
rule-based selection 

[125-126] 

Pixel Land cover classification and analyzing  
the impact of the oil spill 

Regularization parameter C, 
kernel, HH/HV/VV, and 
GLCM features 

GA-SVM Algorthm, PCA, SVM, and pixel-level fusion [128-129] 

Kernel Mines detection Mean covariance, Kernel-RX Algorithm [130-131] 
Convolutional Land cover and forest categorization,  

image mining, and pansharpening 
Optical, polarimetric, 
correlation, semantic, local- 
primitive, HH/HV, entropy, 
mean, eigenvalue, context, 
contour, curvature, 
geometric, texture, and 
subband features 

pLSA, LDA, HMpLSA, Deep CNN, Neural Fusion methods,  
GLM, Adaptive Neural Network, PCNN, and Bayesian 

[127, 132-137] 

Filter Speckle reduction method and  
Forest information extraction 

Radiometric, textural, 
covariance, eigenvalue, 
Quad-pol feature, DEM, 
DSM, DCM, stem density, 
crown-closure, and height 

MNF transformation, CSAM, Jong-Sen Lee Algorithm,  
and Shane Cloude Decomposition 

[138-139]  
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