
Research Article
A New Design of Metaheuristic Search Called Improved Monkey
Algorithm Based on Random Perturbation for
Optimization Problems

Mustafa Tunay

Department of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey

Correspondence should be addressed to Mustafa Tunay; mtunay@gelisim.edu.tr

Received 22 February 2021; Revised 28 March 2021; Accepted 29 April 2021; Published 7 May 2021

Academic Editor: Roberto Natella

Copyright © 2021 Mustafa Tunay. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

'e aim of this paper is to present a design of a metaheuristic search called improved monkey algorithm (MA+) that provides a
suitable solution for the optimization problems. 'e proposed algorithm has been renewed by a new method using random
perturbation (RP) into two control parameters (p1 and p2) to solve a wide variety of optimization problems. A novel RP is defined
to improve the control parameters and is constructed off the proposed algorithm.'emain advantage of the control parameters is
that they more generally prevented the proposed algorithm from getting stuck in optimal solutions. Many optimization problems
at the maximum allowable number of iterations can sometimes lead to an inferior local optimum. However, the search strategy in
the proposed algorithm has proven to have a successful global optimal solution, convergence optimal solution, and much better
performance on many optimization problems for the lowest number of iterations against the original monkey algorithm. All
details in the improved monkey algorithm have been represented in this study. 'e performance of the proposed algorithm was
first evaluated using 12 benchmark functions on different dimensions. 'ese different dimensions can be classified into three
different types: low-dimensional (30), medium-dimensional (60), and high-dimensional (90). In addition, the performance of the
proposed algorithm was compared with the performance of several metaheuristic algorithms using these benchmark functions on
many different types of dimensions. Experimental results show that the improved monkey algorithm is clearly superior to the
original monkey algorithm, as well as to other well-known metaheuristic algorithms, in terms of obtaining the best optimal value
and accelerating convergence solution.

1. Introduction

In this section, the background understanding of optimization
in calculus, mathematical optimization, heuristics, and meta-
heuristic approaches is given. 'e research based on optimi-
zation [1–3] seeks out a solution iteratively for analytical
solutions that have been analyzed. 'e design of an improved
monkey algorithm for a multivariate system is noticed.

Fermat and Lagrange were the first to suggest formulas that
are based on calculations for determining the optima. Newton
and Gauss were the first to suggest iterative methods for finding
the best solution. Actually, this means an approach to opti-
mization in calculus in the case of a point on a function of one
variable. It gives the best solution (themaximumorminimumof
the function).Many optimization problems are primarily to find

the best solution within certain boundaries. It refers to the best
available functions that solve objective applied mathematics
functions. Formally, “linear programming” was started by
Kantorovich in 1939. It is also called linear optimization (LO).
'e LO is a technique to get the best solution in a calculusmodel
whose elements are represented by linear relationships.
'erefore, linear optimization is also a special case of mathe-
matical optimization. 'e first well-known approach was the
simplex method by using mathematical optimization. Danzig
studied the simplex method in 1947 for solving linear pro-
gramming problems. Since then,many optimizationmethods or
techniques have been developed. 'ese are, respectively, as
follows: quasi-Newton method [4], steepest descent method [5],
possible directions method [6], Newton method [7], penalty
method [8, 9], and quadratic programming [10].

Hindawi
Scientific Programming
Volume 2021, Article ID 5557259, 14 pages
https://doi.org/10.1155/2021/5557259

mailto:mtunay@gelisim.edu.tr
https://orcid.org/0000-0001-8843-621X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5557259

Karush–Kuhn–Tucker conditions are first derivative tests for a
solution in nonlinear programming (nonlinear optimization) as
an optimal expression in mathematical optimization. Kuhn and
Tucker studied first derivative tests in 1951. Karush explained in
his Master’s thesis in 1939 the necessary conditions for a
constrained optimum.'e Karush–Kuhn–Tucker conditions of
nonlinear programming generalize the method of Lagrange
multipliers, which allows only equality constraints. Mathemat-
ical programming is briefly about the selection of a best element
from some set of available alternatives. Quantitative disciplines
are common optimization problems of sorts arising in all from
computer science, engineering operations research, economics,
and industry. Since then, many optimization methods or
techniques have been developed as solutions of interest in
mathematics for centuries. 'us, mathematical programming is
a rising trend for many fields. 'ese kinds are, respectively, as
follows: linear programming [11–13], nonlinear programming
[14, 15], objective programming [16, 17], and dynamic pro-
gramming [18, 19]. With regard to nonlinear optimization, that
is, having at least one goal or nonlinear constraint function, the
known approaches have encountered a lot of difficulties. Un-
fortunately, all tasks in engineering design are almost nonlinear.

Heuristic methods were first used in philosophy and
mathematics for finding solutions to complex problems.
Heuristics are problem-dependent methods. 'us, they are
usually adapted to a specific problem and try to make full use of
its features. However, they are often too greedy, tend to fall into
the local optimum trap, and generally cannot get a global
optimal solution. 'e study of this method was developed in
human decision-making in the 1970s–1980s by Tversky and
Kahneman. In the 1980s,metaheuristic approaches attracted the
attention of engineers and they studied all kinds of optimiza-
tion. Metaheuristics are problem-independent methods and
they are of a high level. A set of strategies are provided for
developing heuristic optimization algorithms. In general, they
are not greedy. In fact, they can even accept temporary dete-
rioration of the solution which allows them to explore the
solution space more deeply and thus get a better solution. One
of the most well-known approaches was genetic algorithms
(GAs). Holland studied the principle of “survival of the fittest”
in the 1960s. Subsequently, Simulated Annealing was published
in 1983. 'e optimization problems were solved by Simulated
Annealing (SA).

'e SA is currently formulated by an objective function
for many variables; that is, it means several constraints.
'erefore, with SA in practice, the constraint can be pe-
nalized as part of the objective function for the best solution.
'e following are five metaheuristic periods:

(1) In 1940: pretheoretical period
(2) From 1940 to 1980: the early period
(3) From 1980 to 2000: the method-centric period
(4) In 2000s: the framework-centric period
(5) Scientific period (future)

Nowadays, there are many optimization algorithms
that are designed to find the global optimal solutions to
optimization problems. One of them is metaheuristic

algorithms that can be efficiently used to solve “local
minima” problems and determine global solutions of the
optimization problems.'e set of metaheuristic algorithms
include ant colony optimization (ACO) [20, 21], ant lion
optimizer (ALO) [22], bat algorithm (BAT) [23], cuckoo
search (CS) [24], elephant herding optimization (EHO)
[25], particle swarm optimization (PSO) [26], krill herd
(KH) [27], moth-flame optimization (MFO) [28], monarch
butterfly optimization (MBO) [29, 30], mussels wandering
optimization (MWO) [31], moth search algorithm (MSA)
[32], and whale optimization algorithm (WOA) [33] for
finding good solution to optimization problems. Even
today, new methods are being developed as new meta-
heuristics are invented. Other metaheuristics research
works have been done on the designing of the evolutionary
theory such as biogeography-based optimization (BBO)
[34], the differential evolution (DE) [35], evolution strat-
egies (ES) [36], genetic algorithm (GA) [37, 38], harmony
search (HS) [39], gravitational search algorithm (GSA)
[40], sine cosine algorithm (SCA) [41], dragonfly algorithm
(DA), and hybrid ABC/DA (HAD) [42].

What is more, the improved monkey algorithm (MA+),
which finds the best solution and solves optimization
problems, is designed in this study. In addition, the proposed
algorithm is a new metaheuristic search for the optimization
of multivariate systems. 'ere exists much insufficiency for
monkey algorithm about its solution search area which may
bring about the premature convergence and the low search
accuracy when solving complex optimization of multivariate
systems. 'en, considering that monkey algorithm con-
verges very slowly, a random perturbation method can be
used to ensure the diversity of monkey algorithm against
premature convergence. 'e design of a random pertur-
bation into two parameters in a convergence state helps the
best monkey position to jump out of possible local optima to
further increase the performance of the proposed algorithm
(MA+). 'us, the search strategy in the proposed algorithm
has proven to have a successful global optimal solution,
convergence optimal solution, andmuch better performance
on many complex optimization problems for the lowest
number of iterations.

'is paper is organized as follows: Section 2 describes the
proposed algorithm and the design of a random perturba-
tion into two parameters is explained clearly. Section 3
describes the experimental results and discussion. 'e in-
formation of twelve benchmark functions is given. More-
over, the performance of the proposed algorithm is
evaluated and is compared with many comparative algo-
rithms (many metaheuristic algorithms and modified
comparative algorithms) on different dimensional functions.
Finally, the conclusion is summarized in Section 4.

2. Related Work

'e aim of this paper is to present the design of a new op-
timization method called improved monkey algorithm (MA+)
to find a good solution for the optimization of multivariate
systems.'e design of the proposed algorithm (MA+) is a new

2 Scientific Programming

metaheuristic search method for optimization problems in-
spired by the behavior of the movement of a monkey. 'e
original monkey algorithm (MA) mainly consists of four
processes, namely, initialization process, climb process, watch-
jump process, and somersault process.'e improvement of the
monkey algorithm is renewed by adding random perturbation
(RP) in the original four processes. All processes in the pro-
posed algorithm have been designed in Figure 1.

Step A. Initialization Process
'e proposed algorithm begins with random generation

of a position for each monkey. Each monkey position is set
to M, where M represents population size (number of
monkeys). Hence, ith is a position as xi � (i� 1, 2, . . .,M) for
each monkey as in the following equation:

xi � x1, x2, . . . xM􏼂 􏼃. (1)

Each monkey’s position is evaluated in objective func-
tion. It is also set to be present in the searching area (lower
boundary-upper boundary). Lower and upper boundaries
(lb and ub) are for all solutions (monkey’s position). All
solutions should be in the searching area between lower
boundary (lb) and upper boundary (ub).

Step B. Climb Process
'e climb process changes the monkeys’ positions step by

step from the initial positions to new ones that can evaluate an
improvement in the objective function. Step length (a) pa-
rameter in the design of climb process updates the movement
of monkeys’ positions. 'e total number of monkeys is M.
Hence, ith is a position as xi � ((xi1, xi2, . . . xin), i� 1, 2, . . .,M)
for each monkey. 'e step length in changing (updating)
position of monkey is in the following equation:

Δxij �

a, with probability
1
2
,

−a, with probability
1
2

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where Δxij is updating the position of monkeys (j� 1, 2, . . .,
n); a (positive number) is step length in climb process with
a� 10−3. Each ith monkey position evaluates an improve-
ment in the objective function (F′) in the climb number of
iterations (Nc). 'is function is called the pseudogradient of
the objective function and is expressed as follows:

yj � xij + a · sign Fij
′xi􏼐 􏼑, j � 1, 2, . . . , n. (3)

'e step length in the climb process has a crucial role in
the precision of the approximation of the local solution, so
the climb process supports a feasible solution. y is a feasible
position for eachmonkey. xi is updating with y till reaching a
feasible solution. Otherwise, xi does not change.

Step C. Watch-Jump Process
'is process checks eachmonkey position after the climb

process. In other words, it is checked whether their position
has reached the top or not. Moreover, each monkey looks

around to see whether there is a position that is higher than
the current position. If they have it, they will jump from their
current position. Otherwise, it means that their position has
not reached the top. Of course this will be realized for the
monkeys who have the best positions (close to the top or at
the top). 'erefore, each monkey takes a maximal distance
from its current position. 'e maximal distance in the
watch-jump process is parameter b as the eyesight. 'is
process is expressed as follows:

yj � xij − b, xij + b􏼐 􏼑. (4)

'e parameter b is the eyesight with b� 0.5. 'is process
updates xi with y. Both are evaluated: f(y)≥f(xi). Oth-
erwise, it checks equation (4) till reaching an appropriate
point (y). 'en, in this process, the climb process is repeated
by employing y. 'us, each monkey takes a maximal dis-
tance from its current position.

Step D. Somersault Process
'is process enables finding out new positions

(searching domains). 'is process enables finding new
positions (searching domains) to the barycentre of all
monkeys’ current positions defined as a pivot. Monkeys will
somersault along the direction pointing to pivot. All solu-
tions should be in somersault interval [c, d] with [−1, 1]. 'e
search space of monkeys for this problem has large feasible
spaces till increasing values of |c| and d, respectively. In this
process, a real number is generated randomly as s between
somersault intervals [−1, 1] and is expressed as follows:

yj � xij + s pj − xij􏼐 􏼑, (5)

pj � 􏽘
M

i�1
xij, (6)

where p is the somersault pivot, j� 1, 2, . . .,n, and then xi �

y if y � y1, y2, . . . yn till feasible solution. Otherwise, this
process repeats equations (5) and (6) until a feasible solution
(y) is found.

Step E. Random Perturbation (RP) Process
'is process controls monkeys current position, which

can be stuck at some optimal solution. After somersault
process, a novel random perturbation (RP) process is
constructed of the proposed algorithm into two control
parameters with p1� 0.5 and p2� 0.2, respectively. p1 im-
proves monkeys’ current position if they are stuck at a local
minimum. 'e same or worse value is found in searching
space consecutively; they have a tolerance number (tolX) in
the number of iterations for improving monkeys’ position
(one at a time). p2 improves along the direction pointing to
their current position with different perturbation to out
from some possible local minimum or to search for other
(and better) minima. 'e details regarding the pseudocode
of the proposed algorithm are shown in Algorithm 1.

'e design of the proposed algorithm for solution to
global numerical optimization problems begins with pop-
ulation (M), boundaries (lb, ub), eyesight (b), climb number

Scientific Programming 3

(Nc), somersault interval c, d ∈ [−1, 1], and control param-
eters (p1, p2). All input parameters are designed for the
proposed algorithm. In addition, a random dimension is
calculated as ceil (rand xD).'is calculation is evaluated as a
random scalar that is drawn from the standard normal
distribution multiplying with the parameter p1. 'us, it
prevents the proposed algorithm from getting stuck in some
optimal solutions while controlling the monkeys’ position.
'e second one is about uniformly distributed random
numbers (rand [1 x D]) multiplying with the parameter p2.
'is scalar point is combined with each element of the vector
x. 'us, improvement of monkeys’ positions is found along
the direction pointing with different perturbation to out
from some possible local minimum or to search for other
(and better) minima. 'e special steps of the improved
control parameters with RP are described in Algorithm 1.

3. Results and Discussion

3.1. Benchmark Functions. 'e performance of the im-
proved monkey algorithm (MA+) is implemented in Matlab
(2017). 'e features of equipment of the computer used are
given as follows:

(1) CPU: i5–6200U

(2) CPU speed: 2.30GHz–2401MHz
(3) RAM: 4.00GB
(4) OS: Microsoft Windows 10

'e information for 12 benchmark functions is listed in
Table 1 as the name of each function, its equation, and range.
'e improved monkey algorithm (MA+) performed on
various benchmark functions. 'ey are 12 benchmark
functions, namely, sphere function (F1), Schwefel 2.22
function (F2), Schwefel 1.2 function (F3), Rosenbrock
function (F4), Ackley function (F5), Griewank function (F6),
sum squares function (F7), Dixon-Price function (F8), Bent
Cigar function (F9), sum of different powers function (F10),
Holzman function (F11), and hyperellipsoid function (F12).
'e performance of the improvedmonkey algorithm and the
performance of comparative algorithms (metaheuristic) are
evaluated against 12 benchmark functions in the next
section.

3.2. +e Performance of Improved Monkey Algorithm on
Different Dimensional Functions. 'e performance of the
improved monkey algorithm and the performance of
original monkey algorithm (MA) were evaluated against 12
benchmark functions on different dimensions that can be

Stop
condition

?

Update all
optimal solutions

START

END

YES

Initialization process

Evaluation

NO

Climb
process

Watch-jump
process

Climb
process

Somersault
process

RP
process

A

B

C

D

E

Figure 1: Flowchart of the improved monkey algorithm: (a) is initialization process, (b) is climb process, (c) is watch-jump process, (d) is
somersault process, and (e) is random perturbation process.

4 Scientific Programming

classified into three different types: low-dimensional (30D),
medium-dimensional (60D), and high-dimensional (90D).
Both algorithms have the same size of population and
number of iterations (max) and their maximum function
evaluation times are equal. Each algorithm is run 100 times
independently for all conditions. 'e parameters and the
same conditions for both algorithms are set as follows: size of
population (M)� 50, number of iterations (Ite.)� 50, and
dimension (D)� 30, 60, and 90. 'e best mean and the best
standard deviation of experimental results are marked in
bold for each function.

'e first part of this experiment was conducted on the
30, 60, and 90 dimensions. 'e experimental results were
illustrated in Table 2 that shows 12 benchmark optimi-
zation functions (F1–F12), and the improved monkey
algorithm (MA+) achieves the best optimization results
on the best, mean, and standard deviation values.
'erefore, the experimental results on the all-dimensional
benchmark functions showed that the performance of the

improved monkey algorithm is much better than that of
the original monkey algorithm (MA) for the all-dimen-
sional functions. 'e experimental results are more in-
tuitively demonstrated by the convergence plots and
global search ability of the two algorithms (MA and
MA+), and the convergence plots of the both algorithms
on the 30-dimensional functions are in Figures 2(a)–2(l)
for all benchmark functions.

Table 2 shows the best mean optimization results for all
functions (F1–F12) on the 30 dimensions, and the perfor-
mance of the proposed improved algorithm was obtained:
1.03E− 40, 1.09E− 23, 1.22E− 36, 2.69E+ 01, 9.55E− 15,
0.00E+ 00, 4.68E− 38, 6.67E− 01, 1.40E− 31, 1.9E− 196,
3.49E – 54, and 1.15E− 37 respectively. Additionally,
Figures 2(a) to 2(l) reveal that the original monkey algorithm
is much poorer for the 30-dimensional functions, while the
proposed improved algorithm still shows a distinguished
searching ability, global optimal solution, and its conver-
gence speed in all functions.

Step A–D: Inputs⟶ Step E
global_min� −1
for i� 1 to M do
for j� 1 to tolX do

d← ceil (rand x D)
yi← xid ∗ (1 + p1 ∗ randn)
if lb< yi< ub then
Continue

end if
if global_min> 0 then
|if f (yi)> f (xij) then
|xij← yi

|end if
Else
|if f (yi)< f (xij) then
|xij← yi

|end if
end if

end for
end for
for i� 1 to M do
for j� 1 to n do

yi← xij (·) (1 + p2 ∗ rand [1, D])
if lb< yi< ub then
Continue

end if
if global_min> 0 then
|if f (yi)> f (xij) then
|xij← yi

|end if
Else
|if f (yi)< f (xij) then
|xij← yi

|end if
end if

end for
end for
Output

ALGORITHM 1: A novel RP is constructed of the proposed algorithm.

Scientific Programming 5

Table 1: Benchmark functions.

Name of function Equation Range
Sphere F1(x) � 􏽐

D
i�1 x2

i
−5.12≤xi ≤ 5.12

Schwefel 2.22 F2(x) � 􏽐
D
i�1 |xi| + 􏽑

D
i�1 |xi| −10≤xi ≤ 10

Schwefel 1.2 F3(x) � 􏽐
D
i�1 (􏽐

i
j�1 xj)

2 −100≤xi ≤ 100

Rosenbrock F4(x) � 􏽐
D−1
i�1 [100

�������
|xi − x2

i |
􏽱

+ (1 − xi)
2] −30≤xi ≤ 30

Ackley F5(x) � −20 exp(−0.2
�����������

(1/D) 􏽐
D
i�1 x2

i

􏽱

) − exp((1/D) 􏽐
D
i�1 cos(2πxi)) + 20 + e −32≤xi ≤ 32

Griewank F6(x) � (1/4000) 􏽐
D
i�1 x2

i − 􏽑
D
i�1 cos(xi/

�
i

√
) + 1 −600≤xi ≤ 600

Sum squares F7(x) � 􏽘
D

i�1
ix

2
i

−10≤xi ≤ 10

Dixon-Price F8(x) � (x1 − 1)2 + 􏽐
D
i�1 i(2x2

i − xi− 1)
2 −10≤xi ≤ 10

Bent Cigar F9(x) � x2
i + 106 􏽐

D
i�1 x2

i
−100≤xi ≤ 100

Sum of different powers F10(x) � 􏽐
D
i�1 |xi|

i+1 −1≤xi ≤ 1
Holzman F11(x) � 􏽐

D
i�1 ix4

i
−10≤xi ≤ 10

Hyperellipsoid F12(x) � 􏽐
D
i�1 i2x2

i
−5.12≤xi ≤ 5.12

1010
Convergence plot: 30D

100

10–10

10–20

10–30

10–40

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(s
ph

er
e)

MA+
MA

(a)

1010
Convergence plot: 30D

100

10–10

10–20

10–30

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(S
ch

w
ef

el
 2

.2
2)

MA+
MA

(b)

1010
Convergence plot: 30D

100

10–10

10–20

10–40

10–30

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(S
ch

w
ef

el
 1

.2
)

MA+
MA

(c)

105
Convergence plot: 30D

104

103

101

102

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(R
os

en
br

oc
k)

MA+
MA

(d)

Figure 2: Continued.

6 Scientific Programming

105
Convergence plot: 30D

10–5

10–10

10–20

10–15

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(A
ck

le
y)

100

MA+
MA

(e)

8
Convergence plot: 30D

5

3

0

2

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(G
rie

w
an

k)

6

7

4

1

MA+
MA

(f)

1010
Convergence plot: 30D

10–40

10–30

10–20

10–10

100

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(s
um

 sq
ua

re
s)

MA+
MA

(g)

103
Convergence plot: 30D

10–1

100

101

102

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(D
ix

on
-p

ric
e)

MA+
MA

(h)

Figure 2: Continued.

Scientific Programming 7

In addition, the performance of the proposed improved
algorithm was obtained, 8.20E− 29, 8.35E− 18, 1.14E− 24,
5.71E+ 01, 3.53E− 14, 0.00E+ 00, 5.54E− 28, 6.67E− 01,
5.59E− 21, 9.3E− 190, 4.49E– 31, and 1.35E– 26, respectively,
against 12 60-dimensional functions. Finally, the performance
of the proposed algorithm was obtained, 1.16E− 23,
2.52E− 14, 1.45E− 19, 8.71E+ 01, 1.33E− 11, 0.00E+ 00,
2.20E− 21, 6.67E− 01, 6.76E− 15, 1.3E− 165, 2.90E– 23, and
1.97E– 20, respectively, against 12 90-dimensional functions.

3.3. Comparison of MA+ with Metaheuristic Algorithms on
Different Dimensions. 'e improved monkey algorithm
(MA+) was compared with many metaheuristic optimiza-
tion algorithms against 12 benchmark optimization func-
tions on different dimensions. 'e information of
benchmark functions is listed in Table 1. All algorithms have
the same information and use the same initial parameters,
the same dimensions, and the same number of iterations,
and their maximum function evaluation times are equal

1010
Convergence plot: 30D

10–20

10–10

100

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(B
en

t c
ig

ar
)

10–30

MA+
MA

(i)

100
Convergence plot: 30D

10–150

10–100

10–50

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(s
um

 o
f d

iff
er

en
t p

ow
er

s)

10–200

10–250

MA+
MA

(j)

1020
Convergence plot: 30D

10–40

10–20

100

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(H
ol

zm
an

)

10–60

MA+
MA

(k)

1010
Convergence plot: 30D

10–30

10–10

100

0 10 20 30 40 50

Iterations

Be
st

va
lu

e o
f f

un
ct

io
n

(h
yp

er
el

lip
so

id
)

10–20

10–40

MA+
MA

(l)

Figure 2: Convergence plot of both algorithms (MA andMA+) against 12 30-dimensional functions. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f)
F6. (g) F7. (h) F8. (i) F9. (j) F10. (k) F11. (l) F12.

8 Scientific Programming

[30, 42]. 'e best experimental comparative results are
marked in bold for each function and all details are shown in
Tables 3–6.

Tables 3 to 5 show the experimental comparative results
for all functions (F1–F12) on the 30, 60, and 90 dimensions.
Each algorithm is run 100 times independently for all 12
benchmark optimization functions on all these dimensions
in these tables. However, Table 6 shows the experimental
comparative results for some functions (F1–F5) on 20, 50,
and 100 dimensions. Each algorithm is run 30 times in-
dependently for each of 5 benchmark optimization functions
on all these dimensions in Table 6.

'e initial parameters and the same conditions for all
algorithms were set as follows: size of population is set to 50
and each algorithm ran till it reached a number of iterations
(50).

In the first stage, the performance of the proposed al-
gorithm is compared with the performances of a selected

collection of comparative algorithms that have been eval-
uated.'e included algorithms are ABC, DA, and HAD.'e
best mean and the best standard deviation of experimental
results are shown in Table 3 for each function. Table 3 shows
that the proposed algorithm has an outstanding perfor-
mance in the majority of the evaluation cases for F1–F7 and
F9–F12 benchmark functions, respectively. However, the
performance of HAD algorithm is equal to the result in the
case of all dimensions on only Dixon-Price function (F8)
with the proposed algorithm.'e best standard deviation on
Dixon-Price function was obtained by HAD algorithm. All
details are shown in Table 3.

In the second stage, the performance of the proposed
algorithm is compared with those of some metaheuristic
optimization algorithms that have been evaluated. 'e in-
cluded algorithms are ACO, BAT, BBO, DE, GA, and PSO.
'e best mean of experimental results is listed in Table 4 for
each function.

Table 2: 'e performances of both algorithms on 30-, 60-, and 90-dimensional benchmark functions.

F D
MA MA+

Best Mean STD Best Mean STD

F1
30 8.61E− 01 9.90E− 01 6.35E− 02 9.95E− 112 1.03E− 40 1.69E− 40
60 8.40E+ 00 9.30E+ 00 5.40E− 01 7.79E− 79 8.20E− 29 1.13E− 28
90 3.10E+ 01 3.49E+ 01 1.65E+ 00 1.70E− 72 1.16E− 23 1.51E− 23

F2
30 7.85E+ 00 9.25E+ 00 7.70E− 01 2.05E− 89 1.09E− 23 1.18E− 23
60 4.35E+ 01 6.35E+ 01 3.61E+ 01 6.60E− 65 8.35E− 18 7.35E− 18
90 2.44E+ 02 7.32E+ 09 1.39E+ 10 1.40E− 49 2.52E− 14 3.71E− 14

F3
30 5.15E+ 03 5.75E+ 03 4.75E+ 02 1.10E− 122 1.22E− 36 1.00E− 36
60 1.03E+ 05 1.10E+ 05 5.65E+ 03 3.09E− 90 1.14E− 24 1.07E− 24
90 5.20E+ 05 5.75E+ 05 3.09E+ 04 3.16E− 62 1.45E− 19 1.80E− 19

F4
30 9.82E+ 03 1.23E+ 04 2.00E+ 03 2.69E+ 01 2.69E+ 01 2.04E− 01
60 3.99E+ 05 5.29E+ 05 7.25E+ 04 5.70E+ 01 5.71E+ 01 5.74E− 02
90 4.10E+ 06 4.79E+ 06 5.59E+ 05 8.70E+ 01 8.71E+ 01 5.40E− 02

F5
30 5.20E+ 00 5.75E+ 00 3.02E− 01 8.88E− 16 9.55E− 15 9.70E− 15
60 9.19E+ 00 9.40E+ 00 1.81E− 01 8.88E− 16 3.53E− 14 5.40E− 14
90 1.21E+ 01 1.26E+ 01 2.09E− 01 4.44E− 15 1.33E− 11 2.69E− 11

F6
30 3.20E+ 00 3.75E+ 00 6.29E− 01 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 3.19E+ 01 3.36E+ 01 1.75E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
90 1.09E+ 02 1.16E+ 02 5.35E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

F7
30 5.0E+ 01 5.6E+ 01 4.19E+ 00 1.2E− 141 4.68E− 38 4.70E− 38
60 1.02E+ 03 1.09E+ 03 4.88E+ 01 1.15E− 92 5.54E− 28 8.75E− 28
90 5.32E+ 03 5.86E+ 03 3.03E+ 02 4.30E− 55 2.20E− 21 1.53E− 21

F8
30 8.09E+ 01 1.09E+ 02 2.09E+ 01 6.67E− 01 6.67E− 01 2.55E− 05
60 5.59E+ 03 7.65E+ 03 9.22E+ 02 6.67E− 01 6.67E− 01 4.70E− 05
90 1.03E+ 05 1.13E+ 05 5.76E+ 03 6.67E− 01 6.67E− 01 1.25E− 04

F9
30 3.30E+ 08 3.70E+ 08 2.97E+ 07 1.25E− 144 1.40E− 31 1.75E− 31
60 2.70E+ 09 3.34E+ 09 3.92E+ 08 9.20E− 115 5.59E− 21 5.40E− 21
90 1.18E+ 10 1.32E+ 10 8.63E+ 08 3.29E− 65 6.76E− 15 7.40E− 15

F10
30 3.05E− 10 9.75E− 09 7.80E− 09 0.00E+ 00 1.9E− 196 0.00E+ 00
60 2.12E− 08 5.73E− 08 3.68E− 08 0.00E+ 00 9.3E− 190 0.00E+ 00
90 1.01E− 08 1.35E− 07 7.80E− 08 0.00E+ 00 1.3E− 165 0.00E+ 00

F11
30 1.35E+ 01 1.75E+ 01 2.39E+ 00 5.25E− 165 3.49E− 54 5.20E− 54
60 1.59E+ 03 1.65E+ 03 6.02E+ 01 2.49E− 82 4.49E− 31 1.07E− 30
90 2.19E+ 04 2.50E+ 04 1.69E+ 03 2.59E− 65 2.90E− 23 3.65E− 23

F12
30 2.10E+ 02 2.56E+ 02 3.50E+ 01 1.00E− 124 1.15E− 37 1.67E− 37
60 8.50E+ 03 1.06E+ 04 1.05E+ 03 5.33E− 97 1.35E− 26 1.53E− 26
90 7.92E+ 04 8.61E+ 04 3.69E+ 03 2.88E− 65 1.97E− 20 2.91E− 20

Scientific Programming 9

In the third stage, the performance of the proposed
algorithm is compared with those of other metaheuristic
optimization algorithms that have been evaluated. 'e in-
cluded algorithms are EHO, KH, MFO, MSA, SCA, and
WOA. 'e best mean of experimental results is listed in
Table 5 for each function.

Finally, the performance of the proposed algorithm was
also compared with the performances of three algorithms,
namely, the monarch butterfly optimization (MBO) algo-
rithm,MBOwith greedy strategy and self-adaptive crossover
operator (GCMBO), and MBO with opposition-based

learning and random local perturbation (OPMBO) using
five benchmark functions, and all details are listed in Table 6.

To sum up, the experimental comparative results showed
reaching the much better solution and the best convergence
performance of escaping local optimum for the proposed
algorithm when it is compared with ACO, BAT, BBO, DE,
GA, PSO, EHO, KH, MFO, MSA, SCA, WOA, MBO,
GCMBO, and OPMBO. All those comparative results
showed an outstanding performance of the proposed al-
gorithm in the majority of the evaluation cases. All details
are listed in Tables 4–6.

Table 3: 'e performance of MA+ compared with ABC, DA, and HAD algorithms on 30-, 60-, and 90-dimensional benchmark functions.

'e best mean and the best standard deviation for comparing the performances of some metaheuristic algorithms (ABC, DA, and HAD)
after 100 runs

F D
ABC DA HAD MA+

Mean STD Mean STD Mean STD Mean STD

F1
30 2.98E+ 01 1.02E+ 01 1.76E+ 00 4.34E+ 00 2.61E− 14 6.53E− 14 1.03E− 40 1.69E− 40
60 1.97E+ 02 2.30E+ 01 2.29E+ 00 4.68E+ 00 3.46E− 10 8.08E− 10 8.20E− 29 1.13E− 28
90 4.07E+ 02 3.72E+ 01 8.53E+ 00 1.27E+ 01 2.05E− 09 3.08E− 09 1.16E− 23 1.51E− 23

F2
30 7.54E+ 00 1.19E+ 00 7.46E+ 00 5.38E+ 00 3.40E− 08 6.41E− 08 1.09E− 23 1.18E− 23
60 6.19E+ 01 1.17E+ 01 2.80E+ 01 2.77E+ 01 4.66E− 06 4.04E− 06 8.35E− 18 7.35E− 18
90 1.59E+ 02 2.97E+ 01 3.10E+ 01 2.50E+ 01 4.89E− 05 4.85E− 05 2.52E− 14 3.71E− 14

F3
30 3.82E+ 04 8.56E+ 03 1.24E+ 03 2.23E+ 03 4.31E− 05 7.84E− 05 1.22E− 36 1.00E− 36
60 1.57E+ 05 3.43E+ 04 1.09E+ 04 9.04E+ 03 3.32E− 05 5.79E− 05 1.14E− 24 1.07E− 24
90 3.31E+ 05 3.78E+ 04 4.48E+ 04 4.85E+ 04 3.92E− 05 5.64E− 05 1.45E− 19 1.80E− 19

F4
30 1.36E+ 07 1.14E+ 07 1.15E+ 05 3.47E+ 05 2.75E+ 01 3.29E− 01 2.69E+ 01 2.04E− 01
60 2.09E+ 08 5.78E+ 07 5.71E+ 05 1.69E+ 06 5.77E+ 01 9.94E− 02 5.70E+ 01 5.74E− 02
90 5.48E+ 08 8.12E+ 07 7.18E+ 05 1.59E+ 06 8.77E+ 01 1.52E− 01 8.71E+ 01 5.40E− 02

F5
30 1.70E+ 01 5.08E− 01 1.76E+ 00 3.83E+ 00 5.89E− 08 8.64E− 08 9.55E− 15 9.70E− 15
60 1.95E+ 01 1.62E− 01 7.41E+ 00 3.91E+ 00 7.18E− 06 9.71E− 06 3.53E− 14 5.40E− 14
90 2.00E+ 01 1.66E− 01 7.00E+ 00 2.22E+ 00 3.08E− 05 4.34E− 05 1.33E− 11 2.69E− 11

F6
30 9.22E+ 01 4.22E+ 01 7.64E+ 00 1.79E+ 01 4.79E− 12 1.20E− 11 0.00E+ 00 0.00E+ 00
60 6.93E+ 02 1.11E+ 02 1.74E+ 01 2.90E+ 01 8.68E− 09 1.48E− 08 0.00E+ 00 0.00E+ 00
90 1.43E+ 03 1.07E+ 02 2.27E+ 01 5.99E+ 01 2.72E− 07 4.38E− 07 0.00E+ 00 0.00E+ 00

F7
30 1.32E+ 03 4.45E+ 02 5.26E+ 01 1.03E+ 02 2.01E− 15 2.67E− 15 4.68E− 38 4.70E− 38
60 2.04E+ 04 5.32E+ 03 8.19E+ 02 2.27E+ 03 1.18E− 09 3.50E− 09 5.54E− 28 8.75E− 28
90 7.00E+ 04 6.98E+ 03 2.23E+ 03 4.78E+ 03 8.01E− 10 1.35E− 09 2.20E− 21 1.53E− 21

F8
30 7.68E+ 04 7.07E+ 04 1.42E+ 03 3.91E+ 03 6.67E− 01 8.29E− 08 6.67E− 01 2.55E− 05
60 2.84E+ 06 9.97E+ 05 2.14E+ 04 5.99E+ 04 6.67E− 01 1.22E− 05 6.67E− 01 4.70E− 05
90 1.25E+ 07 1.73E+ 06 5.42E+ 04 1.30E+ 05 6.67E− 01 1.23E− 04 6.67E− 01 1.25E− 04

F9
30 7.47E+ 09 2.77E+ 09 1.51E+ 08 3.15E+ 08 3.72E− 12 7.07E− 12 1.40E− 31 1.75E− 31
60 7.19E+ 10 1.07E+ 10 1.23E+ 09 2.31E+ 09 3.11E− 05 4.24E− 05 5.59E− 21 5.40E− 21
90 1.55E+ 11 1.30E+ 10 2.36E+ 09 4.40E+ 09 1.03E− 02 2.23E− 02 6.76E− 15 7.40E− 15

F10
30 7.62E− 03 5.74E− 03 1.35E− 05 4.26E− 05 4.40E− 14 1.25E− 13 1.9E− 196 0.00E+ 00
60 1.35E− 01 6.36E− 02 9.39E− 06 2.57E− 05 2.99E− 11 9.21E− 11 9.3E− 190 0.00E+ 00
90 3.98E− 01 2.20E− 01 1.80E− 06 4.81E− 06 5.91E− 11 1.50E− 10 1.3E− 165 0.00E+ 00

F11
30 1.19E+ 04 1.18E+ 04 6.30E+ 01 1.97E+ 02 8.72E− 18 1.12E− 17 3.49E− 54 5.20E− 54
60 8.35E+ 05 1.29E+ 05 4.42E+ 03 1.24E+ 04 5.34E− 15 8.87E− 15 4.49E− 31 1.07E− 30
90 2.77E+ 06 4.33E+ 05 2.58E+ 04 7.14E+ 04 1.61E− 14 3.13E− 14 2.90E− 23 3.65E− 23

F12
30 2.36E+ 02 1.14E+ 02 4.98E+ 00 1.07E+ 01 5.16E− 14 1.54E− 13 1.15E− 37 1.67E− 37
60 7.72E+ 03 1.09E+ 03 1.41E+ 02 1.73E+ 02 1.16E− 10 1.38E− 10 1.35E− 26 1.53E− 26
90 3.85E+ 04 2.49E+ 03 6.56E+ 02 1.01E+ 03 2.09E− 08 4.14E− 08 1.97E− 20 2.91E− 20

10 Scientific Programming

Table 4: 'e performance of MA+ compared with ACO, BAT, BBO, DE, GA, and PSO algorithms on 30-, 60-, and 90-dimensional
benchmark functions.

'e best mean for comparing the performances of some metaheuristic algorithms on 30, 60, and 90 dimensions after 100 runs
F D ACO BAT BBO DE GA PSO MA+

F1
30 1.63E+ 02 1.67E+ 02 5.73E+ 00 2.79E+ 01 9.58E+ 01 5.12E+ 01 1,03E− 40
60 3.76E+ 02 3.91E+ 02 3.09E+ 01 1.74E+ 02 2.86E+ 02 2.13E+ 02 8.20E− 29
90 6.02E+ 02 6.19E+ 02 7.44E+ 01 3.80E+ 02 4.65E+ 02 4.29E+ 02 1.16E− 23

F2
30 1.13E+ 02 2.95E+ 12 1.19E+ 01 5.38E+ 01 8.60E+ 01 1.14E+ 02 1.09E− 23
60 2.48E+ 02 2.29E+ 28 4.65E+ 01 1.71E+ 02 2.03E+ 02 2.49E+ 02 8.35E− 18
90 3.88E+ 02 6.75E+ 43 9.55E+ 01 2.97E+ 02 3.23E+ 02 3.89E+ 02 2.52E− 14

F3
30 6.01E+ 04 1.28E+ 05 2.72E+ 04 6.13E+ 04 4.83E+ 04 1.90E+ 05 1.22E− 36
60 2.52E+ 05 4.84E+ 05 1.11E+ 05 2.38E+ 05 1.85E+ 05 8.30E+ 05 1.14E− 24
90 5.61E+ 05 1.10E+ 06 2.41E+ 05 5.40E+ 05 4.13E+ 05 2.18E+ 06 1.45E− 19

F4
30 1.06E+ 08 2.32E+ 08 8.62E+ 05 1.59E+ 07 4.09E+ 07 2.25E+ 07 2.69E+ 01
60 5.87E+ 08 5.97E+ 08 1.11E+ 07 2.12E+ 08 3.24E+ 08 2.11E+ 08 5.70E+ 01
90 1.00E+ 09 9.99E+ 08 3.96E+ 07 5.81E+ 08 6.66E+ 08 7.39E+ 08 8.71E+ 01

F5
30 1.85E+ 01 1.99E+ 01 8.82E+ 00 1.87E+ 01 1.77E+ 01 1.87E+ 01 9.55E− 15
60 1.90E+ 01 1.99E+ 01 1.18E+ 01 1.90E+ 01 1.86E+ 01 1.90E+ 01 3.53E− 14
90 1.91E+ 01 1.99E+ 01 1.37E+ 01 1.91E+ 01 1.88E+ 01 1.91E+ 01 1.33E− 11

F6
30 8.57E+ 01 5.77E+ 02 2.12E+ 01 9.38E+ 01 1.27E+ 02 1.69E+ 02 0.00E+ 00
60 4.32E+ 02 1.33E+ 03 1.09E+ 02 6.02E+ 02 4.64E+ 02 7.27E+ 02 0.00E+ 00
90 7.13E+ 02 2.14E+ 03 2.51E+ 02 1.31E+ 03 8.87E+ 02 1.62E+ 03 0.00E+ 00

F7
30 9.37E+ 03 9.27E+ 03 3.12E+ 02 1.29E+ 03 5.03E+ 03 2.30E+ 03 4.68E− 38
60 4.39E+ 04 4.29E+ 04 3.09E+ 03 1.65E+ 04 3.05E+ 04 1.62E+ 04 5.54E− 28
90 1.03E+ 05 1.03E+ 05 1.15E+ 04 5.51E+ 04 8.04E+ 04 5.06E+ 04 2.20E− 21

F8
30 1.65E+ 06 1.66E+ 06 7.07E+ 03 9.65E+ 04 3.79E+ 05 2.28E+ 05 6.67E− 01
60 8.84E+ 06 8.63E+ 06 1.54E+ 05 2.54E+ 06 4.67E+ 06 2.58E+ 06 6.67E− 01
90 2.19E+ 07 2.15E+ 07 7.95E+ 05 1.03E+ 07 1.34E+ 07 9.36E+ 06 6.67E− 01

F9
30 3.26E+ 10 6.09E+ 10 2.14E+ 09 9.29E+ 09 1.82E+ 10 1.55E+ 10 1.40E− 31
60 8.60E+ 10 1.46E+ 11 1.11E+ 10 6.46E+ 10 8.06E+ 10 5.24E+ 10 5.59E− 21
90 1.32E+ 11 2.37E+ 11 2.60E+ 10 1.42E+ 11 1.56E+ 11 1.02E+ 11 6.76E− 15

F10
30 8.84E+ 00 7.17E− 01 6.15E− 34 1.81E− 02 8.20E− 01 7.49E− 01 1.9E− 196
60 2.11E+ 01 1.00E+ 00 1.35E− 06 4.62E− 01 9.82E+ 00 1.93E+ 00 9.3E− 190
90 3.42E+ 01 1.26E+ 00 2.44E− 05 2.25E+ 00 2.16E+ 01 2.97E+ 00 1.3E− 165

F11
30 4.19E+ 05 4.19E+ 05 1.60E+ 03 2.51E+ 04 1.02E+ 05 6.73E+ 04 3.49E− 54
60 2.24E+ 06 2.13E+ 06 3.98E+ 04 6.43E+ 05 1.16E+ 06 9.31E+ 05 4.49E− 31
90 5.50E+ 06 5.24E+ 06 1.85E+ 05 2.65E+ 06 3.39E+ 06 3.19E+ 06 2.90E− 23

F12
30 2.34E+ 03 1.76E+ 03 1.61E− 02 1.75E+ 02 1.20E+ 02 2.79E+ 02 1.15E− 37
60 2.28E+ 04 1.66E+ 04 2.11E+ 01 4.88E+ 03 7.93E+ 03 3.44E+ 03 1.35E− 26
90 8.42E+ 04 5.92E+ 04 3.99E+ 02 2.61E+ 04 4.28E+ 04 1.48E+ 04 1.97E− 20

Table 5: 'e performance of MA+ compared with EHO, KH, MFO, MSA, SCA, and WOA algorithms on 30-, 60-, and 90-dimensional
benchmark functions.

'e best mean optimization results for comparing the performances of other metaheuristic algorithms with D� 30, 60, and 90 after 100
runs

F D EHO KH MFO MSA SCA WOA MA+

F1
30 2.49E− 07 4.63E− 01 6.57E+ 01 2.30E− 08 2.32E+ 01 2.42E− 09 1.03E− 40
60 6.44E− 07 4.75E+ 00 2.70E+ 02 3.67E− 07 1.15E+ 02 4.67E− 09 8.20E− 29
90 1.06E− 06 9.04E+ 00 4.97E+ 02 1.17E− 06 2.26E+ 02 7.45E− 09 1.16E− 23

F2
30 4.12E− 03 1.14E+ 01 4.66E+ 02 1.78E− 04 1.52E+ 01 3.76E− 05 1.09E− 23
60 9.34E− 03 2.45E+ 14 1.13E+ 17 9.50E− 04 4.20E+ 01 9.19E− 05 8.35E− 18
90 1.46E02 3.56E+ 27 1.37E+ 32 1.63E− 03 6.81E+ 01 1.52E− 04 2.52E− 14

F3
30 2.30E− 04 6.71E+ 03 4.61E+ 04 1.59E− 07 4.07E+ 04 2.25E+ 02 1.22E− 36
60 9.56E− 04 1.05E+ 05 1.79E+ 05 7.08E− 06 1.74E+ 05 1.33E+ 03 1.14E− 24
90 2.08E− 03 2.46E+ 05 3.84E+ 05 4.86E− 05 4.14E+ 05 2.25E+ 03 1.45E− 19

F4
30 2.89E+ 01 8.69E+ 03 4.74E+ 07 2.86E+ 01 3.30E+ 07 2.87E+ 01 2.69E+ 01
60 5.89E+ 01 2.28E+ 04 3.61E+ 08 5.89E+ 01 2.25E+ 08 5.85E+ 01 5.70E+ 01
90 8.89E+ 01 3.85E+ 04 7.55E+ 08 8.89E+ 01 5.21E+ 08 8.83E+ 01 8.71E+ 01

Scientific Programming 11

4. Conclusions

'is paper presented a novel metaheuristic search and
cognitively inspired algorithm, based on the monkey algo-
rithm. 'e proposed algorithm has been widely employed
for solving various kinds of optimization problems and was
evaluated extensively against 12 benchmark optimization

functions on different types of dimensions for each function.
A new random perturbation was defined to improve the
control parameters and was constructed of the proposed
algorithm. 'e main advantage of the control parameters
was that they efficiently prevented the improved monkey
algorithm from getting stuck in optimal solutions and found
global optimal solution for 8 benchmark functions, namely,

Table 5: Continued.

'e best mean optimization results for comparing the performances of other metaheuristic algorithms with D� 30, 60, and 90 after 100
runs

F D EHO KH MFO MSA SCA WOA MA+

F5
30 1.94E− 03 4.84E+ 00 1.85E+ 01 6.84E− 05 1.59E+ 01 1.21E− 04 9.55E− 15
60 2.22E− 03 7.16E+ 00 2.01E+ 01 1.88E− 04 1.89E+ 01 1.19E− 04 3.53E− 14
90 2.33E− 03 7.80E+ 00 2.04E+ 01 3.57E− 04 1.83E+ 01 1.41E− 04 1.33E− 11

F6
30 1.44E− 04 3.03E+ 00 2.28E+ 02 1.09E− 09 8.46E+ 01 6.10E− 02 0.00E+ 00
60 2.14E− 04 6.83E+ 00 9.28E+ 02 7.15E− 09 4.15E+ 02 3.88E− 02 0.00E+ 00
90 2.58E− 04 7.77E+ 00 1.70E+ 03 3.90E− 08 8.37E+ 02 3.47E− 02 0.00E+ 00

F7
30 1.16E− 05 4.21E+ 01 3.09E+ 03 1.95E− 07 1.13E+ 03 1.30E− 07 4.68E− 38
60 6.21E− 05 5.33E+ 02 2.63E+ 04 1.24E− 05 1.10E+ 04 7.04E− 07 5.54E− 28
90 1.55E− 04 1.55E+ 03 7.70E+ 04 4.37E− 05 3.34E+ 04 9.83E− 07 2.20E− 21

F8
30 9.51E− 01 4.69E+ 01 3.21E+ 05 6.71E− 01 2.10E+ 05 7.59E− 01 6.67E− 01
60 9.89E− 01 6.05E+ 02 4.55E+ 06 7.88E− 01 2.98E+ 06 9.29E− 01 6.67E− 01
90 9.95E− 01 1.86E+ 03 1.45E+ 07 9.95E− 01 1.03E+ 07 9.73E− 01 6.67E− 01

F9
30 7.35E+ 01 2.16E+ 06 2.23E+ 10 1.74E− 02 8.21E+ 09 2.21E+ 00 1.40E− 31
60 1.94E+ 02 7.53E+ 08 1.01E+ 11 3.61E− 01 4.19E+ 10 1.52E+ 00 5.59E− 21
90 3.19E+ 02 3.25E+ 09 1.88E+ 11 1.52E+ 00 8.77E+ 10 2.76E+ 00 6.76E− 15

F10
30 4.29E− 12 −7.30E+ 02 4.82E− 02 9.39E− 15 8.48E− 02 7.48E− 17 1.9E− 196
60 5.48E− 12 −1.34E+ 03 2.30E− 01 2.12E− 14 4.85E− 01 5.51E− 16 9.3E− 190
90 5.40E− 12 −1.85E+ 03 4.53E− 01 1.13E− 14 8.17E− 01 7.91E− 17 1.3E− 165

F11
30 8.13E− 13 −2.21E+ 08 8.48E+ 04 2.46E− 14 4.50E+ 04 5.38E− 11 3.49E− 54
60 5.90E− 12 −6.49E+ 12 1.14E+ 06 6.19E− 12 7.49E+ 05 2.28E− 12 4.49E− 31
90 1.59E− 11 −1.65E+ 17 3.76E+ 06 7.59E− 11 2.36E+ 06 9.29E− 10 2.90E− 23

F12
30 4.21E− 06 4.27E+ 00 4.60E+ 02 3.33E− 06 1.55E+ 02 2.85E− 08 1.15E− 37
60 4.57E− 05 1.96E+ 02 8.62E+ 03 1.44E− 04 3.33E+ 03 3.31E− 07 1.35E− 26
90 1.82E− 04 9.54E+ 02 3.97E+ 04 9.07E− 04 1.59E+ 04 1.89E− 06 1.97E− 20

Table 6: 'e performance of MA+ compared with MBO, GCMBO, and OPMBO algorithms on 20-, 50-, and 100-dimensional benchmark
functions.

'e mean and standard deviations obtained by the MBO, GCMBO, OPMBO, and MA+on the test optimization functions after 30 runs

F D
MBO GCMBO OPMBO MA+

Mean STD Mean STD Mean STD Mean STD

F1
20 1.02E+ 01 2.41E+ 01 4.03E− 09 6.14E− 09 1.99E− 10 5.68E− 10 6.67E− 52 8.17E− 52
50 2.09E+ 02 1.39E+ 02 1.11E− 09 2.15E− 09 8.85E− 09 7.50E− 09 2.40E− 32 3.00E− 32
100 4.83E+ 02 3.27E+ 02 1.00E + 01 4.01E+ 01 4.87E+ 00 2.52E+ 01 1.70E− 22 1.94E− 22

F2
20 1.95E+ 01 2.47E+ 01 2.27E+ 00 5.83E+ 00 1.72E− 06 1.80E− 06 8.80E− 29 1.10E− 28
50 1.30E+ 02 7.90E+ 01 2.36E+ 01 3.56E+ 01 2.73E− 05 1.65E− 05 1.99E− 20 3.92E− 20
100 2.66E+ 02 1.75E+ 02 5.61E+ 01 7.16E+ 01 7.60E− 02 4.13E− 01 1.90E− 13 1.65E− 13

F3
20 9.91E+ 03 7.05E+ 03 5.47E+ 03 3.63E+ 03 1.29E+ 01 2.54E+ 01 4.04E− 45 4.67E− 45
50 7.17E+ 04 5.12E+ 04 2.81E+ 04 1.75E+ 04 1.98E+ 03 8.64E+ 03 1.39E− 27 1.45E− 27
100 3.63E+ 05 1.78E+ 05 1.12E+ 05 6.38E+ 04 9.42E+ 03 2.84E+ 04 9.10E− 18 1.12E− 17

F4
20 6.36E+ 02 1.01E+ 03 7.10E+ 01 9.60E+ 01 1.41E+ 01 7.96E+ 00 1.65E+ 01 2.90E− 01
50 5.93E+ 03 6.24E+ 03 2.43E+ 02 3.53E+ 02 4.60E+ 01 5.35E+ 01 4.72E+ 01 1.19E− 01
100 1.35E+ 04 1.43E+ 04 1.00E+ 03 2.06E+ 03 4.32E+ 02 1.25E+ 03 9.75E+ 01 4.20E− 01

F5
20 8.92E+ 00 7.96E+ 00 2.61E− 01 1.08E+ 00 6.94E− 06 5.00E− 06 8.59E− 15 8.69E− 15
50 1.59E+ 01 6.11E+ 00 1.96E+ 00 4.66E+ 00 4.03E− 05 2.24E− 05 2.80E− 14 1.95E− 14
100 1.86E+ 01 3.99E+ 00 8.63E+ 00 9.13E+ 00 3.93E− 02 1.89E− 01 4.03E− 10 7.08E− 11

12 Scientific Programming

sphere function (F1), Schwefel 2.22 function (F2), Schwefel
1.2 function (F3), sum squares function (F7), Bent Cigar
function (F9), sum of different powers function (F10),
Holzman function (F11), and hyperellipsoid function (F12)
in Figures 2(a)–2(c), 2(g), and 2(i)–2(l), respectively.
Moreover, Ackley function (F5) in Figure 2(e) and Griewank
function (F6) in Figure (2f) early obtained 8.88E− 16 and
0.00E+ 00, respectively, for the lowest iterations. 'ese
experimental results are the best solution for these functions,
and they also reached global optimum solutions early
without getting stuck in local optimum solutions. However,
Rosenbrock function (F4) in Figure (2d) and Dixon-Price
function (F8) in Figure (2h) caused getting stuck in optimal
solutions and obtained poor performance for only the lowest
iterations, but of course the proposed algorithm obtained the
best solution for these functions at the maximum allowable
number of iterations. Briefly, the search strategy in the
proposed algorithm has more generally proven to have a
successful global optimal solution, convergence optimal
solution, and much better performance on many optimi-
zation problems for the lowest number of iterations against
the original monkey algorithm.

'e performance of the improved monkey algorithm
was compared with many metaheuristic optimization al-
gorithms, including a collection of 18 optimizer algorithms.
'e comparative results included simple statistics for the
best, mean, and convergence plots. All those comparative
results showed that the proposed algorithm had an out-
standing performance in majority of the evaluation cases.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e author declares that he has no conflicts of interest.

Acknowledgments

'e author would like to acknowledge Faculty of Engi-
neering and Architecture, Department of Computer Engi-
neering, Istanbul Gelisim University, Avcılar-Istanbul,
Turkey.

References

[1] R. H. Abiyev and M. Tunay, “Optimization of high dimen-
sional functions through hypercube evaluation,” Computa-
tional Intelligence and Neuroscience, vol. 2015, Article ID
967320, 11 pages, 2015.

[2] M. Tunay, “Evolutionary search algorithm based on hyper-
cube optimization for high-dimensional functions,” Inter-
national Journal of Computational and Experimental Science
and Engineering (IJCESEN), vol. 6, no. 1, pp. 42–62, 2020.

[3] R. H. Abiyev and M. Tunay, “Optimization search using
hypercubes,” in Proceedings of the 2020 4th International
Symposium on Multidisciplinary Studies and Innovative
Technologies (ISMSIT), pp. 1–8, Istanbul, Turkey, October
2020.

[4] L. Marini, B. Morini, and M. Porcelli, “Quasi-Newton
methods for constrained nonlinear systems: complexity
analysis and applications,” Computational Optimization and
Applications, vol. 71, no. 1, pp. 147–170, 2018.

[5] S. F. Husin, M. Mamat, and M. A. H. Ibrahim, “A modifi-
cation of steepest descent method for solving large-scaled
unconstrained optimization problems,” International Journal
of Engineering & Technology, vol. 7, no. 3, pp. 72–75, 2018.

[6] O. O. Kryazhych, O. M. Trofymchuk, and O. V. Kovalenko,
“'e algorithm for determining the starting point in the
simulation by the method of possible directions,” Radio
Electronics, Computer Science, Control, vol. 3, pp. 40–46, 2019.

[7] S. Wang, E. Roosta-Khorasani, P. Xu, and M. W. Mahoney,
“Giant: globally improved approximate Newton method for
distributed optimization,” in Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Sys-
tems, pp. 2332–2342, Montreal, Canada, December 2018.

[8] M. Tunay, “A new intense stochastic search method based on
hypercube evaluation for examination timetabling problems,”
in Proceedings of the 2020 International Conference on Elec-
trical, Communication, and Computer Engineering (ICECCE),
pp. 1–5, Istanbul, Turkey, June 2020.

[9] C. Han, L. Ming, and Z. Dinghua, “Optimization of varying-
parameter drilling for multi-hole parts using metaheuristic
algorithm coupled with self-adaptive penalty method,” Ap-
plied Soft Computing, vol. 95, p. 106489, 2020.

[10] M. A. Akbay, C. B. Kalayci, and O. Polat, “A parallel variable
neighborhood search algorithm with quadratic programming
for cardinality constrained portfolio optimization,” Knowl-
edge-Based Systems, vol. 198, p. 105944, 2020.

[11] U. M. Diwekar, Introduction to Applied Optimization, Vol. 22,
Springer Nature, Basingstoke, UK, 2020.

[12] P. Kuendee and U. Janjarassuk, “A comparative study of
mixed-integer linear programming and genetic algorithms for
solving binary problems,” in Proceedings of the 2018 5th In-
ternational Conference on Industrial Engineering and Appli-
cations (ICIEA), pp. 284–288, Singapore, April 2018.

[13] Z. Wang and H. Li, “A novel multi-objective evolutionary
algorithm based on linear programming,” in Proceedings of
the 2018 14th International Conference on Computational
Intelligence and Security (CIS), pp. 345–348, Hangzhou,
China, November 2018.

[14] S. Agarwal, A. P. Singh, and N. Anand, “Evaluation perfor-
mance study of Firefly algorithm, particle swarm optimization
and artificial bee colony algorithm for non-linear mathe-
matical optimization functions,” in Proceedings of the 2013
Fourth International Conference on Computing, Communi-
cations and Networking Technologies (ICCCNT), pp. 1–8,
Tiruchengode, India, July 2013.

[15] K. Schittkowski and C. Zillober, “Nonlinear programming:
algorithms, software, and applications,” IFIP Advances in
Information and Communication Technology, vol. 166,
pp. 73–107, 2006.

[16] N. Andreasson, M. Patriksson, and A. Evgrafov, An Intro-
duction to Continuous Optimization: Foundations and Fun-
damental Algorithms, Courier Dover Publications, Garden
City, NY, USA, 2020.

[17] R. W. Sebesta, Concepts of Programming Languages, Pearson,
Boston, MA, USA, 2012.

[18] E. V. Denardo, Dynamic Programming: Models and Appli-
cations, Courier Corporation, Chelmsford, MA, USA, 2012.

[19] D. P. Bertsekas, Abstract Dynamic Programming, Athena
Scientific, Nashua, NH, USA, 2018.

Scientific Programming 13

[20] M. Dorigo and T. Stützle, “Ant colony optimization: overview
and recent advances,” Handbook of Metaheuristics, Springer,
Boston, MA, USA, .

[21] D. Ke-Lin and M. N. S. Swamy, “Ant colony optimization,”
Search and Optimization by Metaheuristics, pp. 191–199,
Birkhäuser, Basel, Switzerland, 2016.

[22] S. Mirjalili, “'e ant lion optimizer,” Advances in Engineering
Software, vol. 83, pp. 80–98, 2015.

[23] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,”
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010), Springer, Berlin, Germany, pp. 65–74, 2010.

[24] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
Proceedings of the 2009 World Congress on Nature & Bio-
logically Inspired Computing (NaBIC), pp. 210–214, Coim-
batore, India, December 2009.

[25] G.-G. Wang, S. Deb, and L. S. Coelho, “Elephant herding
optimization,” in Proceedings of the 3rd International Sym-
posium on Computational and Business Intelligence (ISCBI),
pp. 1–5, Bali, Indonesia, December 2015.

[26] Q. Zhao and C. Li, “Two-stage multi-swarm particle swarm
optimizer for unconstrained and constrained global optimi-
zation,” IEEE Access, vol. 8, pp. 124905–124927, 2020.

[27] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-in-
spired optimization algorithm,” Communications in Nonlin-
ear Science and Numerical Simulation, vol. 17, no. 12,
pp. 4831–4845, 2012.

[28] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[29] G.-G. Wang, S. Deb, and Z. Cui, “Monarch butterfly opti-
mization,” Neural Computing and Applications, vol. 31,
pp. 1995–2014, 2019.

[30] L. Sun, S. Chen, J. Xu, and Y. Tian, “Improved monarch
butterfly optimization algorithm based on opposition-based
learning and random local perturbation,” Complexity,
vol. 2019, Article ID 4182148, 20 pages, 2019.

[31] J. An, Q. Kang, L. Wang, and Q. Wu, “Mussels wandering
optimization: an ecologically inspired algorithm for global
optimization,” Cognitive Computation, vol. 5, no. 2,
pp. 188–199, 2013.

[32] G.-G. Wang, “Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization problems,”
Memetic Computing, vol. 10, pp. 151–164, 2018.

[33] S. Mirjalili and A. Lewis, “'e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[34] L. Wee Loon, W. Antoni, D. Mohammad, and H. Habibollah,
“A biogeography-based optimization algorithm hybridized
with tabu search for the quadratic assignment problem,”
Computational Intelligence and Neuroscience, vol. 2016, Ar-
ticle ID 5803893, 12 pages, 2016.

[35] R. Storn and K. Price, ““Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[36] M. Emmerich, O. M. Shir, and H. Wang, “Evolution Strat-
egies,” in Handbook of Heuristics, R. Mart́ı, P. Panos, and
M. Resende, Eds., Springer, Berlin, Germany, pp. 1–31, 2018.

[37] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a
literature review,” in Proceedings of the 2019 International
Conference onMachine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), pp. 380–384, Faridabad, India,
February 2019.

[38] M. Tunay and R. H. Abiyev, “Hybrid local search based ge-
netic algorithm and its practical application,” International

Journal of Soft Computing and Engineering, vol. 5, no. 2,
pp. 21–27, 2015.

[39] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new
heuristic optimization algorithm: harmony search,” Simula-
tion, vol. 76, no. 2, pp. 60–68, 2001.

[40] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[41] S. Mirjalili, “SCA: a sine cosine algorithm for solving opti-
mization problems,” Knowledge-Based Systems, vol. 96,
pp. 120–133, 2016.

[42] W. A. H. M. Ghanem and A. Jantan, “A cognitively inspired
hybridization of artificial bee colony and dragonfly algorithms
for training multi-layer perceptrons,” Cognitive Computation,
vol. 10, pp. 1096–1134, 2018.

14 Scientific Programming

