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Abstract- In this paper, a simple approach is presented for the calculation of bending deflection of a semi trailer chassis. The 

3D model of the chassis is used to obtain the function of the moment of inertia and then the mathematical model of the chassis 

is presented as an Euler Bernoulli Beam which has the variable cross section. Different loading conditions raised from the semi 

trailer test procedures are applied. The bending deflections of the semi trailer chassis are numerically calculated by using the 

Symmetric Smoothed Particle Hydrodynamics (SSPH) method. The first time, the performance of the SSPH method for the 

fourth order non-homogeneous variable coefficents linear boundary value problems is evaluated. For the calculations different 

numbers of terms in the TSEs are employed when the number of nodes in the problem domain increases.  The comparisons are 

made with the results of experiments. It is observed that the SSPH method has the conventional convergence properties and 

yields smaller L2 error. Finally, the approach presented here may be used for the calculation of deflection of the semi trailer 

chassis before the release of detail design. 

Keywords Meshless methods, strong form, Taylor series expansion, element free method, computational mechanics. 

 

1. Introduction 

The choice of basis functions is one of the most important 

issues to obtain the approximate solution of an initial 

boundary value problem in numerical methods. One can 

improve the accuracy of the numerical solution either by 

increasing number of nodes or by increasing the degree of 

complete polynomials which are defined piecewise on the 

problem domain in the Finite Element Method. To find an 

approximate solution of an initial boundary value problem 

the basis functions to be used in meshless methods can be 

derived by Smoothed Particle Hydrodynamics (SPH) 

method, proposed by Lucy [1], Corrected Smoothed Particle 

Method (CSPM) [2, 3], Reproducing Kernel Particle Method 

(RKPM) [4-6], Modified Smoothed Particle Hydrodynamics 

(MSPH) method [7-10], the SSPH method [11-14] and the 

Strong Form Meshless Implementation of Taylor Series 

Method (SMITSM) [15-16], Moving Kringing Interpolation 

Method [17-18], the meshless Shepard and Least Squares 

(MSLS) Method [19]. 

The locations of nodes are only the parameters which are 

necessary to construct basis functions in the SSPH method. 

These basis functions can be found similar to those in the 

Finite Element Methods however the derivatives of a 

function can be found without differentiating the basis 

function. Of course, the basis for the derivatives of a function 

can be obtained by differentiating the basis for the function 

as in the Finite Element Methods and meshless methods.  

Because of the formulation of the Symmetric Smoothed 

Particle Hydrodynamics (SSPH) method the matrix to be 

inverted becomes symmetric and this reduces the CPU time. 

Moreover, the SSPH method eliminates the choice of weight 

function which must not be a constant. The SSPH method 

depends on the Taylor Series Expansion and calculates the 

value of the solution at a node by using the values of the 

solution at the other nodes and then substitutes it into the 

governing differential equation. The SSPH method has been 

successfully applied to 2D homogeneous elastic problems 

including quasi-static crack propagation [11-13] and 2D Heat 

Transfer problems.  

A semi trailer chassis has a very complex structure and 

the structural analyses based on the bending deflections are 

generally performed by using commercial Finite Element 

Analysis software. This activity is costly and time 

consuming. Since the less deflection becomes a unique 
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selling point of a semi trailer, during conceptual and detail 

design phases of the new product development process the 

mentioned analysis should be performed to obtain an 

acceptable chassis design which is validated by a series of 

tests. In this paper, an approach which is simple and requires 

less effort than the Finite Element Methods is presented for 

the calculation of deflection of a semi trailer chassis.  First of 

all, by using the 3D data of the chassis a function for the 

moment of inertia of the cross section is created and then the 

chassis is modelled as Euler Bernoulli Beam. Different 

loading conditions which cause bending for the semi trailer 

chassis coming from the semi trailer test procedures are 

applied. The bending deflections of the semi trailer chassis 

are numerically calculated by using the SSPH method. Also, 

the performance of the SSPH method is evaluated by 

employing different number of terms in the associated Taylor 

Series Expansions and the calculation of deflection of a semi 

trailer chassis is studied then, comparisons are made with the 

results of experiments.  

In section 2, the formulation of the SSPH method is 

presented for 1D application. In section 3, the chassis of the 

semi trailer is modelled as a beam based on Euler Bernoulli 

beam theory. The moment of inertia of the Euler Bernoulli 

beam is defined as a function by using the moment of inertia 

values of totally 23 sections due to the non-uniform structure 

of the semi trailer chassis. In Section 4, two types of loading 

conditions are investigated. The performance of the 

Symmetric Smoothed Particle Hydrodynamics (SSPH) 

method is compared with the experimental results. 

2. Formulation 

If a function f(x) is continuous and differentiable up to 

the (n+1)
th

 order, through the Taylor Series Expansion (TSE) 

the value of the function at a point ξ = (𝜉1) located in the 

neighborhood of x = (𝑥1) can be approximated as following 

      𝑓(𝜉1) = ∑
1

𝑚!
[(𝜉1 − 𝑥1)

𝜕

𝜕𝑥1

𝑛
𝑚=0 ]𝑚𝑓(𝑥1)                  (1) 

If the eight and higher order terms are neglected, and 

matrices 𝐏(ξ, x) and 𝐐(x) are introduced, one can write 

equation (1) as 

𝑓(𝜉) = 𝑷(𝜉, 𝑥)𝑸(𝑥)                               (2) 

Where 

 𝑸(𝑥) = [ 𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥1
,

1

2!

𝑑2 𝑓(𝑥)

𝑑𝑥1
2 , … ,

1

𝑛!

𝑑7 𝑓(𝑥)

𝑑𝑥1
7 ]𝑇            (3) 

𝑷(𝜉, 𝑥) = [1, (𝜉1 − 𝑥1), (𝜉1 − 𝑥1)2, … , (𝜉1 − 𝑥1)7]    (4)                     

The unknown variables which are the elements of the 

𝐐(x), the estimate of the function, its first derivatives to 

seventh derivatives at x = (𝑥1)  can be found from equation 

(2). 

Both sides of equation (2) are multiplied with 

𝑊(ξ, x)𝐏(ξ, x)𝑇 and the following equation is obtained. 

𝑓(𝜉)𝑊(𝜉, 𝑥)𝑷(𝜉, 𝑥)𝑇 = 𝑷(𝜉, 𝑥)𝑸(𝑥)𝑊(𝜉, 𝑥)𝑷(𝜉, 𝑥)𝑇 , 

= [𝑷(𝜉, 𝑥)𝑇𝑊(𝜉, 𝑥)𝑷(𝜉, 𝑥)]𝑸(𝑥)            (5) 

 

 

 

 

 

 

 

 

 

Fig. 1. Distribution of the nodes in the compact support of 

the kernel function W(ξ, x) associated with the point 

x = (xi, yi) 

In the compact support domain of the weight function 

𝑊(ξ, x) associated with the point x = (𝑥1) shown in Figure 

1, let there be 𝑁(x) nodes and g(j) is the j
th

 node in the 

compact support of 𝑊(ξ, x). Equation (5) is evaluated at 

every node in the compact support domain of the 𝑊(ξ, x).  

By summation of each side over these nodes to find out 

∑ 𝑓(𝜉𝑔(𝑗))

𝑁(𝑥)

𝑗=1

𝑊(𝜉𝑔(𝑗), 𝒙)𝑷(𝜉𝑔(𝑗), 𝑥)
𝑇

 

= ∑ [𝑷(𝜉𝑔(𝑗), 𝑥)
𝑇𝑁(𝑥)

𝑗=1 𝑊(𝜉𝑔(𝑗), 𝑥)𝑷(𝜉𝑔(𝑗), 𝑥)] 𝑸(𝑥)  (6) 

Where 𝜉𝑔(𝑗) defines the coordinates of the node g(j). By 

using the following definitions 

𝑯(𝜉, 𝑥) = [ 𝑷𝑇(𝜉𝑔(1), 𝑥), 𝑷𝑇(𝜉𝑔(2), 𝑥), … , 𝑷𝑇(𝜉𝑔(𝑁(𝑥)), 𝑥)], 

𝑾(𝜉, 𝑥) = [

𝑊(𝜉𝑔(1), 𝑥) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝑊(𝜉𝑔(𝑁(𝑥)), 𝑥)

], 

𝑭(𝒙)𝑇(𝜉, 𝑥) = [𝑓(𝜉𝑔(1)), 𝑓(𝜉𝑔(2)), … . . , 𝑓(𝜉𝑔(𝑁(𝑥))] (7)  

Equation (6) can be written as 

𝑯(𝜉, 𝑥) 𝑾(𝜉, 𝑥)𝑭(𝑥)(𝜉, 𝑥) =
                              𝑯(𝜉, 𝑥) 𝑾(𝜉, 𝑥)𝑯(𝜉, 𝑥)𝑇𝑸(𝑥)                     (8) 

The values of the matrix 𝐏(ξ, x), the weight function 

𝑊(ξ, x) and the function f at all nodes located in the compact 

support domain of 𝑊(ξ, x) associated with point x are the 

elements which determine the values of element matrices 

𝐇(ξ, x), 𝐖(ξ, x) and 𝐅(𝒙)(ξ, x) . Then, equation (8) can be 

written as 

𝑪(𝜉, 𝑥)𝑸(𝑥) = 𝑫(𝜉, 𝑥)𝑭(𝒙)(𝜉, 𝑥)                  (9) 

Where 𝐂(ξ, x) = 𝐇(ξ, x) 𝐖(ξ, x)𝐇(ξ, x)𝑇 and 𝐃(ξ, x) =
𝐇(ξ, x) 𝐖(ξ, x). 

It can be easily seen that the matrix 𝐂(ξ, x) defined above 

is symmetric. That’s why this method is called as the SSPH 

method. The simultaneous linear algebraic equations given in 

equation (3.9) can be solved to obtain the unknown elements 

of the 𝐐(x). The matrix 𝐂(ξ, x) to be inverted is symmetric. 

Because of symmetry property of the matrix 𝐂(ξ, x), the CPU 

𝒙𝒊 

 

𝒙𝒈 

Compact 

Support 

Domain 
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time which is needed to solve equation (9) for the unknown 

elements of the 𝐐(x) can be reduced. The matrices given in 

equation (9) do not include the derivatives of the weight 

function.  By using a much larger class of weight functions 

including a constant the implementation and usefulness of 

the method can be improved. 

For the non-singular matrix 𝐂(ξ, x), the solution of 

equation (9) is 

𝑸(𝑥) = 𝑪(𝜉, 𝑥)−1𝑫(𝜉, 𝑥)𝑭(𝒙)(𝜉, 𝑥) 

                           = 𝑲(𝒙)(𝜉, 𝑥)𝑭(𝒙)(𝜉, 𝑥)                            (10) 

and 𝐊(𝒙)(ξ, x) = 𝐂(ξ, x)−1𝐃(ξ, x). Equation (10) can be 

written as 

𝑸(𝑥) =  𝑲(𝜉, 𝑥)𝑭(𝜉)                       (11) 

𝑭(𝜉) = [ 𝑓(𝜉1), . , 𝑓(𝜉𝑔(1)), . , 𝑓(𝜉𝑔(𝑁(𝑥))), … , 𝑓(𝜉𝑀)]
𝑇
                                   

(12) 

Where M is the total number of nodes in the problem 

domain. Alternatively, one can write equation (11) as 

following  

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,8            (13) 

Where 𝐹𝐽 = 𝑓(𝜉𝐽). The value of the function and its 

derivatives at the point x are defined in terms of values of the 

function at all nodes in the problem domain. Eight 

components of equation (13) for 1 D case are given as 

following 

        𝑓(𝑥) = 𝑄1(𝑥) = ∑ 𝐾1𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝜕𝑓(𝑥)

𝜕𝑥1

= 𝑄2(𝑥) = ∑ 𝐾2𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝜕2𝑓(𝑥)

𝜕𝑥1
2 = 2! 𝑄3(𝑥) = ∑ 𝐾3𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝜕3𝑓(𝑥)

𝜕𝑥1
3 = 3! 𝑄4(𝑥) = ∑ 𝐾4𝐽𝐹𝐽  

𝑀

𝐽=1

 

             
𝜕4𝑓(𝑥)

𝜕𝑥1
4 = 4! 𝑄5(𝑥) = ∑ 𝐾5𝐽𝐹𝐽                 

𝑀

𝐽=1

 

𝜕5𝑓(𝑥)

𝜕𝑥1
5 = 5! 𝑄6(𝑥) = ∑ 𝐾6𝐽𝐹𝐽  

𝑀

𝐽=1

 

               
𝜕6𝑓(𝑥)

𝜕𝑥1
6 = 6! 𝑄7(𝑥) = ∑ 𝐾7𝐽𝐹𝐽                  

𝑀

𝐽=1

 

                         
𝜕7𝑓(𝑥)

𝜕𝑥1
7 = 7! 𝑄8(𝑥) = ∑ 𝐾8𝐽𝐹𝐽                   

𝑀

𝐽=1

(14) 

The formulation for 2D and 3D problems can be found 

[11-14]. 

3. Modelling of the Semi-Trailer Chassis 

By using the 3D model of the semi-trailer chassis, 1D 

Euler Bernoulli beam model is presented in this section. As it 

is very well known and can be seen from the Figure 2, the 

semi-trailer chassis has a very complex structure.  The 

deflection of the chassis regarding to the various loading 

conditions can be computed by using commercial finite 

element analysis software. But the aim of this study is not to 

compare the performance of meshless methods mentioned 

above with FEM software. 

 

Fig. 2. 3D Model of a Semi Trailer Chassis 

During the new product development process, the semi-

trailer chassis can be modified which are considered major 

modifications several times. For each major modification, to 

perform and repeat the finite element analysis with FEM 

software is a costly and time consuming activity because of 

re-meshing. Motivated by the fact that the performing and 

repeating finite element analysis is costly and time 

consuming, an alternative approach is investigated. 3D 

dimensional semi-trailer chassis is modelled as 1D 

dimensional beam based on Euler Bernoulli beam theory. To 

determine the moment of inertia of the beam is the most 

difficult part of mentioned modelling phase. It is found that 

the moment of inertia of the Euler Bernoulli beam can be 

defined as a function by using the moment of inertia values 

from the different sections of the chassis. It has to be 

mentioned that the selection of the sections is not a random 

activity; it is based on the design experience and engineering 

knowledge in terms of strength of materials. Totally 23 

sections are selected to present the moment of inertia 

function of the semi-trailer chassis. The 23 sections can be 

seen from Figure 2. By using these moment of inertia values, 

the moment of inertia function of the 1D dimensional beam 

is obtained with POLYFIT function of MATLAB. 

4. Numerical Results 

The SSPH method is applied to solve the two problems of 

which are with different loading and boundary conditions in 

this section. The results of SSPH method employing different 

number of terms in the TSEs are compared with each other. 

Nonetheless, the SSPH method can be easily applied to any 

boundary value problem and complex domains in a 

systematic way. 

4.1 Simply Supported Beam with Partially Distributed Load 

A distributed load is applied to the simply supported 

beam shown in Figure 3 and according to this loading 
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condition (case 1) the fourth order governing equation can be 

given as follows [20] 

                                         
𝑑2

𝑑𝑥2 (𝐸𝐼(𝑥)
𝑑2𝑤

𝑑𝑥2 ) = 𝑞(𝑥)                   (15) 

where the E is modulus of elasticity, I(x) is the moment of 

inertia of the cross section, w is the deflection of the neutral 

axis and the q(x) is the distributed load. 

 

Fig. 3. Simply Supported Beam – Load Case 1 

The physical parameters are as follows; 

𝑙1 = 13.6 𝑚, 𝑙2 = 5.95 𝑚, 𝑙3 = 4.45 𝑚,  

𝑙4 = 1.65 𝑚, 𝑙5 = 8.85 𝑚  

Modulus of elasticity E is 210 GPa and the distributed 

load q is set to 113513 N/m. The weight of the trailer chassis 

is neclegted. The boundary conditions are given as follows; 

𝑥 = 0,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 

𝑑𝐼

𝑑𝑥

𝑑2𝑤

𝑑𝑥2
+ 𝐼

𝑑3𝑤

𝑑𝑥3
= 0 

𝑥 = 𝑙1 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 

𝑑𝐼

𝑑𝑥

𝑑2𝑤

𝑑𝑥2
+ 𝐼

𝑑3𝑤

𝑑𝑥3
= 0 

𝑙2 ≤ 𝑥 ≤ 𝑙3,
𝑑2𝑤

𝑑𝑥2
= 0,

𝑑2𝐼

𝑑𝑥2

𝑑2𝑤

𝑑𝑥2
+ 2𝐸

𝑑𝐼

𝑑𝑥

𝑑3𝑤

𝑑𝑥3
+ 𝐸𝐼

𝑑4𝑤

𝑑𝑥4

= −𝑞 

𝑥 = 𝑙4 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤 = −0.013 𝑚 

𝑥 = 𝑙5 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤 = 0 𝑚 

The above forth order homogeneous variable coefficients 

boundary value problem is solved by using the SSPH method 

for the node distributions of 141, 273 and 545 in the problem 

domain employing different number of terms in the TSEs. 

The following Revised Super Gauss Function in [11] is used 

for each loading conditions as the weight function since it 

resulted in the least L2 error norms in numerical solutions 

presented in [11]. 

   𝑊(𝑥, 𝜉) =
𝐺

(ℎ√𝜋)
𝜆 {(36 − 𝑑2) 𝑒−𝑑2

0 ≤ 𝑑 ≤ 6
0 𝑑 > 6

}     (16)           

where 𝑑 = |𝑥 − 𝜉|/ℎ is the radius of the support domain 

which is set to 6, ℎ is the smoothing length, 𝜆 is equal to the 

dimensionality of the space (i.e., 𝜆=1, 2 or 3) and G is the 

normalization parameter having the values 1.04823, 1.10081 

and 1.18516 for λ = 1, 2 and 3, respectively. It is chosen that 

the smoothing length h=1.5∆ for two adjacent nodes for the 

examples studied in this paper. Numerical results obtained by 

using the SSPH method employing different number of terms 

in the TSEs are compared with the experimental, and their 

convergence and accuracy features are evaluated by using the 

following global L2 error norm 

            ‖𝐸𝑟𝑟𝑜𝑟‖2 =
[∑ (𝑤𝑛𝑢𝑚

𝑗
−𝑤𝑒𝑥𝑎𝑐𝑡

𝑗
)2𝑚

𝑗=1 ]
1/2

[∑ (𝑤𝑒𝑥𝑎𝑐𝑡
𝑗

)2𝑚
𝑗=1 ]

1/2 𝑥100         (29)                   

where 𝑣𝑛𝑢𝑚
𝑗

 is the value of numerical solution 𝑣 at the 𝑗𝑡ℎ 

node and 𝑣𝑒𝑥𝑎𝑐𝑡
𝑗

 is the value of analytical solution at the 𝑗𝑡ℎ 

node. 

Global L2 error norms of the solutions of SSPH method 

are given in Table 1, where numbers of nodes and terms in 

TSEs are varying. The results in Table 1 are obtained for the 

parameter values of d and h that yield the best accuracy. The 

compact support domain radius d is equal to 6 and smoothing 

length ℎ = 1.5∆. It is clear that, even with the same number 

of terms, solutions of the SSPH method agree very well with 

the analytical solution. 

To evaluate the performance of the SSPH method, 

numerical solutions are obtained for 5 to 8 terms in the TSEs. 

It is observed that the rate of convergence of the numerical 

solution increases with an increase in the degree of complete 

polynomials. However, with the same number terms in the 

TSEs, the convergence rate of the SSPH method is 

decreasing even the number of nodes is increased in the 

problem domain.  

Table 1. Global L2 error norm for different number of nodes 

and terms in the TSEs 

Number of  

Terms 

Number of Nodes in the Problem Domain 

141 273 545 

5 18.24 13.92 12.56 

6 17.58 12.89 11.46 

7 17.13 12.03 10.49 

8 16.76 11.07 9.63 

 

 

Fig. 4. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 141 nodes are used 
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Fig. 5. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 273 nodes are used 

 

Fig. 6. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 545 nodes are used 

It is observed in Figures 4 to 6 that accuracy of the SSPH 

method increases as the number of nodes and terms in the 

TSEs is increased. 

4.2 Simply Supported Indeterminate Beam with Partially 

Distributed Load 

Equally spaced distributed loads (case 2 - concrete 

blocks) are applied to the simply supported beam shown in 

Figure 7. 

 

Fig. 7. Simply Supported Beam – Load Case 1 

The physical parameters are as follows; 

𝑙1 = 13.6 𝑚,  𝑙2 = 3.75 𝑚,  𝑙3 = 7.5 𝑚,  

𝑙4 = 8.85 𝑚, 𝑙5 = 10.15 𝑚  

Modulus of elasticity E is 210 GPa and the an equally 

spaced distributed load q is set to 37575 N/m. The boundary 

conditions are given as follows; 

𝑥 = 0,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 

𝑑𝐼

𝑑𝑥

𝑑2𝑤

𝑑𝑥2
+ 𝐼

𝑑3𝑤

𝑑𝑥3
= 0 

𝑥 = 𝑙1 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 

𝑑𝐼

𝑑𝑥

𝑑2𝑤

𝑑𝑥2
+ 𝐼

𝑑3𝑤

𝑑𝑥3
= 0 

𝑥 = 𝑙3 ,   
𝑑2𝑤

𝑑𝑥2
= 0, 𝑤 = 0.0005 𝑚  

𝑥 = 𝑙4 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤 = 0.0014 𝑚 

𝑥 = 𝑙5 ,    
𝑑2𝑤

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤 = 0.0005 𝑚 

𝑁𝑜𝑑𝑒𝑠 𝑎𝑡 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑏𝑙𝑜𝑐𝑘𝑠 

 
𝑑2𝐼

𝑑𝑥2

𝑑2𝑤

𝑑𝑥2
+ 2𝐸

𝑑𝐼

𝑑𝑥

𝑑3𝑤

𝑑𝑥3
+ 𝐸𝐼

𝑑4𝑤

𝑑𝑥4
= −𝑞 

Global L2 error norms of the solutions of SSPH method 

are given in Table 2, where numbers of nodes and terms in 

TSEs are varying. The results in Table 1 are obtained for the 

parameter values of d and h that yield the best accuracy. The 

compact support domain radius d is equal to 6 and smoothing 

length ℎ = 1.5∆. It is clear that, even with the same number 

of terms, solutions of the SSPH method agree very well with 

the analytical solution. To evaluate the performance of the 

SSPH method, numerical solutions are obtained for 5 to 8 

terms in the TSEs. It is observed that the rate of convergence 

of the numerical solution increases with an increase in the 

degree of complete polynomials. Moreover, with the same 

number terms in the TSEs, the convergence rate of the SSPH 

method is increasing as the number of nodes is increased in 

the problem domain. 

Table 2. Global L2 error norm for different number of nodes 

and terms in the TSEs 

Number of  

Terms 

Number of Nodes in the Problem Domain 

141 273 545 

5 35.89 33.95 27.42 

6 35.48 30.09 25.01 

7 33.75 28.69 22.61 

8 31.18 27.33 19.91 
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Fig. 8. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 141 nodes are used 

 

Fig. 9. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 273 nodes are used 

 

Fig. 10. Deflections along the x-axis computed by the SSPH 

method employing different number of terms in the TSEs 

and experimental results where 545 nodes are used 

It is observed in Figures 8 to 10 that accuracy of the 

SSPH method increases as the number of nodes and terms in 

the TSEs is increased. 

5. Conclusion 

The deflections of a semi trailer chassis under various 

loading conditions are calculated based on 1D dimensional 

Euler Bernoulli beam. The 1D beam is modelled according to 

the CAD data and the moment of inertia function of the beam 

is defined by using polynomial function fitting. The 

numerical calculations are performed by using the SSPH 

method by employing different number of terms in the TSEs.  

It is found that the simple 1D Euler Bernoulli beam 

modelled based on the 3D CAD data has enough details to 

obtain reasonable results by using numerical methods. So 

that during new product develeopment process it may be 

used to avoid the need of extra cost and time for repeating of 

FEM analysis. The SSPH method provides satisfactory 

results and convergence rate.  

The first time the performance of the SSPH method for 

the fourth order non-homogeneous variable coefficents linear 

boundary value problems is evaluated. Moreover, it is found 

that the SSPH method is also useful for the solutions of the 

indeterminate beam problems. It is found that SSPH method 

yields more accurate results especially in the existence of 

eight terms in the TSEs. Classical Plate Theory and First 

Order Shear Deformation Theory which are not investigated 

in this paper will be the subject of future studies. 
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