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In this study, an efficient numerical procedure is introduced to the solution of the dynamic response of func-
tionally graded porous (FGP) beams. The elastic modulus and mass density of the porous materials are consid-
ered to have non‐uniform distributions along the thickness direction. The typical open‐cell metal foam is
assumed to govern the material constitutive law. Within the framework of the first‐order shear deformation
theory (FSDT) the influence of shear strain is included in the formulations. The impact of damping is also con-
sidered. By using the canonically conjugate momentums and their derivatives, the governing canonical equa-
tions of motion of FGP beams are derived for the first time. These equations are then transformed into the
Laplace space and solved numerically with the aid of the Complementary Functions Method (CFM).
Obtained results are retransformed to the time domain by using an efficient inverse transform method. The
dynamic response of FGP beams is studied for several boundary and loading conditions. The suggested proce-
dure is verified with the available published literature and the finite element method. Detailed parametric stud-
ies are conducted to show the influence of porosity constants, symmetric and asymmetric porosity distributions
and damping ratios on the dynamic response of FG porous beams.
1. Introduction

New building materials are investigated by many researchers and
scientists during the last decades because of the high demand for usage
of these materials in the manufacturing of innovative engineering
structures. Among these new building materials, FGP materials have
become one of the main research focus across several engineering
fields such as aerospace, automotive and civil engineering [1,2]. As
one of the widely used FGPMs, metal foams have superb characteris-
tics such as energy dissipation, thermal management, and stiffness to
weight ratio, designable vibrational frequency as well as mechanical
damping and electrical conductivity [3–6]. Sandwich plates, floor wall
foam, sandwich panels, parking floor slab, balcony platforms, crane
lifting arm, and support and race car crash absorbers, etc. can be
shown as the usage of FGPMs in engineering applications [6]. These
important characteristics and the wide range of usage of FGMs and
FGPMs have attracted the attention of numerous researchers [7–24].

Biot [25] has discussed the buckling of a fluid‐saturated porous
slab. The elastic buckling response of the porous beams with a rectan-
gular cross‐section was investigated by Magnucki and Stasiewicz [26].
Chen et al. [27] applied the Ritz method to investigate the elastic
buckling and bending response of FGP beams based on the FSDT. Jam-
shidi et al. [28] suggested an optimization procedure for the post‐
buckling of two‐dimensional FGP beams. The influence of porosity
on static and dynamic behaviors of the FG beam was presented by
Fouda et al. [29] based on the Euler‐Bernoulli beam theory. The static
analysis of 2D‐FGP structures was investigated by Ramteke et al. [30]
via the finite element method.

The differential transform method was used by Ebrahimi and
Mokhtari [31] to carry out the natural frequencies of rotating FGP
beams. Nonlinear vibration characteristics of FGP beams were
obtained by Ebrahimi and Zia [32] with the help of the Galerkin and
multiple scales methods. The natural frequencies of FGP beams were
derived by Rjoub and Hamad [33] via a simple transfer matrix
method. Chen et al. [34] examined the dynamic response of FGP
beams by using step by step time integration method. Chen et al.
[35] studied the nonlinear free vibration response of sandwich beams
with FGP core. The dynamic analysis of FGP structures was examined
by Wu et al. [36] with the aid of the finite element method. Akbaş [37]
used the plane solid continua model to carry out the transient response
of FGP deep beams. The vibration of deep curved and straight FGP
beams was carried out by Zhao et al. [38]. A Jacobi‐Ritz method
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Fig. 1. Simply supported functionally graded porous beams with different
porosity distributions.
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was applied by Qin et al. [39] to study the dynamic response of FGP
beams. The unified approach of discrete singular convolution element
method and Taylor series expansion method was used by Lei et al. [40]
to investigate the vibration response of FGP beams.

The literature survey shows that most of the reported works are on
the free vibration and undamped forced vibration of FGP beams while
it is noticed that most of the aforementioned works do not consider the
effect of damping. This study conducts the free, undamped, and
damped forced vibration response of FGP beams. Both symmetric
and asymmetric porosity distributions are considered. The classical
beam theory (CBT) and FSDT have been adopted in the formulations.
Also, in the damped forced vibration cases, the effect of damping of the
FGP beams have been considered within the presented approach
through the implementation of the Kelvin damping model. Closed‐
form solutions for the present class problem are not always available.
For this reason, it is essential to develop efficient numerical
approaches with a high level of accuracy and wide applicability. More-
over, this suggested scheme computes the unknown functions (for e.g.,
displacements) and their derivatives (for e.g., rotations) without any
additional calculations. Also, it can be implemented for any distribu-
tion function of FGPMs. The CFM has been proven to be an accurate
and efficient numerical approach previously [41–52].

The governing equations of motion are acquired by means of the
minimum total energy principle. Then, by applying the canonically
conjugate momentums and obtaining their derivatives, the governing
canonical equations of free and forced responses of the FGP beams
are derived for the first time. The derived canonical equations are
transformed to the Laplace space and solved numerically for a set of
Laplace series. To retransfer the results to the time domain, Durbin's
modified Inverse Laplace transform is implemented. In the numerical
solution of the canonical equations, a high order Runge–Kutta algo-
rithm is applied. Consequently, an accurate unified analysis frame-
work of the CFM and the Laplace transform is suggested in this
study. The CFM will be attempted in the transferred domain to carry
out the dynamic response in a simple and efficient manner, this
method is infused into the analysis to convert the two‐point value
problems to a system of initial value problems. This system can be
solved easily by any numerical method available in the literature,
for example, the fifth‐order Runge–Kutta method (RK5). The suggested
method has excellent computational efficiency [41–52].

Free vibration and forced vibration responses of FGP Euler‐Bernoulli's
and Timoshenko's beams are obtained for various length to height ratios,
several boundary conditions, such as clamped‐clamped (C‐C), Clamped‐
Free (C‐F), and Clamped‐Hinge (C‐H). Both symmetric and asymmetric
porosity distributions of FGPMs are considered. In the viscoelastic vibra-
tion response, the Kelvin type damping model is implemented. The influ-
ences of different parameters and porosity distributions on the vibration
characteristics and transient response are examined and discussed in
detail. So, the efficacious way to improve the vibration response of the
FGP beams can be identified.

In order to present the paper in a better manner, it is organized as
follows: Section 2 shows the derivation of canonically equations and
the application of the suggested unified approach to the solution pro-
cess. Subsequently, the efficiency and applicability of the proposed
numerical method are demonstrated by several comparisons with the
available literature and FEM. Several parametric studies are conducted
in Section 3. Finally, the important conclusions of this research are
given in Section 4.

2. Mathematical Formulations

2.1. Material models for FGPMs

A FGP beam is presumed with width b, thickness h, and length L as
shown in Fig. 1. The x‐axis of the coordinate system is in the longitu-
2

dinal direction while the z‐axis is in the thickness direction. Within the
scope of this research paper, it is presupposed that Young’s modulus
and mass density of the FGP beams are continuously changing in the
thickness of the beam. The symmetric material constitutive relation-
ships (SMCR) and monotonic material constitutive relationships
(MMCR) are considered in this study (see [36]).

The functionally graded porosity for the SMCR model can be
expressed by Eq. (1) for the MMCR model can be described by Eq.
(2) (see [36]).
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In these equations, E0 and E1 are the minimum and maximum val-
ues of the modulus of elasticity, G0 and G1 are the minimum and max-
imum shear modulus values which can be obtained by the Eq. (3) (see
[53]).

G1 ¼ E1

2ð1þ vÞ ;G0 ¼ E0

2ð1þ vÞ ð3Þ

v is the Poisson’s ratio which is presumed to be constant [53]. ρ0 and ρ1
are the minimum and maximum values of mass density. The porosity
coefficient for the shear modulus and Young’s modulus is given as
(see [36]);
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e0 ¼ 1� E0

E1
ð4Þ

and the porosity coefficient for the mass density is (see [36]).:

em ¼ 1� ρ0
ρ1

ð5Þ

The relationship between the porosity coefficients can be expressed
as [54]:

E0

E1
¼ ρ0

ρ1

� �2

! em ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e0

p
ð6Þ

In the SMCR model, the mechanical properties of the material are
symmetric about the mid‐plane of the thickness. These quantities are
maximum at the bottom and top surfaces of the cross‐section and
are minimum in the mid surface of the beam. In the MMCR model,
the mechanical properties of the materials are asymmetric and they
are decreasing from the top surface to the bottom surface. So, the max-
imum material properties are on the top surface while the minimum
material properties are located at the bottom surface of the FGP beam.

2.2. Basic equations

The displacement field for the FGP beams based on the FSDT can be
formulated as:

Ux ¼ u x; tð Þ þ zθ x; tð Þ ð7Þ

Uz ¼ w x; tð Þ ð8Þ
where t is time, Ux and Uz are the displacements in the axial direc-

tion and vertical deflection and θ xð Þ is the rotation of mid‐plane
(z=0). The strain field for the Timoshenko’s beam can be given by:

ɛx ¼ @u
@x

þ z
@θ

@x
ð9Þ

γxz ¼ θ þ @w
@x

ð10Þ

where ɛx shows the normal strain and γxz denotes the shear strain.
From the linear relations of stress and strain, the stress field of the FGP
beams can be obtained as:

σx ¼ E zð Þɛx ð11Þ

τxz ¼ G zð Þγxz ð12Þ
The total potential energy (ΠtÞ of the FGP beam based on the FSDT

can be given as:
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where A11, A12; A22 and A33 are stiffness components and can be
obtained by:

A11;A12;A22f g ¼ b
Z þh=2
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dz
3
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where ks, the shear correction factor, is taken to be 5/6.
The kinetic energy ðTÞ of the FGP beam can be derived as follows:
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where inertia terms are:

I0; I1; I2f g ¼ b
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The Langrangian (lÞ for the FGP beams can be written as follow:
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The relation between the internal forces and strain is;
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By recalling the Hamilton's principle,

δ

Z t2

t1
ldt ¼ 0 ð21Þ

By using the canonically conjugate momentums and their deriva-
tives, the governing partial differential equations can be obtained in
canonical form (Eqs.(22‐27)). It must be noticed again that these
canonical equations are obtained for the first time in this study for
the dynamic response of FGP beams.
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As the purpose of this study is to carry out the dynamic response of
the FGP beams in the Laplace domain, the Laplace transform of the
time‐dependent equations is required. The transform techniques for



Table 1
Boundary conditions for several restraints

Boundary conditions atx ¼ 0 atx ¼ L

Clamped – Clamped (C – C) u ¼ w ¼ θ ¼ 0 u ¼ w ¼ θ ¼ 0
Hinged - Clamped (H – C) u ¼ w ¼ Mx ¼ 0 u ¼ w ¼ θ ¼ 0
Clamped- Hinged (C– H) u ¼ w ¼ θ ¼ 0 u ¼ w ¼ Mx ¼ 0
Hinged - Hinged (H – H) u ¼ w ¼ Mx ¼ 0 u ¼ w ¼ Mx ¼ 0
Clamped – Free (C – F) u ¼ w ¼ θ ¼ 0 Nx ¼ Qz ¼ Mx ¼ 0
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the first and second derivatives of a time‐dependent function can be
found in Spiegel [55]. The initial conditions of the motion are pre-
sumed to be zero.

u x;0ð Þ ¼ @u x;0ð Þ
@t

¼ w x;0ð Þ ¼ @w x; 0ð Þ
@t

¼ θ x;0ð Þ ¼ @θ x;0ð Þ
@t

¼ 0 ð28Þ

Now, the inertias can be obtained in the Laplace space as follows:
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The : demonstrates the transform form quantities in the Laplace
domain and s is the Laplace parameter. Thus, the transformed set of
governing ordinary differential equations is:

du
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dw
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dNx
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dQz
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¼ I0s2w� q ð38Þ

dMx

dx
¼ I1s2uþ I2s2θ þ Qz ð39Þ

For the Euler‐Bernoulli beam theory the second term ( Qz
A33

Þ of Eq.
(35) is neglected.

2.3. Application of the CFM

As mentioned earlier, this solution scheme is successfully infused
into other problems of solid mechanics. To examine the free and forced
vibration response of the FGP beams the CFM is applied to the trans-
formed governing ordinary differential equations (34‐39). This effi-
cient method transmutes two‐point boundary values problems to
initial value problems which can be solved by any available numerical
methods in the literature. In this paper, we employed the fifth‐order
Runge–Kutta approach which is equivalent to the 7th order Taylor ser-
ies solution [41]. The matrix form of Eqs. (34‐39) is given below.

Y
0ðx; sÞ

n o
¼ ψ½ � x; sð Þ Y x; sð Þ� �þ Fðx; sÞ� � ð40Þ

In the above equation ψ½ � x; sð Þ is the differential transition matrix,
Y x; sð Þ� �

and Fðx; sÞ� �
are state vector and load vector in the Laplace

space. The boundary conditions are tabulated in Table 1.
Eq. (40) is a two‐point boundary value problem which is consists of

a set of 6 ordinary linear differential equations. In this equation ψ½ � a
6x6 matrix, Y x; sð Þ� �

and Fðx; sÞ� �
vectors with 6x1 dimensions. With
4

the aid of the boundary conditions the general solution to Eq.(40) in
the Laplace space can be derived as:

Yðx; sÞ� � ¼ ∑
6

m¼1
Cm UðmÞðx; sÞ� �þ Vðx; sÞ� � ð41Þ

The first term ðU mð Þ x; sð ÞÞ on the right side of Eq. (41) is homoge-
nous solutions while the second term (Vðx; sÞÞ is that particular solu-
tion. The linearly independent complementary solutions are obtained
by giving 1 to the mth whereas, zero to all the others. To obtain
Vðx; sÞ we set all initial conditions equal to zero. The integration con-
stants, C1, C2,..., C6 are computed from the boundary conditions given
in Table 1. Each problem considered in this paper has at least six
boundary conditions. The theoretical framework of the CFM is avail-
able and can be found in the literature. (see [56,57]). To carry out
the free vibration characteristics of the FGP beams, the Laplace param-
eter (s) is replaced with “iω”. Vðx; sÞ and external loads are presumed
to be zero. The matrix of the coefficients which is generated to obtain
the C1, C2,..., C6 constants consist ω values. The values of ω which
make the determinant of this matrix zero are the natural frequencies
of the FGP beam.

In the case of forced vibration, the obtained results in the Laplace
space are retransferred to the time domain with the aid of modified
Durbin’s Inverse Laplace transform [58–60].

2.4. Effect of Damping

To carry out the damped forced vibration of the FGP beams, the
Kelvin damping model ([61]) is utilized. The constitutive relation for
the Kelvin type damping model is:

Sij ¼ 2G eij þ g
deij
dt

� �
ð42Þ

In the above equation Sij and eij are the deviatoric components of
stress and strain which can be defined in terms of stress σij and strain
ɛij as follows:

Sij ¼ 3σij � δijσkk
3

ð43Þ

eij ¼ 3ɛij � δijɛkk
3

ð44Þ

In Eqs (43‐44) repeated indices demonstrate summation and δij
shows Kronecker’s delta. With the aid of the correspondence principle,
Laplace transform of the elasticity modulus can be derived as follows:

Ev zð Þ ¼ E zð Þð1þ gsÞ ð45Þ
where Ev is viscoelastic modulus and g is the coefficient of damping.

In this case, stiffness components can be obtained by:

A11ð Þv; A12ð Þv; A22ð Þv
� � ¼ b

Z þh=2

�h=2

Ev zð Þ 1; z; z2
� �

dz

A33ð Þv ¼ ksb
Z þh=2

�h=2

Gv zð Þdz ð46Þ
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3. Results and Discussions

In this section, detailed numerical examples are carried out to
examine the dynamic response of FGP beams. The influences of poros-
ity distributions, length to height ratios, boundary conditions, shear
deformation, and damping ratios are studied and highlighted. Com-
puted results are tabulated for free vibration and illustrated in graph-
ical forms for forced vibration response.

3.1. Free vibration

In order to ascertain the accuracy of the suggested unified
approach, an adequate number of validation examples have been pre-
sented. Different instances have been adduced to scrutinize the free
vibration analysis of FGP beams. For the verification of the results, nat-
ural frequencies of a C‐C FGP beam are carried out based on the TBT
and CBT. Dimensionless natural frequencies have been computed and
validated for both SMCR and MMCR material models and various slen-
derness ratios (L/h=5, 20, 50) in Table 2 and Table 3. The mechanical
material properties of the FGP beam are ρ1 = 7850 kg/m3, E1 = 200
GPa, v1 = 0.33 and e0 = 0.5. Non‐dimensional natural frequencies are
obtained by Eq. (47).

λi ¼ ωiL2

h

ffiffiffiffiffi
ρ1
E1

r
ð47Þ

As illustrated in tables 2–3, very good agreements between the
results of the presented approach and those given in Ref. [36] can
be clearly seen. In Ref. [36] the finite element approach was employed
and 100 FGP finite elements were used in the analysis. After the veri-
fication of the suggested scheme, the natural frequencies of the FGP
beam subjected to different boundary conditions are also carried out
for both SMCR and MMCR material models. For this parametric study,
two kinds of boundary conditions, namely C‐H and C ‐ F are consid-
ered. By employing the presented approach, non‐dimensional free
vibration characteristics of the C ‐ H FGP beams based on the CBT
and TBT are presented in Table 4.

Moreover, the natural frequencies for C ‐ F boundary conditions are
listed in Table 5.

As can be expected, among the considered three boundary condi-
tions (Tables 2‐5), the non‐dimensional natural frequencies of the C‐
F beam are the smallest, and those of C‐C boundary conditions are
the largest. In the given tables it can be also seen that in all boundary
conditions the natural frequencies obtained for the SMCR material
model are greater than those obtained for MMCR. Also, FGP beams
with a high ration of L/h have higher natural frequencies. In addition
to all these, the natural frequencies carried out based on the TBT are
generally lower than the natural frequencies of the FGP beams
obtained from the EBT.

As another parametric study, the influence of the porosity coeffi-
cient on the free vibration characteristics of the FGP beams is investi-
Table 2
Dimensionless natural frequencies of C-C FGP beams for SMCR material model

L/h 5 20
Mode Wu [36] Proposed method Wu

CBT λ1 6.3393 6.3393 6.47
λ2 14.3794 14.3789 17.7
λ3 16.5216 16.5216 34.6
λ4 28.7624 28.7577 56.7
λ5 30.0004 30.0004 57.5

TBT λ1 5.0185 5.0184 6.34
λ2 11.2724 11.2715 17.0
λ3 14.3794 14.3789 32.3
λ4 18.6110 18.6071 51.5
λ5 26.4276 26.4166 57.5

5

gated for a C‐C beam with a slenderness ratio of L/h=5, and results
are tabulated in Table 6. As appears in Table 6, for the smallest value
of e0 (e0=0.25), natural frequencies obtained for the SMCR material
model are closer to those of the MMCR material model. But, for the
greatest value of e0 (e0=0.75) the difference between the free vibra-
tion characteristics obtained for these two material models becomes
distinct. When the SMCR model is used, increasing the value of the
porosity coefficient gives rise to an increase in the natural frequencies
in FGP beams based on CBT or TBT. But, in the case of the MMCR
material model, free vibration characteristics decrease with increasing
the value of e0.

As can be clearly observed in Tables (2‐5) for the higher slender-
ness ratios the frequencies of the FGP beam based on the TBT are
approximately equal those of CBT, but for lower slenderness ratios
results of these two theories differ. This indicates the importance of
considering the effect shear deformation in the free vibration analysis
of FGP beams with lower slenderness ratios.

3.2. Forced Vibration

In the current section, the forced vibration response of the FGP
beams is examined with the aid of the suggested unified approach of
the CFM and the Laplace transform. The obtained governing canonical
equations are solved numerically for a series of Laplace parameters
and the results are retransferred to the time domain through the use
of an effectual inverse Laplace transfer method.

At the outset, verification of the suggested method for the forced
vibration of FGP beams is performed. Since the lack of suitable data
in the open literature that can be used to verify the presented proce-
dure for the transient analysis, results are compared with those of
the finite element method. In the analysis procedure with the finite
element method, the commercial software package ANSYS is used.
To generate the model of the FGP beams in ANSYS the cross‐section
of the beam is divided into 36 layers of the same thickness. A conver-
gence study about the number of layers was given in [34]. BEAM189 is
used in the analysis procedure, and the FGP beam is divided to 100
elements. Limitations, assumptions, and more detailed information
about this element can be found in the user manual of the ANSYS pro-
gram package. For the verification example, as seen in Fig. 2, a C ‐ F
supported FGP beam is analyzed under step dynamic load. The mate-
rial model used in this example is SMCR. The material properties of the
beam are ρ1 = 7850 kg/m3, E1 = 200 GPa, v1 = 0.33 and e0 = 0.5. In
this verification case, the transient response is executed within the
Timoshenko's beam theory. The geometric dimensions of the C ‐ F
beam are: b = 0.1 m, h = 0.1 m, and L = 0.5 m. The damping model
is considered to be zero in this example. Results of the transient
response are illustrated and compared in Figs. 3 and 4. To find more
accurate results of the transient response through the use of ANSYS,
selecting an adequate number of time steps is essential. Because the
package uses the Newmark time integration method. In the current
50
[36] Proposed method Wu [36] Proposed method

16 6.4716 6.4792 6.4792
708 17.7708 17.8492 17.8492
311 34.6311 34.9578 34.9578
868 56.7868 57.7105 57.7105
187 57.5154 86.0649 86.0649
76 6.3476 6.4588 6.4588
542 17.0537 17.7265 17.7262
755 32.3734 34.5502 34.5490
447 51.5379 56.6999 56.6964
178 57.5154 83.9717 83.9634



Table 3
Dimensionless natural frequencies of C-C FGP beams for MMCR material model

L/h 5 20 50
Mode Wu [36] Proposed method Wu [36] Proposed method Wu [36] Proposed method

CBT λ1 5.7687 5.7687 5.8807 5.8807 5.8872 5.8871
λ2 14.3658 14.3652 16.1529 16.1525 16.2191 16.2188
λ3 15.1039 15.1036 31.4917 31.4905 31.7679 31.7667
λ4 27.4569 27.4555 51.6680 51.6650 52.4504 52.4474
λ5 28.8300 28.8257 57.5170 57.5164 78.2314 78.2252

TBT λ1 4.7216 4.7215 5.7872 5.7872 5.8718 5.8718
λ2 10.7878 10.7869 15.6088 15.6083 16.1267 16.1263
λ3 14.3780 14.3732 29.7656 29.7636 31.4604 31.4590
λ4 17.9640 17.9603 47.6214 47.6149 51.6863 51.6826
λ5 25.6576 25.6471 57.5161 57.5138 76.6454 76.6366

Table 4
Dimensionless natural frequencies of C-H FGP beams.

L/h 5 20 50
Mode SMCR MMCR SMCR MMCR SMCR MMCR

CBT 1 4.3747 3.9919 4.4602 4.0664 4.4651 4.0706
2 13.4540 12.1909 14.4023 13.1010 14.4615 13.1530
3 14.3789 14.4466 29.8766 27.1685 30.1447 27.4042
4 26.0421 23.7925 50.6897 46.0667 51.4826 46.7951
5 28.7577 28.8252 57.5154 57.4310 78.4307 71.2861

TBT 1 3.7947 3.5386 4.4125 4.0303 4.4574 4.0648
2 10.2105 9.6538 14.0149 12.8074 14.3962 13.1038
3 14.3789 14.3107 28.4337 26.0699 29.8890 27.2118
4 17.8136 17.0866 46.9857 43.2422 50.7847 46.2691
5 25.9333 25.0473 57.5154 57.3548 76.8891 70.1226

Table 5
Dimensionless natural frequencies of C-F FGP beams.

L/h 5 20 50
Mode SMCR MMCR SMCR MMCR SMCR MMCR

CBT 1 1.0099 0.9181 1.0179 0.9249 1.0184 0.9253
2 6.0333 5.5005 6.3590 5.7793 6.3788 5.7960
3 7.1894 7.1947 17.7152 16.1059 17.8461 16.2166
4 15.7814 14.4463 28.7577 28.7565 34.9293 31.7427
5 21.5683 21.5896 34.4614 31.3494 57.6512 52.3973

TBT 1 0.9819 0.8969 1.0160 0.9235 1.0181 0.9251
2 5.1638 4.8187 6.2787 5.7188 6.3656 5.7861
3 7.1894 7.1918 17.2048 15.7192 17.7587 16.1509
4 12.0905 11.4534 28.7577 28.7541 34.6165 31.5073
5 19.8181 18.9926 32.7298 30.0299 56.8380 51.7842

Table 6
Dimensionless natural frequencies of C-C FGP beams for different porosity coefficients.

e0=0.25 e0=0.5 e0=0.75
Mode SMCR MMCR SMCR MMCR SMCR MMCR

CBT 1 6.3071 6.0938 6.3393 5.7687 6.5186 5.2327
2 15.0604 15.0584 14.3789 14.3652 13.7526 13.5322
3 16.4828 15.9514 16.5216 15.1036 16.9090 13.9006
4 30.0281 29.0945 28.7577 27.4555 27.5052 24.8208
5 30.1208 30.1359 30.0004 28.8257 30.5338 27.6251

TBT 1 5.0867 4.9730 5.0184 4.7215 5.0164 4.3571
2 11.5358 11.3494 11.2715 10.7869 11.1128 10.0356
3 15.0604 15.0594 14.3789 14.3732 13.7526 13.7325
4 19.1337 18.8857 18.6071 17.9603 18.2298 16.7827
5 27.2516 26.9573 26.4166 25.6471 25.7668 24.0368
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example, the number of time steps is taken to be 512 in ANSYS. While
the suggested procedure solves the problem in the Laplace domain so,
it is independent of the number and size of time steps.

In the solution process with the presented method, 64 Laplace
parameters are used, which is equivalent to 64 steps of time in the
time‐space. The Laplace transform of the applied load is available in
6

the literature. From Figs. (3‐4), very good agreement can be clearly
seen for the forced vibration of FGP beams when comparing with
the results of ANSYS. Thus, the accuracy of the suggested unified
framework has been validated for the transient analysis. For most com-
prehensive information about the convergence of the forced vibration
results related to the Laplace parameters and time increments see



Fig. 2. The geometry of the C - F functionally graded porous (SMCR) beam and step dynamic load.
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Noori et al. [62]. It can also be seen that results obtained for the coarse
number of Laplace parameters fit the results of ANSYS [63] which are
calculated for very fine time increments.It is obvious in Figs. 3 and 4,
that in the elastic case (g=0) the forced vibration response of FGP
beams fluctuates with continuous time periods and amplitudes.

Since the accuracy of the suggested unified approach has been sat-
isfactorily validated, now the presented method is applied to examine
the transient response of the FGP beam subjected to various time‐
dependent loads. The material and geometric properties are the same
as in the previous example.

The undamped forced vibration of a C‐C supported FGP beam sub-
ject to step load (q0=1kN/m) is examined for both SMCR and MMCR
material models. Fig. 5 shows the maximum transverse displacement
of the Euler Bernoulli beam and Fig. 6 shows the maximum vertical
displacement for the Timoshenko FGP beam. In the case of TBT, the
shear correction factor is assumed to be 5/6. e0 is taken to be 0.5.

As might be expected, the graphical comparisons given in Figs. (5‐
6) shows that for both beam theories, the periods and amplitudes of
vibration are greater when the FGPM is MMCR. This indicates that
FGP beams made from SMCR materials have greater rigidity. Also,
from Figs. (5‐6) it can be seen that amplitudes of displacement are
greater when influence of the shear deformation is considered (TBT).

Another parametric study is presented to examine the relationship
between the transient response of the FGP beams and the coefficients
of porosity, e0. For this purpose, a C ‐ F supported FGP beam is consid-
ered under impulsive Sine dynamic load as shown in Fig. 7. The mate-
rial model of this FGP beam is assumed to be MMCR. The geometric
and material properties are the same as in the previous example.
Laplace transform of impulsive sine type dynamic loads is available
in the literature [55].

To demonstrate the influence of the porosity coefficients on the
forced vibration response of the FGP beams results are obtained and
illustrated for both CBT (Fig. 8) and TBT (Fig. 9).

As clearly shown in Figs. 8 ‐ 9, it can be seen that with increasing
the coefficient of porosity of the MMCR material model, the maximum
vertical displacement of the FGP beam fluctuates with larger time peri-
Fig. 3. Comparison of the maximum transverse deflection results of C-F F
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ods and amplitudes. In other words, when the coefficient of the MMCR
increases more severe vibrations can be expected in the FGP beams
based on CBT or TBT.

We now turn our attention to the damped forced vibration response
of the FGP beams carried out for various damping ratios. The analogy
of elastic‐viscoelastic (see [61]) is employed to conduct the damped
transient analysis. Stiffness components for the case of viscoelastic
are given by Eq. (46).

An FGP beam with C ‐ H supports is considered under step dynamic
load (q0=1kN/m) as given in Fig. 10. The material properties of the
beam are ρ1 = 7850 kg/m3, E1 = 200 GPa, v1 = 0.33 and e0 =
0.5. In this case, the damped transient response is executed within
the TBT. The geometric dimensions of the C ‐ H beam are: b = 0.1
m, h=0.1 m, and L=0.5 m. The material model used in this example
is SMCR. The transverse deflection at the mid‐span for the beam is
given in Fig. 11.

Results of the viscoelastic behavior given in Fig. 11 demonstrates
that the fluctuating of vibration amplitudes disappears swiftly by
increasing the values of the damping ratio. The same problem is solved
for CBT too and a comparison of the CBT and TBT is presented here for
elastic and viscoelastic cases in Fig 12.

As can be clearly observed in Fig. 12 for the slenderness ratio of L/
h=5 the amplitude and periods of the FGP beam based on the TBT are
greater than those of CBT. This outlines the importance of shear defor-
mation in the dynamic analysis of FGP beams with lower slenderness
ratios.

Lastly, half rectified sine wave dynamic load function is used to
examine the vibration response of the FGP beam subjected to cyclic
loads. A C‐C supported FGP beam (Fig. 13) made of the SMCR material
model is considered. The porosity coefficient is taken to be 0.5. The
natural frequency of the beam is 1617 Hz. The cyclic load with two dif-
ferent frequencies (1667 Hz and 833 Hz.) is applied in this example.
The maximum transverse deflection of the FGP beam is obtained for
both load frequencies and illustrated in Fig. (14). Laplace transform
of the half rectified sine wave dynamic load function is available in
the literature [55].
GP beam with respect to time for SMCR material model (e0 = 0.5).



Fig. 4. Comparison of the maximum rotation results of C-F FGP beam with respect to time for SMCR material model (e0 = 0.5).

Fig. 5. Comparison of the maximum transverse deflection results of C-C FGP beam with respect to time for SMCR and MMCR material model (e0 = 0.5) based on
the CBT.

Fig. 6. Comparison of the maximum transverse deflection results of C-C FGP beam with respect to time for SMCR and MMCR material model (e0 = 0.5) based on
the TBT.

Fig. 7. The geometry of the C -F functionally graded porous (MMCR) beam and impulsive sine dynamic load.
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Fig. 8. Comparison of the maximum transverse deflection results of C-F FGP beam subjected to impulsive sine load with respect to time for MMCR material model
based on the CBT.

Fig. 9. Comparison of the maximum transverse deflection results of C-F FGP beam subjected to impulsive sine load with respect to time for MMCR material model
based on the TBT.

Fig. 10. The geometry of the C - H functionally graded porous (SMCR) beam and step dynamic load

Fig. 11. Transverse deflection results of the mid-span of C - H FGP (SMCR) beam subjected to step load for various damping ratios based on the TBT.
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It can be clearly observed in Fig. 14 that when the frequency of the
cyclic load is 1667 Hz (c=0.0003) the maximum vertical displacement
of the beam is also fluctuating with larger amplitudes. But when the
9

frequency of the applied cyclic load is 833 Hz (c=0.0006) the ampli-
tudes of the vibration response get smaller. As a result, when the fre-
quency of the applied load and the natural frequency of the FGP



Fig. 12. Comparison of the transverse deflection results of the mid-span of C-H FGP (SMCR) beam subjected to step load for various damping ratios based on the
CBT and TBT.

Fig. 13. The geometry of the C-C functionally graded porous (SMCR) beam
and half rectified sine wave dynamic load
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beams (e.g. 1617 Hz) are close to each other the beat phenomenon
occurs in the structure and it would experience more violent vibration.
For this reason, more severe vibration is observed when c=0.0003.

4. Conclusion

In the current study, a unified numerical approach is presented for
the free vibration and transient analysis of functionally graded porous
Fig. 14. Comparison of maximum vertical displacement of C – C functionally grad
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beams with several boundary and loading conditions. Within the pre-
sented numerical scheme, mechanical properties of the FGPMs are
graded through the thickness direction of the beam. Instead of directly
solving the governing differential equation, we used the canonically
conjugate momentums and their derivatives to obtain the canonical
form of the governing equation for the first time. Also, applying the
CFM in conjunction with the Laplace transform to the elastic and vis-
coelastic dynamic behavior of FGP beams with symmetric and mono-
tonic material constitutive relationships is a novel approach.

In case of forced vibration, results are obtained in the Laplace
space. Then, an efficient inverse Laplace transform is implemented
for retransferring the results back to the time domain. Results are pre-
sented for both the Euler‐Bernoulli and the Timoshenko beam theories.
The robustness, accuracy, and applicability of the presented approach
have been thoroughly demonstrated by rigorously verifying results
with both available literature and the finite element method. Further-
more, the influence of damping is considered in the viscoelastic
dynamic analysis through the implementation Kelvin model. Pre-
dictably, analysis of damped forced vibration shows that the fluctuat-
ing of vibration amplitudes disappears swiftly by increasing the values
of the damping ratio. The forced vibration of the FGP beams subjected
to cyclic loads is also investigated for the first time in this study. It can
be inferred that in this case, the beat phenomenon may occur which
would cause more severe vibration of the structure.

The effect of the porosity factor (e0) on the natural frequencies of
the FGP beams is examined for both SMCR and MMCR models. For
smaller values of e0 natural frequencies of these two models are closer
to each other, but for greater values of e0 it is vice versa. When the
SMCR material model is used e0 and natural frequencies of the FGP
beams are directly proportional but for the MMCR model, they are
ed porous (SMCR) beam subjected to a half rectified sine cyclic dynamic load.
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inversely proportional. It is stated that for lower values of slenderness
ratios (L/h) it is essential to consider the effects of shear deformation
in the dynamic analysis of FGP beams. In the case of the forced vibra-
tion, it is concluded that periods and amplitudes of vibration are
greater when the material of the beam is MMCR compared with SMCR.
When the coefficient of porosity of the MMCR increases more severe
vibrations can be expected in the FGP beams. The SMCR material
offers the lowest deflection and highest natural frequency which is
desired in the FGP beams in terms of stiffness.

It should be noticed that the main objective of this study is to intro-
duce this efficient unified approach for the free and forced vibration
response of the FGP beams. The presented numerical approach can
be applied to any arbitrary functions of FGPMs.
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[37] Akbaş ŞD. Forced vibration analysis of functionally graded porous deep beams.
Composite Structures. 2018;186:293–302.

[38] Zhao J, Wang Q, Deng X, Choe K, Xie F, Shuai C. A modified series solution for free
vibration analyses of moderately thick functionally graded porous (FGP) deep
curved and straight beams. Composites Part B: Engineering. 2019;165:155–66.

[39] Qin B, Zhong R, Wang Q, Zhao X. A Jacobi-Ritz approach for FGP beams with
arbitrary boundary conditions based on higher-order shear deformation theory.
Composite Structures. 2020;112435.

[40] Lei Y-L, Gao K, Wang X, Yang J. Dynamic behaviors of single-and multi-span
functionally graded porous beams with flexible boundary constraints. Applied
Mathematical Modelling 2020.

[41] Noori AR, Aslan TA, Temel B. An efficient approach for in-plane free and forced
vibrations of axially functionally graded parabolic arches with nonuniform cross
section. Composite Structures. 2018;200:701–10.

[42] Temel B, Noori AR. Out-of-plane vibrations of shear-deformable AFG cycloidal
beams with variable cross section. Applied Acoustics. 2019;155:84–96.

[43] Temel B, Noori AR. A unified solution for the vibration analysis of two-directional
functionally graded axisymmetric Mindlin-Reissner plates with variable thickness.
International Journal of Mechanical Sciences. 2020;174:105471.

http://refhub.elsevier.com/S0263-8223(20)33020-8/h0005
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0005
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0005
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0005
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0010
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0010
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0010
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0010
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0010
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0020
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0020
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0020
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0020
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0025
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0025
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0025
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0025
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0030
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0030
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0030
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0030
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0035
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0035
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0035
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0035
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0040
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0040
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0040
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0040
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0040
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0045
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0045
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0045
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0045
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0050
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0050
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0050
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0050
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0055
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0055
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0055
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0055
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0060
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0060
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0060
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0060
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0060
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0070
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0070
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0070
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0070
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0070
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0075
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0075
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0075
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0075
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0075
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0080
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0080
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0080
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0080
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0080
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0085
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0085
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0085
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0085
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0090
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0090
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0090
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0090
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0090
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0095
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0095
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0095
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0095
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0100
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0100
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0100
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0100
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0100
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0105
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0105
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0105
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0105
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0105
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0110
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0110
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0110
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0110
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0115
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0115
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0115
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0115
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0120
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0120
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0120
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0125
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0125
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0125
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0130
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0130
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0130
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0135
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0135
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0135
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0135
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0140
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0140
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0140
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0140
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0145
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0145
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0145
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0145
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0150
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0150
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0150
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0155
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0155
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0155
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0155
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0155
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0160
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0160
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0160
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0165
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0165
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0165
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0165
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0170
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0170
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0170
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0170
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0175
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0175
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0175
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0175
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0180
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0180
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0180
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0180
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0185
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0185
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0185
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0185
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0185
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0190
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0190
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0190
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0190
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0195
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0195
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0195
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0200
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0200
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0200
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0205
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0205
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0205
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0205
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0210
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0210
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0210
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0215
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0215
http://refhub.elsevier.com/S0263-8223(20)33020-8/h0215


A.R. Noori et al. Composite Structures 256 (2021) 113094
[44] Noori AR, Temel B. On the vibration analysis of laminated composite parabolic
arches with variable cross-section of various ply stacking sequences. Mechanics of
Advanced Materials and Structures. 2018;1–15.

[45] Aslan TA, Noori AR, Temel B. Dynamic response of viscoelastic tapered cycloidal
rods. Mechanics Research Communications. 2018;92:8–14.

[46] Calim FF. Vibration Analysis of Functionally Graded Timoshenko Beams on
Winkler-Pasternak Elastic Foundation. Iranian Journal of Science and Technology,
Transactions of. Civil Engineering. 2019:1–20.

[47] Calim FF. Free and forced vibration analysis of axially functionally graded
Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B:
Engineering. 2016;103:98–112.

[48] Eker M, Yarımpabuç D, Çelebi K. The Effect of the Poisson Ratio on Stresses of
Heterogeneous Pressure Vessels. European Mechanical Science. 2018;2(2):52–9.

[49] Yarımpabuç D, Eker M, Çelebi K. Mechanical behavior of functionally graded
pressure vessels under the effect of Moisson’s ratio. European Mechanical Science.
2018;2(2):52–9.

[50] Temel B, Yildirim S, Tutuncu N. Elastic and viscoelastic response of heterogeneous
annular structures under arbitrary transient pressure. International Journal of
Mechanical Sciences. 2014;89:78–83.

[51] Yildirim S, Tutuncu N. Effect of magneto-thermal loads on the rotational instability
of heterogeneous rotors. AIAA Journal. 2019;57(5):2069–74.

[52] Yildirim S, Tutuncu N. Radial vibration analysis of heterogeneous and non-
uniform disks via complementary functions method. The Journal of Strain Analysis
for Engineering Design. 2018;53(5):332–7.
12
[53] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge
University Press; 1999.

[54] Choi J, Lakes R. Analysis of elastic modulus of conventional foams and of re-
entrant foam materials with a negative Poisson's ratio. International Journal of
Mechanical Sciences. 1995;37(1):51–9.

[55] Spiegel MR. Laplace transforms: McGraw-Hill New York; 1965.
[56] Tutuncu N, Temel B. A novel approach to stress analysis of pressurized FGM

cylinders, disks and spheres. Composite Structures. 2009;91(3):385–90.
[57] Celebi K, Yarimpabuc D, Tutuncu N. Free vibration analysis of functionally graded

beams using complementary functions method. Archive of Applied Mechanics.
2018;88(5):729–39.

[58] Temel B. Transient analysis of viscoelastic helical rods subject to time-dependent
loads. International journal of solids and structures. 2004;41(5–6):1605–24.
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