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Abstract
The quality of medical images is critical for accurate diagnosis. This paper introduces a
novel Quantum-behaved Arithmetic Optimization Algorithm (QAOA) for medical im-
ages. A mutation operator with Gaussian probability distribution is used in the proposed
QAOA as a powerful strategy to enhance QAOA performance in preventing premature
convergence to local optima. Gaussian QAOA (GQAOA) is tailored for medical image
enhancement and hybridized with Contrast Limited Adaptive Histogram Equalization
(CLAHE) to boost the information contents and details of medical images. GQAOA
computes the optimal clip limit and other parameters of CLAHE using a new multi-
objective fitness function. A combination of five image quality measurements including
contrast, information entropy, edge information, Structural Similarity Index Measure
(SSIM), and sharpness is suggested as an efficient fitness function to help the proposed
framework produce good results. A comparative study is conducted with well-known
histogram-based process techniques and state-of-art methods to demonstrate the efficien-
cy of the suggested algorithm. The experimental results prove that the suggested approach
performs better than the most current well-established enhancement strategies in the terms
of visual interpretation, information entropy, SSIM, Peak Signal to Noise Ratio (PSNR),
Naturalness Image Quality Evaluator (NIQE), Absolute Mean Brightness Error (AMBE),
and Quality Index (QI) metrics.
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1 Introduction

Medical Imaging, as a vital element of healthcare, assists physicians with early identification of
health conditions, effective treatment, and better prevention of diseases. Medical imaging renders
clear representations of the body’s internal structures by utilizing Electromagnetic (EM)waves. EM
wave is a form of energy that takes several types, including radio waves, X-rays, gamma rays, and
so on. Medical images are obtained by transmitting EMwaves into the human body and collecting
reactions. Considering the type of EM waves, the medical imaging modalities can be categorized
into four groups: ultrasound imaging, molecular imaging, Magnetic Resonance Imaging (MRI),
and imaging using X-rays. Moreover, X-ray-based imaging techniques include X-ray radiography,
mammography, angiography, computed tomography, and fluoroscopy. Different modalities create
different anatomical (medical) images, which reveal specific information on diseased tissue and
human viscera. All imagingmodalities have their advantages and disadvantages, and at the present,
none of them meet all the clinical needs of high efficiency, low cost, high sensitivity, noninvasive,
high resolution, and high multiplexing capability [16].

The resulting images of medical imaging modalities are used to diagnose and cure a wide
range of diseases. The process of medical image analysis for primary diagnosis involves a
complex interplay between the visual evaluation of the obtained image (visual perception) and
interpretation (cognition). Unfortunately, error and uncertainty are inevitable components of
medical image analysis, and the likelihood of technical, perceptual, and cognitive errors in the
diagnostic process is not negligible, which impacts the lives of patients. Poor information
representation in the medical images can result in a wrong diagnosis of the patient’s medical
problem. Due to clinical setting, ambient lighting conditions, environmental conditions such as
humidity, moisture, and extreme temperature, technical restrictions of imaging devices and
their inherent properties, the provided medical images always lack desired brightness and
contrast, and they often suffer from the complex noises and artifacts [21]. Moreover, the
medical images are complex in nature since various anatomical structures overlap in the image.
This structural overlap has a camouflaging effect which makes the diagnosis process difficult.
On the other hand, recording multiple medical images is not preferable to obtain images of
diagnostic quality as the EM waves are very dangerous to the human body.

Reliable diagnosis requires accurate and high-quality images, besides a physician’s visual
expertise in the perception and interpretation of medical images [40]. Abnormalities can be
detected easily in a high-quality image. Image enhancement techniques have proven to be
extremely useful in improving the medical image’s visual quality and information. Certain
features look more conspicuous in enhanced images compared to their original appearance.
Enhancement techniques increase the performance of Computer-Aided Diagnosis (CAD)
systems and help avoid misinterpretations by experts. Further, enhancement techniques may
help avoid cancer by reducing the image retaking rate and the risk of radiation exposure in the
patients [21]. Often the quality of the images is more linked to their contrast, brightness levels,
and sharpness which enhancing these parameters certainly will produce the best result.
Contrast enhancement spreads the range of pixel intensity distribution to their full range and
thus provides more visually pleasing images. An object or Region of Interest (ROI) is readily
perceivable in a good contrast image. On the other hand, image sharpening emphasizes the
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transitions between dark and light area intensities so that the image edges and details of interest
can be easily observed. Enhancement schemes are considered effective when producing
images with minimum brightness error and optimum contrast. Nonetheless, quantifying the
enhancement criteria is the greatest challenge in biomedical images [28].

Many image enhancement techniques have been suggested in the literature so far for enhancing
the quality and contrast of both natural and medical images. Methods of enhancement recorded in
this study are based on medical images. Biomedical image enhancement methods are application-
specific and there is no common method or class of methods applicable to all imaging modalities
[12]. Generally, image enhancement techniques can be divided into two groups according to their
applicable domains, which are frequency and spatial domain.

In the spatial domain, where pixel intensities are modified, enhancement methods in
medical images can be grouped into Histogram Equalization (HE) and Nature-Inspired
Optimization Algorithm (NIOA)-based approaches. HE [33] based approaches increase the
contrast of the image by remapping the grey level intensities using a probability distribu-
tion, and due to their flexibility and simpler implementation, they are widely used for
contrast enhancement. Various HE-based approaches have been reported in the literature
for contrast enhancement of images, such as Contrast Limited Adaptive HE (CLAHE) [39],
Brightness preserving bi-HE (BBHE) [24], Dualistic Sub-image HE (DSIHE) [41], Mini-
mum Mean Brightness Error bi-HE (MMBEBHE) [13], Recursively Separated Exposure-
based Sub-image HE (RSESIHE) [35], Dominant Orientation-based Texture HE (DOTHE)
[36], and so on. However, HE and its extensions have some limitations. They usually
change the mean brightness of the given images, which leads to visual deterioration.
Whereas some of the HE-based methods address mean shift problems to some extent, there
is no mechanism for regulating the degree of contrast and the brightness error in HE-based
approaches. Contrast is penalized by operating parameters tuned for a minimal brightness
error. Optimizing several arbitrary parameters simultaneously to effectively improve the
perceived contrast while preserving brightness is a laborious task [19].

Recently, several NIOAs have been utilized in image enhancement to optimize operational
parameters of HE-based approaches, such as cuckoo search [15, 26], krill herd [21, 32], world cup
optimization [43], genetic algorithm [4], firefly algorithm [14], particle swarm optimization [3],
salp swarm algorithm [6] bat algorithm [37], and black hole algorithm [29, 30]. To the best of our
knowledge, achieving an optimal histogram-based framework using the recently proposed Arith-
metic Optimization Algorithm (AOA) [1] for image enhancement is still untouched.

CLAHE has been an extensively used contrast enhancement technique, especially in
the medical field due to its efficiency and robustness [11, 38, 39]. The Number of Tiles
(NT) and Clip Limit (CL) are two crucial operating parameters in CLAHE. The funda-
mental flaw with CLAHE is the incorrect parameter selection, which leads to a decrease
in image quality. The majority of research focuses on empirically determined parameter
values of CLAHE to tackle a specific problem [10, 20]. Yet, a machine learning-based
method [8], an entropy-based method [34], and two NIOA-based approaches including
multi-objective cuckoo search [26], and multi-objective particle swarm optimization [9,
27] have been suggested in the literature to automatically determine CLAHE’s parame-
ters. Among all of these approaches, only multi-objective particle swarm optimization
has been utilized to tune CLAHE’s parameters for the enhancement of poorly illuminated
medical images.

Although there are several alternative techniques for determining the optimal CLAHE
parameters, NIOA-based approaches are more efficient since manually determining the
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parameters does not guarantee that the best solution has been obtained. Furthermore, the
training procedure in machine learning-based approaches is time-consuming and costly.
However, a single NIOA can’t solve every form of optimization issue, according to the “No
Free Lunch” theorem. Some are better suited to a certain problem, but they may not deliver the
desired outcome in other optimization problems. Therefore, this paper presents a novel
automatic parameter selection method for CLAHE using a new variant of AOA. The AOA
was chosen over other NIOAs due to its simplicity and powerful search ability. However,
AOA tends to result in premature convergence, especially when dealing with multi-objective
problems. To enhance the AOA’s performance in preventing premature convergence to local
optima, Quantum-behaved AOA (QAOA) with a Gaussian mutation operator (GQAOA) is
suggested. A novel multi-objective fitness function is also proposed, which is based on five
performance measures such as contrast, Shannon Entropy (SE) or information entropy, Edge
Information (EI), Sharpness (SH), and Structural Similarity Index Measure (SSIM). The
proposed fitness function guides the GQAOA population to find the best optimal solution.
The experimental results indicate that the combination of CLAHE and GQAOA outperforms
other state-of-the-art approaches in terms of objective and subjective quality evaluation. In a
nutshell, the main contributions of this paper are as follows:

& A novel GQAOA-CLAHE enhancement framework is developed for medical images.
GQAOA is explored to automatically adjust CLAHE’s tunable parameter based on a
fitness function.

& Quantum-behaved AOA using Gaussian distribution is introduced to improve the local
exploitation of the original AOA.

& A new multi-objective fitness function is suggested based on five objective criteria, to
assist GQAOA in finding the best-enhanced image.

& The comparative results demonstrate that the proposed strategy is more effective than other
state-of-art methods in terms of various well-known performance evaluation metrics.

The rest of this paper is structured as follows. Section 2 introduces the CLAHE. Section 3
describes the AOA. The details of the proposed method are discussed in Section 4. Experi-
mental results and analysis are given in Section 5. A detailed discussion of the results is given
in Section 6. Finally, a conclusion is presented in Section 7.

2 CLAHE

The image histogram provides information about the intensity distribution of the pixels in
the image. HE is a well-known and extensively used image enhancement technique that
uses the image’s Cumulative Density Function (CDF) to flatten the histogram and increase
the dynamic range of the gray levels of the entire image in order to make a uniform intensity
distribution. Nevertheless, HE suffers from different drawbacks, such as over-enhancement
problems, negligence of local enhancement, and mean-shift problem. HE may provide huge
peaks in the histogram for frequent gray levels, which leads to over-enhancement. HE also
concentrates on the image global improvement rather than local enhancement and ignores
the image’s local information. Furthermore, HE shifts the mean brightness of the input
image to the middle of the gray level range, which introduces abrupt artifacts in the output
image.
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To avoid over-enhancement and improve local details of the image, Adaptive HE (AHE)
divides the image into several non-overlapping tiles (blocks or contextual regions) and applies
the HE locally within each tile. An enhanced image is created by combining all of the
improved tiles and a bilinear interpolation function is applied to reduce artifacts s that may
occur on the boundaries between tiles.

CLAHE is an enhanced version of AHE that also divides an image into several non-
overlapping tiles using the NT parameter and computes the histogram for each tile. To
minimize the amplification, it clips the histogram at predetermined CL values before
computing the CDF. The portion of the histogram that exceeds the CL is redistributed
uniformly throughout the tile’s histogram bins rather than being discarded. By redistribut-
ing the used gray levels, this method makes hidden features of the image more obvious.
CLAHE solves the edge-shadowing effect of AHE while also reducing over-enhancement.
The enhanced images of CLAHE are better than other HE-based contrast enhancement
methods.

The CL and NT are two parameters that have a significant impact on the CLAHE output.
Inappropriate selection of algorithm parameters provides degradation in the image. CL is a
numeric variable that regulates noise amplification, while NT is an integer value that
regulates the size of the contextual region. The image is divided into several non-
overlapping tiles of equal size based on NT’s value. For example, the number of regions
is usually set to 64 (NT = [8, 8]) for 512 × 512 images. Figure 1 illustrates both the CL and
the NT parameters.

Fig. 1 Overall block diagram of CLAHE with its parameters (CL and NT)
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An improved variant of recently established AOA is used in this study to find the most
promising CLAHE parameters in order to efficiently enhance the contrast of the medical
images.

3 Arithmetic optimization algorithm

The AOA is a population-based stochastic optimization technique developed by Abualigah
et al. in 2021 [1] and inspired by math operations like -,+,*, and /. The AOA, like other
NIOAs, has two phases of search: exploration and exploitation. First, the AOA generates a
population of N solutions as:

X ¼

x1;1 … x1; j
x2;1 … x2; j
… … ⋯

… x1;n−1 x1;n
… x2;n−1 x2;n
… … …

⋮ ⋮ ⋮
xN−1;1 … xN−1; j
xN;1 … xN ; j

⋮ ⋮ ⋮
… xN−1;n−1 xN−1;n
… xN ;n−1 xN ;n

2
6666664

3
7777775 ð1Þ

The fitness value of each solution is then computed to identify the best solution, Xb. After that,
AOA executes exploration or exploitation phases based on the value of the Math Optimizer
Accelerated (MOA). Next, the fitness value of each solution is computed to detect the best
solution Xb. Depending on the MOA value, AOA performs exploration or exploitation
processes. The MOA is then updated using Eq. (2).

MOA tð Þ ¼ Minþ t*
MaxMOA−MinMOA

T

� �
ð2Þ

where t and T denote the current and the total number of iterations, and MinMOA = 0.2 and
MaxMOA = 1 denote the accelerated function’s minimum and maximum values, respectively.

The multiplication (M) and division (D) operators are used in the exploration phase of
AOA, and expressed as:

X i; j t þ 1ð Þ ¼ X bj � MOP þ ϵð Þ � UBj−LBj
� �� μþ LBj
� �

r2 < 0:5
X bj �MOP � UBj−LBj

� �� μþ LBj
� �

otherwise

�
ð3Þ

X(t) denotes the current solution, Xb is the best solution that has been found so far, ϵ represents
a small integer value, and μ = 0.5 is a constant parameter used to alter the exploration search.
The lower and upper bounds of the search domain at jth dimension are represented by LBj and
UBj, respectively, while the Math Optimizer Probability (MOP) coefficient at iteration t is
defined as:

MOP tð Þ ¼ 1−
t
1
α

T
1
α

 !
ð4Þ

a = 5 is a dynamic parameter that controls the precision of the exploitation phase across
iterations, and r2 is a random number generated in the range [0,1].
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In the exploitation phase of AOA, the addition (A) and subtraction (S) operators are used,
and are written as:

X i; j t þ 1ð Þ ¼ X bj−MOP � UBj−LBj
� �� μþ LBj
� �

r3 < 0:5
X bj þMOP � UBj−LBj

� �� μþ LBj
� �

otherwise

�
ð5Þ

where r3 is a random number generated in the range [0,1].
At each iteration, the ith solution is updated using AOA’s operators i.e. Eqs. (3) and (5).

The AOA eventually comes to a halt when it reaches the end criterion. Figure 2 illustrates the
main steps of the AOA. Compared to other NIOAs, AOA has unique characteristics: it is
derivative-free, parameter-less, easy to use, simple in principles, and adaptable. As a result,
AOA has been applied to a variety of optimization issues, including training neural networks
[23], mechanical engineering design [5], discrete structural optimization [22], image segmen-
tation [2], and feature selection [18, 31]. However, AOA tends to get stuck in local minima.
Hence, in this paper, we present a novel quantum-behaved-AOA by introducing a Gaussian
mutation strategy to assist the algorithm in escaping the local optima when it becomes stuck.

4 Proposed methodology

This paper proposes a straightforward and efficient GQAOA-CLAHE scheme for weakly
illuminated medical images. A Gaussian quantum-behaved AOA is introduced to optimize
CLAHE. The main purpose of the suggested method is to find the optimal parameters for
CLAHE using GQAOA in order to improve medical image quality in poor visibility condi-
tions. A novel fitness function is used to assist GQAOA to achieve a better quality enhanced
image. Figure 3 depicts the structure of the developed image enhancement method. A step-by-
step procedure of the proposed algorithm is given as:

Arithmetic Optimization Algorithm

1. Randomly initialize the AOA population ( = 1,2, … , )
2. Compute solutions’ fitness values, and determine the best solution

3. while ( < )

4. calculate MOA and MOP values using Eps (2) and (4)

5. for each solution 

6. Generate random numbers between 0 and 1 for , , and 

7. if ( > MOP) then
8. if ( < 0.5) then update solution using Eq. (3) (D operator)

9. else if ( ≥ 0.5) then update the solution using Eq. (3) (M operator)

10. end if
11. else
12. if ( < 0.5) then update solution using Eq. (5) (S operator)

13. else if ( ≥ 0.5) then update the solution using Eq. (5) (A operator)

14. end if
15. end if
16. end for
17. Examine whether any solution extends outside the search space and correct it

18. Compute each solution’s fitness value, and Update 

19. end while
Fig. 2 Pseudocode of AOA
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Stage 1: The first step is to generate a population of solutions i.e. candidate parameter
values for CLAHE. This process formulation is as follows:

X i; j ¼ UBj−LBj
� �� rand þ UBj−LBj; i ¼ 1; 2; 3;…;N ; j ¼ 1; 2; 3;…;D ð6Þ

where LBj andUBj are the lower and upper boundaries at the jth dimension.N represents the
total number of candidate solutions,D shows the dimension of each solution, and rand∈[0,1]
is a random number. A potential solution is made up of input for CLAHE parameters, this is

X i
�! ¼ NTxðð ;NTyÞ;CLÞ where NT is an integer value that controls the amount of non-
overlapping sub-areas, and CL is a numeric value that controls the noise amplification in
CLAHE.
Stage 2: The main objective of this part of the developed approach is to update the
candidate solutions until they reached the stop conditions. This is accomplished by
following a sequence of steps. The first step is to use a fitness function to assess the
quality of each candidate solution and award a fitness value to each one. The step after that
is to determine the best solution Xb that has the highest fitness value. The updating process
is conducted to improve solutions using Xb and GQAOA operators. The next step is to
check the stop condition and if it is not met, the updating process is repeated. Otherwise,
the best solution Xb is returned from this stage as the best value for NT and CT parameters.
Stage 3: The GQAOA-selected optimal parameter values are fed into CLAHE to produce
an improved image. The next step is to assess the quality of the produced output image
using different image quality metrics. A detailed description of suggested GQAOA and
fitness function are described in the following.

Fig. 3 The stages of the GQAOA-CLAHE schema for medical image enhancement
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4.1 Proposed Gaussian quantum behaved-AOA

Inspired by the classical AOA and quantummechanics theories, this paper introduces novel QAOA
with the mean best position directed to improve the performance of AOA during the search for
global optima. The proposed QAOA utilizes a mutation operator with Gaussian probability
distribution instead of random sequences which makes it immune to being trapped in local optima.
It can improve the robustness of the optimization process while also increasing the accuracy of the
solutions. A combination of QAOA and Gaussian probability distribution is called Gaussian
QAOA. Furthermore, the mean beast solution utilized later in the process can accelerate the
algorithm’s convergence speed. The details of QAOA are described in the following paragraphs.

QAOA is constructed based on the original AOA. However, the technique for updating
new candidate solutions is not the same. In the quantum model of AOA, the state of a solution
is depicted by wave function ψ(x, t), beside mathematic operators. Employing the Monte
Carlo method, the solutions update according to the following equations:

X i t þ 1ð Þ ¼
X b þ β � Mbesti−X i tð Þj j � ln

1

U

� �
r4 < 0:5

X b−β � Mbesti−X i tð Þj j � ln
1

U

� �
r4≥0:5

8>><
>>: ð7Þ

where β = MOA. r4, and U are both random numbers uniformly distributed in the range [0,
1].

The population’s global point, known as mainstream thought or mean best (Mbest), is
defined as the mean of all solutions formulated in Eq. (8)

Mbesti tð Þ ¼ 1

N
∑N

i¼1X i1 tð Þ;∑N
i¼1X i2 tð Þ;…;∑N

i¼1X iD tð Þ� � ð8Þ

where N (i = 1, …, N) represents a number of all solutions, and D (j = 1, …, D) represents
the dimension of the problem. Xij(t) implies each solution in iteration t, andMbesti(t) represents
the average value of all solutions Xi(t).

The majority of NIOAs use a uniform probability distribution to create random numbers,
while recent quantum behaved NIOAs such as quantum particle swarm optimization [25],
quantum Bat [17], and quantum dragonfly [42] use Gaussian, Cauchy, and exponential
probability distributions to produce random numbers in order to update their solutions.
Following the same line of research, a new mutation operator is offered in QAOA using
Gaussian probability distribution. Thus, the random number U of Ep. (7) is modified and
replaced with the absolute value of the Gaussian probability distribution with zero mean and
unit variance. The GQAOA update mechanism is now expressed as:

X i t þ 1ð Þ ¼
X b þ β � Mbesti−X i tð Þj j � ln

1

G

� �
r4 < 0:5

X b−β � Mbesti−X i tð Þj j � ln
1

G

� �
r4≥0:5

8>><
>>: ð9Þ

where G = abs(N(0, 1)). The use of QAOA in conjunction with a Gaussian probability
distribution is basic but efficient. Figure 4 summarizes the GQAOA’s pseudocode based on
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the preceding explanation. In GQAOA, after updating the solutions with math operators, the
Gaussian mutation function is utilized to enhance the obtained solutions.

4.2 Proposed fitness function

An objective criterion (or image quality measure) is required to address the NIOA-based image
enhancement problem, as it reveals the amount of improvement of an image without the need
for human intervention. Several objective criteria, including contrast, entropy, SSIM, and Peak
Signal to Noise Ratio (PSNR) can be anticipated for the fitness function. Finding a new fitness
function or repurposing a few existing fitness functions for different types of low-contrast
medical images is a significant challenge due to the loss of fine details after enhancement. So, a
new multi-objective fitness function is introduced in this paper by taking five image quality
measures: contrast, SE, EI, SSIM, and SH. Using the above objective criteria together, the
fitness function is defined as:

Fit :ð Þ ¼ mean SSIM Q;Qeð Þð Þ* log SE Qeð Þð Þð Þ þ log10 EI Qeð Þð Þ þ log SH Qeð Þð Þð Þð Þ* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
contrast

p� �� �
ð10Þ

The enhancement problem is modeled as a maximization problem in this study. There-
fore, the proposed algorithm’s fitness value must be maximized. Mathematically, it is
represented as

arg max Fit :ð Þð Þð Þ ð11Þ
where Q and Qe represent input and enhanced images respectively with the dimension of
X × Y.

Gaussian quantum behaved AOA
1. Randomly initialize the AOA population ( = 1,2, … , )

2. Compute solutions fitness values, and determine the best solution

3. while ( < )

4. Calculate MOA and MOP values using Eps (2) and (4)

5. Calculate the mean best solution using Eq. (8)

6. for each solution 

7. Generate random numbers between 0 and 1 for , , , and 

8. if ( > MOP) then
9. Update solution with and operators using Eq. (3)

10. else
11. Update solution with and operators using Eq. (5)

12. end if
13. Update solution with the Gaussian mutation using Eq. (9)

14. end for
15. Examine whether any solution extends outside the search space and correct it

16. Compute each solution’s fitness value, and Update 

17. end while

Fig. 4 Pseudocode of GQAOA
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SSIM as a perceptual quality metric varies from ‘0’ to ‘1’, indicating whether the image’s
structural information is lost or preserved after enhancement. The SSIM is calculated as
follows:

SSIM Q;Qeð Þ ¼
2μQμQe

þ c1
	 


2σQQe
þ c2

� �
μ2
Q þ μ2

Qe
þ c1

	 

σ2Q þ σ2

Qe
þ c2

	 
 ð12Þ

c1 ¼ k1Lð Þ2; c2 ¼ k2Lð Þ2 ð13Þ

where μQ, μQe
, σQ, and σQe

are the mean intensity and variance of both input Q and enhanced
image Qe. σQQe

indicates the square root of covariance of images Q and Qe. c1 and c2 are
constant where k1 ≤ 1, k2 ≤ 1 and L is the maximum intensity of the image.

The information entropy of the enhanced image is represented by SE in Eq. (10). The
average information content of an image is measured using entropy, where a higher value
indicates a more detailed image. SE(Qe) can be expressed by

SE Qeð Þ ¼ −∑L
i¼1pilog2pi ð14Þ

where i ∈ {1, 2, …, 256}, and pi represents the occurrence frequency of the ith gray level (L).
Edge detection is a typical technique in the treatment of medical images, and it is a

particularly useful activity for human organ recognition. The removal of a large amount of
noise damage the important information in the medical images known as the true edges. So,
retaining the edge content of the medical image is one of the most required demands in
medical image enhancement. In this study, Sobel edge detection is utilized for detecting the
edges in the enhanced image, and EI(Qe) represents the sum of the gray level values of the
image’s edge detail pixels.

Another important image quality metric is sharpness which takes into consideration in Eq.
(10). Image sharpening can be defined as the improvement of acutance (apparent sharpness),
which includes EI, contours, texture, and other critical characteristics in a blurred image.
However, significant characteristics may vanish throughout this process, while artifacts may
arise. SH(Qe) indicates the sharpness estimation from image gradients [7].

The last objective criterion is contrast. Gray-Level Co-occurrence Matrix (GLCM) is used
to describe the texture of an image and calculate the contrast. The GLCM is generated in the
horizontal and vertical directions and (i, j)th entry of this matrix is expressed as:

G i; jð Þ ¼ ∑X−1
i¼0 ∑

Y−1
j¼0∂ x; yð Þ ∂ x; yð Þ ¼ 1;

1 if Qe x; yð Þ ¼ i and Qe x; yþ 1ð Þ ¼ j
and Qe x; yð Þ ¼ i and Qe xþ 1; yð Þ ¼ j

0; otherwise

(

ð15Þ

where (x, y) represents the pixel coordinate in the enhanced image Qe. The contrast property
can be derived from GLCM using the following equation:

Contrast ¼ ∑
i; j

i− jj j2 � G i; jð Þ
∑X−1

i¼0 ∑
Y−1
j¼0G i; jð Þ ð16Þ
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5 Experimental results and performance analysis

5.1 Parameter setting and data description

Different Magnetic Resonance (MR) medical images were gathered from a publically avail-
able database MedPix® (https://medpix.nlm.nih.gov) to evaluate the suggested algorithm’s
performance. The resolution of all MR images is 512 by 512 pixels, and each pixel contains 24
bits of gray tone. All of the experiments were run on a PC with a 2.4 GHz Intel Core i5
processor and 8 GB RAM, and MATLAB R2019a was used for implementation. To
demonstrate the efficacy of the suggested algorithm, it was compared to eight well-known
enhancement methods, including HE [33], RSESIHE [35], BBHE [24], DSIHE [41], DOTHE
[36], MMBEBHE [13], CLAHE [39], and AOA-CLAHE. The parameter values for these
methods are shown in Table 1. Several performance assessment metrics are used to compare
the quantitative results of state-of-the-art approaches with the proposed algorithm, the details
of them are shown in Table 2.

Lower and upper limits are the most important factors in the suggested technique. In the
images, large and small values of limits produce complicated and premature results. To
prevent such concerns, various experimental trials have been carried out, and the ultimate
lower and upper bounds are considered as [3, 3, 0.001] and [9, 9, 0.01] (correspondingly)

Many studies have been conducted to increase image quality, however, not all of them have
yielded a balanced outcome in terms of visual interpretation and various image quality metrics
such as SSIM, PSNR, SE, Naturalness Image Quality Evaluator (NIQE), Absolute Mean
Brightness Error (AMBE), and Quality Index (QI). So, after simulation, the performance of the
GQAOA-CLAHE was assessed using qualitative and quantitative evaluations. Visual quality
is included in the qualitative evaluation, whereas SE, PSNR, AMBE, SSIM, NIQE, and QI are
included in the quantitative assessment. Sections 5.2 and 5.3 detail the performance analysis
using various measures.

5.2 Performance analysis based on qualitative assessment

The qualitative assessment of the suggested method focuses on evaluating the visual quality.
Unnatural enhancement, annoying artifacts, and over enhancement are all examined during the
visual quality examination. The visual quality-based comparison assessments of current
approaches and the proposed method are illustrated in Figs. 5, 6, 7, 8, 9 and 10. Figure 5
and 6a, 7, 8, 9 and 10a depict the input test images of several human organs that were used in
this study. Figure 11 depicts histograms of MR image-1 produced using various enhancing
approaches. Figures 6b–j, 7, 8, 9 and 10b–j4 show the enhanced MR images obtained by the
HE, RSESIHE, BBHE, DSIHE, DOTHE, MMBEBHE, CLAHE, AOA-CLAHE, and

Table 1 Parameters selection

parameter Assigned values

Dimension of problem space 3
Size of population 25
Number of iteration 10
Lower Bound (lb) [3,3,0.001]
Upper Bound (ub) [9,9,0.01]
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suggested GQAOA-CLAHE method. Due to HE’s intensity shifting characteristic, the histo-
gram equalized enhanced images may not be appropriately enhanced in the small regions of
the image and are brighter than the others. Over-enhanced and artifacts images with noise
amplification have been seen in the images depicted in Figs. 6b, 7, 8, 9 and 10b. The
RSESIHE, and DSIHE-based enhanced images in Figs. 6c, 7, 8, 9 and 10c and 6e, 7, 8, 9
and 10e show some unnatural improvements as well. It implies that current procedures cannot
appropriately enhance medical images. Medical images have a higher level of complexity
because one object is overlapped with other objects. As a result, the MMBEBHE approach
cannot also produce good results (see Figs. 6g, 7, 8, 9 and 10g). The BBHE and DOTHE
approaches have generated an enhanced image with a more natural look while maintaining
brightness, as demonstrated in Figs. 6d–10d and 6g, 7, 8, 9 and 10g. However, in such images,
information loss is greater. From Figs. 6h, 7, 8, 9 and 10h and 6i, 7, 8, 9 and 10i, it is clear that
the CLAHE and AOA-CLAHE techniques enhance the contrast of the images more effectively
than other approaches. But in the image produced by CLAHE preservation of overall
morphology is lower and noise content is more. In most cases, the AOA-CLAHE approach
yields contrast-enhanced images, although the visual clarity of small details is reduced when
compared to the proposed GQAOA-CLAHE. Our suggested technique produces enhanced

Table 2 Various image quality assessment metrics for performance evaluation

Parameters Formula Description of elements What value to
Look for Best

SSIM SSIM Q;Qeð Þ ¼ 2μQμQe
þc1ð Þ 2σQQeþc2ð Þ

μ2
Qþμ2

Qe
þc1

	 

σ2Qþσ2Qeþc2

	 
 μQ and μQe
are the average of Q and

Qe, respectively; σ2Q; σ
2
Qe

and σQQe

are the variances and the
covariance, respectively. C1and
C2 are two constants.

Higher value

SE H Qeð Þ ¼ − ∑
z∈Z

p zð Þlog p zð Þð Þ Z is the set of pixel values of the
image, z is the pixel of the image,
and P(z) is the likelihood that a
one-pixel value appears.

Higher value

PSNR
PSNR ¼ 20log10

L2max
1

MN∑
M
ı¼1∑

N
j¼1 Q i; jð Þ−Qeði; jÞ½ �2

� �
M×N denotes the size of the image,

Lmax is the maximum pixel
intensity, Q and Qe represent the
original and enhanced images.

Higher value

AMBE AMBE (Q,Qe)= ∣Mean(Q)–mean(Qe)∣ AMBE measures the brightness
preservation of the images.
mean(Q), and mean(Qe) show the
mean brightness of input and
improved image, respectively.

Lower value

NIQE niqe(Q) Computes the no-reference image
quality score for image Q

Lower value

QI QI ¼ 4σxyx y
σx2þσy2ð Þ xð Þ2 þ yð Þ2

h i
Loss of correlation× luminance

distortion × contrast distortion.
• x ¼ 1

N ∑
N
i¼1xi; y ¼ 1

N ∑
N
i¼1yi

• σ2x ¼ 1
N−1∑

N
i¼1 xi−xð Þ2

• σ2y ¼ 1
N−1∑

N
i¼1 yi−yð Þ2

• σxy ¼ 1
N−1∑

N
i¼1 xi−xð Þ2 yi−yð Þ2

Higher value
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images without artifacts, over-enhancement, or noise amplification, as illustrated in Figs. 6j, 7,
8, 9 and 10j. The histograms of Medical image 1 (Med1) are shown in Fig. 11. The input
image histogram has a low dynamic range, as shown in Fig. 11a. However, as seen in Fig. 11b,
HE extends the dynamic range of the input image. It creates wide gaps in the histogram
indicating bin isolation. Consequently, the image’s entire brightness is altered resulting in an
artifact image that is over-enhanced and has a large AMBE.

The results of enhancement approaches such as RSESIHE, BBHE, DSIHE, and DOTHE
are insufficient since their histograms cannot follow the original form of the histogram and are
moved to the left or right, as seen in Fig. 11c-f. This implies that the darkness or brightness of
the image increases without any useful consequence and the image’s overall morphology is

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5 a-e Test MR images; f-j corresponding histogram of the test images (x-axis: pixel intensity values [0–
255], y-axis: number of pixels)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6 Input image and related enhancement performance using various approaches (a) Input Med1 image, (b)
HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f) DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j)
Proposed GQAOA-CLAHE
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ruined. According to Fig. 11g-h, MMBEBHE and CLAHE approaches follow the structure of
the initial histogram and have a more extensive ability to increase image contrast. However,
because of the low SSIM, they suffer from the retention of overall morphology in the majority
of the images. The GQAOA-CLAHE approach is proposed to overcome these drawbacks. The
suggested approach’s histogram encompasses the entire dynamic range while bringing the
peaks down. As seen in Fig. 11j, this histogram follows the original histogram pattern, with a
uniformly distributed structure.

The proposed approach also reduces noise amplification and leads to the lowest AMBE
between the original image and the improved version As a consequence, it produces a better-
optimized, artifact-free improved image while conserving entropy and maintaining structure
and feature.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7 Input image and related enhancement performance using various approaches (a) Input Med2 image, (b)
HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f) DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j)
Proposed GQAOA-CLAHE

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8 Input image and related enhancement performance using various approaches (a) Input Med3 image, (b)
HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f) DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j)
Proposed GQAOA-CLAHE
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5.3 Performance analysis based on quantitative assessment

Other quantitative assessments are conducted in this section to evaluate the performance of the
suggested method using six well-known image quality measurement metrics: SSIM, SE,
PSNR, AMBE, NIQE, and QI. SSIM demonstrates the structural similarity between the initial
and enhanced images. Table 3 displays the measured SSIM values. The SSIM values of the
resultant image produced by our suggested approach are greater than those of other techniques.
The greater the SSIM value, the more the suggested approach preserves the overall morphol-
ogy of the MR images after raising the contrast. The information level of medical images
should indeed be higher for proper diagnosis. The greater the SE value, the more information

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9 Input image and related enhancement performance using various approaches (a) Input Med4 image, (b)
HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f) DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j)
Proposed GQAOA-CLAHE

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10 Input image and related enhancement performance using various approaches (a) Input Med5 image, (b)
HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f) DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j)
Proposed GQAOA-CLAHE
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is available in that image. As a result, SE is used as the primary parameter in medical image
enhancement. According to Table 4, the HE approach results in a lower SE value since it loses
information contents owing to excessive enhancement. Except for CLAHE, it has also been
discovered that our suggested technique has higher SE preservation than other methods.

Table 5 shows the value of the PSNR measured using various enhancement approaches.
The higher the PSNR value, the higher the image quality. According to this table, the
suggested approach generates a higher PSNR value than alternative techniques. It demon-
strates that the enhanced image produced by the suggested approach contains far fewer noise
components than prior techniques. Table 6 displays the AMBE value for several approaches.
Among all enhancement approaches, our suggested method has the lowest AMBE value. It
demonstrates that our suggested solution outperforms other strategies in terms of brightness
preservation. As the brightness is kept, the image gets more natural. The measured NIQE and
QI values are presented in Tables 7 and 8, respectively. The NIQE metric is a fully blind image
quality analyzer that solely uses quantifiable deviations from statistical regularities detected in
natural images, with no training or exposure to distorted images. The QI, as opposed to
standard error summation approaches, is intended to describe an image as a mix of loss of
correlation, luminance distortion, and contrast distortion elements. As a result, a greater value
for this statistic indicates that the evaluated algorithm performed better. Tables 7 and 8 show
that the NIQE and QI values for our suggested method are lower and higher, respectively,
when compared to other current methodologies. Lower NIQE values and higher QI values
imply that the suggested GQAOA-CLAHE approach produces a superior perceptual quality
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11 Intensity histograms of the Med1 image (x-axis: pixel intensity values [0–255], y-axis: number of pixels)
by various enhanced approaches: (a) Input Med1 image (b) HE, (c) RSESIHE, (d) BBHE, (e) DSIHE, (f)
DOTHE, (g) MMBEBHE, (h) CLAHE, (i) AOA-CLAHE, and (j) Proposed GQAOA-CLAHE

Table 3 SSIM-based performance analysis

Image/
method

HE RSESIHE BBHE DSIHE DOTHE MMBEBHE CLAHE AOA-
CLAHE

Proposed

Med1 0.38788 0.558 0.5988 0.42536 0.43796 0.82816 0.68619 0.79824 0.8368
Med2 0.39483 0.53975 0.63377 0.55893 0.71166 0.71469 0.57736 0.82326 0.8347
Med3 0.26872 0.32366 0.52873 0.52364 0.8312 0.80296 0.57209 0.84589 0.8568
Med4 0.064993 0.093684 0.70549 0.1084 0.81748 0.72473 0.4821 0.79696 0.8233
Med5 0.094467 0.25926 0.37815 0.19984 0.73318 0.69007 0.41987 0.82231 0.8687
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A comparison of six quantitative evaluations for each method is shown in Fig. 12.
According to Fig. 12, the suggested GQAOA-CLAHE approach is the best enhancement
strategy for low contrast medical images in terms of boosting the SE, SSIM, QI, and, PSNR
while decreasing the NIQE and AMBE.

Table 5 PSNR-based performance analysis

Image/
method

HE RSESIHE BBHE DSIHE DOTHE MMBEBHE CLAHE AOA-
CLAHE

proposed

Med1 7.7372 12.0086 11.8314 8.0126 11.1672 17.3695 16.9612 18.8804 19.5612
Med2 8.6755 14.351 14.2171 10.1802 12.341 17.1074 13.9886 17.3351 18.9886
Med3 7.7902 10.3829 15.9402 10.0628 15.6412 16.484 17.4401 21.7038 22.4401
Med4 5.7241 6.1428 13.5624 6.6754 16.7755 19.1568 18.4467 23.1465 24.4467
Med5 5.9172 7.8649 12.6779 6.5432 13.3634 17.7839 17.9312 24.6572 27.9312

Table 6 AMBE-based performance analysis

Image/
method

HE RSESIHE BBHE DSIHE DOTHE MMBEBHE CLAHE AOA-
CLAHE

proposed

Med1 0.35391 0.21241 0.14859 0.33288 0.1655 0.011129 0.108 0.04929 0.0108
Med2 0.33486 0.17587 0.1303 0.25455 0.15914 0.080667 0.15394 0.090289 0.075394
Med3 0.37187 0.28828 0.1086 0.25083 0.079971 0.085253 0.093092 0.055883 0.053092
Med4 0.45253 0.44602 0.097426 0.37306 0.051956 0.046471 0.086618 0.037190 0.036218
Med5 0.46089 0.34093 0.12789 0.40014 0.097665 0.027503 0.083682 0.02622 0.023682

Table 7 NIQE-based performance analysis

Image/
method

HE RSESIHE BBHE DSIHE DOTHE MMBEBHE CLAHE AOA-
CLAHE

proposed

Med1 3.7392 4.1503 3.8964 3.8471 3.8545 4.0496 3.0364 2.9463 2.8124
Med2 3.6319 4.2941 3.3525 3.7526 3.7053 4.2174 3.5201 3.5161 3.2201
Med3 3.2777 4.1877 3.429 3.6721 3.4921 3.754 3.0695 3.1815 3.0665
Med4 5.9263 5.7677 4.9464 6.3692 4.9508 4.8868 5.2815 4.9321 4.6815
Med5 4.6138 5.6327 4.1477 5.3016 4.2134 5.66 3.612 3.3041 3.212

Table 8 QI-based performance analysis

Image/
method

HE RSESIHE BBHE DSIHE DOTHE MMBEBHE CLAHE AOA-
CLAHE

proposed

Med1 0.27116 0.40045 0.58889 0.32554 0.31095 0.68904 0.52991 0.63544 0.7094
Med2 0.36324 0.47793 0.56287 0.47352 0.5811 0.61213 0.47626 0.74177 0.7535
Med3 0.24249 0.27225 0.42696 0.44956 0.7024 0.70151 0.38141 0.7529 0.7634
Med4 0.041174 0.053294 0.55756 0.05762 0.68944 0.45074 0.31796 0.68292 0.7189
Med5 0.085621 0.23425 0.26426 0.085861 0.62142 0.34762 0.28558 0.67197 0.6956
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6 Discussion

This research suggests a novel approach based on GQAOA-CLAHE as well as a new fitness
function for MR image enhancement. To demonstrate the effectiveness of the proposed
GQAOA-CLAHE method, several conventional and state-of-the-art image enhancement tech-
niques were compared such as HE, RSESIHE, BBHE, DSIHE, DOTHE, MMBEBHE,
CLAHE, and AOA-CLAHE. Various performance evaluation metrics including SE, PSNR,
SSIM, QI, NIQE, and AMBE were utilized to compare the quantitative results of implemented
approaches with the proposed framework. The higher values of all the aforementioned metrics
indicate better enhancement except AMBE and NIQE.

Based on the observation of Fig. 11 we see that the enhanced images with CLAHE, AOA-
CLAHE, and proposed GQAOA-CLAHE methods all offer flat histogram distributions and
reflect the images’ features more accurately compared to other approaches. Meanwhile, the
suggested approach performs well in contrast adjustment, and its entropy value indicates that
whole image quality (richness of details) is superior to AOA-CLAHE and comparable to that
of CLAHE. Contrast, SH, SE, EI, and SSIM are employed in the proposed fitness function to
further improve the contrast and create an image with superior perceptual quality. In

Fig. 12 Comparison of six quantitative evaluations for each method
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comparison to all enhancement strategies, the suggested methodology produces higher PSNR
and QI values due to the recommended fitness function.

After observing experimental results for brightness preservation, we found that BBHE,
DOTHE, MMBEBHE, CLAHE, and AOA-CLAHE are more capable to handle brightness
preservation than HE, RSESIHE, and DSIHE. In comparison to existing approaches, the
suggested GQAOA-CLAHE provided better brightness preservation, a better SSIM, and also
better contrast enhancement. MMBEBHE and AOA-CLAHE were the second best approaches
for preserving brightness and enhancing contrast.

The performance of the suggested technique is superior to AOA-CLAHE since it uses a
Gaussian quantum-behaved arithmetic optimization algorithm to determine the best CLAHE
parameter values. The suggested technique effectively enhances the contrast of the original
images while keeping visual clarity and generating less noise. Additionally, it keeps the
structural similarity unlike HE, RSESIHE, DSIHE, BBHE, and CLAHE methods. It does
not distort the essential image details, dissimilar to the HE, RSESIHE, and DSIHE methods.

Overall, the experimental analysis shows that the proposed technique performs better, as
evidenced by higher SE, PSNR, SSIM, and QI rates and lower NIQE and AMBE values. The
combination of GQAOA-CLAHE and a new fitness function is the primary factor in the
achievement of higher performance scores.

The performance of the proposed algorithm highly depends on the fitness function and has
been designed to apply to low-contrast medical images. The fitness function of the suggested
framework needs to be redesigned to deliver the best visual result for different types of images
such as natural and satellite images, which is a challenging task. Moreover, the performance of
GQAOA is significantly influenced by its control parameters, including iteration number,
lower bound, and upper bound. Limitations in the GQAOA parameter sets lead to uncertainty
in the improved image’s contrast and clarity.

7 Conclusion

Image enhancement has become an increasingly important preprocessing step in medical
imaging, due to the importance of medical images in the detection, diagnosis, and treatment
of diseases, and the drawback of medical imaging in producing poor-quality images that can
lead to a loss of diagnostic information. In this paper, the optimization-based GQAOA-
CLAHE framework was introduced for the enhancement of low-contrast medical images.
While CLAHE was selected as the image enhancement technique to be optimized, GQAOA
was used to automatically find the optimal values for CLAHE’s parameters without the need
for human intervention. A quantum computing idea-based AOA with Gaussian distribution
mutation was proposed to simultaneously improve the original AOA’s search accuracy and
stability. In addition, a new multi-objective fitness function based on contrast, SE, EI, SSIM,
and sharpness was utilized for improving visual, contrast, and different characteristic infor-
mation of images. Both quantitatively and qualitatively experimental results demonstrated that
the introduced GQAOA-CLAHE approach outperforms other existing methods in terms of
visual quality, SE, PSNR, AMBE, SSIM, NIQE, and QI. So, the GQAOA-CLAHE approach
is more appropriate for low-contrast medical images to diagnose and treat the disease. For
further studies, the proposed GQAOA can be used to solve a variety of continuous/discrete
optimization problems including image segmentation, signal denoising, neural network
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training, engineering design, and feature selection. Also, the suggested fitness function can be
utilized as an evaluator in other image enhancement and segmentation techniques.

Data availability The datasets generated during and/or analyzed during the current study are available at https://
medpix.nlm.nih.gov
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