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Abstract
By looking at the technological advancement and climate change mitigation plan of the advanced economies, the current 
study examines the role of sustainable development aspects such as innovations, high technology export, labor productiv-
ity, capital stock, research and development (R&D), information and communication technology (ICT), capital stock, and 
energy use in mitigating environmental degradation for the selected panel of countries with the most investment in tech-
nology (China, Denmark, Finland, France, Israel, Korea, Hong Kong, Germany, Japan, Netherlands, Singapore, Sweden, 
United Kingdom, and United States) over the period 2000–2018. Foremost, the pooled ordinary least square (POLS) and 
random-effects (RE) generalized least squares (GLS) approaches provided additional interesting inferences. As such, the 
POLS result revealed that only capital stock in the panel countries shows a desirable environmental effect. At the same time, 
labor productivity, innovation, R&D, ICT, and energy further hamper ecological quality in the examined panel countries. 
Similarly, the GLS result largely affirms the POLS results, with only the capital stock among the explanatory variables show-
ing evidence of emission mitigation effect in the panel. Additionally, the panel Granger causality result illustrates evidence 
of unidirectional causality only innovation, ICT, and capital stock to environmental degradation.
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Nomenclature
ARDL  Autoregressive distributed lag
BLUE  Best linear unbiased estimator
CS  Capital stock
CCS  Carbon capture and sequestration
CCS  Carbon capture and storage
CCU   Carbon capture and utilization
CO2  Carbon dioxide
CEP  Carbon emissions performance
CSP  Concentrated solar power
DW  Durbin Watson
EKC  Environmental Kuznets curve
EN  Energy
GDP  Gross domestic product
GHG  Greenhouse gas
GLS  Generalized least squares
GMM  Generalized method of moments
ICT  Information and communication technology
IPAT  Impact of population, affluence, and 

technology
LB  Ljung-Box test
LP  Labor productivity
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Highlights • Panel of high technology exporting developed 
economies is investigated.

• Capital stock, innovation, ICT, R&D, labour productivity, 
energy, and carbon emission are cointegrated.

• Innovation, ICT, R&D, labour productivity and energy 
hampers environmental quality.

• Capital stock improves environmental quality in the 
examined panel country.

• There is unidirectional Granger causality from innovation, 
ICT, and capital stock to CO2 emission.
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NGMCPI  Non-radial global Malmquist carbon emission 
performance index

OECD  Organization for Economic Co-operation and 
Development

PA  Patent applications of residents
PWT  Penn World Table
POLS  Pooled ordinary least square
QARDL  Quantile autoregressive distributed lag
R&D  Research and development
RE  Random effects
SDGs  Sustainable Development Goals
UNCTAD  United Nations Conference on Trade and 

Development
UNDP  United Nations Development Program
UTPAT  Utility patent
VIF  Variance inflation factor
WEF  World Economic Forum
WIPO  World Intellectual Property Organization

Introduction

While it has been widely acknowledged that the burning 
of conventional energy resources is largely responsible for 
the challenges associated with global warming, the seem-
ingly favorable effect of technological innovations on the 
environment has increasingly been investigated. To attain 
the target of the Kyoto Protocol of the United Nations 
Framework Convention on Climate Change and the Global 
goal vis-a-vis the Sustainable Development Goals (SGDs) 
of the United Nations Development Program (UNDP), the 
pathway to achieving climate mitigation has been mostly 
designed along with green technology policy. In this respect, 
Du et al. (2019) alluded to the importance of renewable or 
cleaner technologies, research and development (R&D), 
and the diffusion of green technological innovation (such 
as the improved concentrated solar power (CSP)) in driving 
down the agent of global warming such as the greenhouse 
gas (GHG) emissions. As the worldwide debate on climate 
change persists, isotopic techniques and carbon technologies, 
such as carbon capture and storage (CCS), carbon capture 
and utilization (CCU), and carbon capture and sequestra-
tion (CCS), are being significantly intensified to complement 
energy technologies.

Moreover, other silent forms of innovations such as pat-
ent registration are potentially linked with carbon dioxide 
 (CO2) emission (Dinda 2018; Ganda 2019). In terms of the 
role of digital technologies, the World Economic Forum 
(WEF) highlighted the potential to achieve a 15% decline in 
GHG emissions by 2030 (World Economic Forum 2019). 
Additionally, to provide climate mitigation prospects, 
the development of high technologies significantly offers 
diverse opportunities, thus driving the related aspects of 

technological investments. For instance, the recent report 
of PricewaterhouseCoopers indicates that the mobility and 
transportation sectors have mostly benefited from green 
technology investment, followed by land use and agriculture 
and the energy sector (PricewaterhouseCoopers 2020). Fur-
thermore, the report further hinted that e-scooter and bike 
platforms which are the common types of micro-mobility in 
addition to other varieties of transport innovations are now 
hugely invested across major economies of the world (giving 
it a compound annual growth rate of 151%).

By considering the motivations mentioned above, the 
objective of the current study is drawn from the notion of 
examining the role of innovation-related factors on GHG 
vis-a-vis carbon emissions. While experimenting from the 
case of the selected developed economies that have the most 
investment in high technology (China, Denmark, Finland, 
France, Israel, Korea, Hong Kong, Germany, Japan, Nether-
lands, Singapore, Sweden, United Kingdom, and the United 
States), the specific hypothesis is being investigated in line 
with the objective mentioned above. The novelty of the 
study is not only about the case in consideration. The study 
offers an extensive examination given that the hypotheses 
are derived from the roles of patent applications (i) R&D, 
(ii) high technology, (iii) information and communication 
technology (ICT), (iv) capital stock (CS), and (vi) energy 
on carbon dioxide  (CO2) emission for the panel countries as 
mentioned above over the covering 2000–2018. By ensuring 
a robust investigation, additional variables (labor productiv-
ity) were incorporated.

We arrange the remaining sections of the study accord-
ingly. Several relevant pieces of literature are discussed in 
“Related literature” while presenting the data and prelimi-
nary tests in “Theoretical literature”. In “Data and prelimi-
nary tests”, we carry out the co-integration and Granger 
causality analyses while discussing the results in “Model 
and preliminary tests”. The last section, “Empirical analysis 
and results”, is reserved for the conclusion and policy insight 
of the study.

Related literature

Considering that the current study is centered on the case 
of selected developed high-tech investing economies, a 
related topic and approach is detailed in the recent work of 
Erdoğan et al. (2020). Specifically, Erdoğan et al. (2020) 
examined the role of innovation in the carbon emission drive 
(especially the sectoral carbon emissions) for 14 of the G-20 
countries covering the period of 1991–2017. While the study 
ruled out the validity of the Environmental Kuznets curve 
(EKC) hypothesis for the panel examination, it further found 
that the role of innovation in the carbon emissions across 
the sectors (such as the energy sector and transport sector) 
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is not statistically significant in the long run. However, the 
short-run observation poses an interesting perspective. Thus, 
in the short run, innovation yields improvement in environ-
mental quality (mitigate carbon emission) through the indus-
trial sector while causing the opposite effect in the construc-
tion sector. By examining the case of Canada (one of the 
countries being considered in the current study), Jordaan 
et al. (2017) informed that the country’s energy transition 
effort through renewable portfolio measures, high carbon 
fuel phase-out, and other clean technologies is significantly 
yielding emission mitigation goals.

In the recent study by Ganda (2019), the dimensions 
to carbon mitigation from the perspectives of the patent 
application, innovation, technological investment, and 
research and development were examined for the case of 
the Organization for Economic Co-operation and Devel-
opment (OECD) economies. The study offers interesting 
results by implementing the system-generalized method of 
moments (GMM) technique from 2000 to 2014. In the study, 
the result established that two indicators (spending on R&D 
and renewable energy utilization) were found to prevent the 
outrush of carbon emission on a significant term in the panel 
model. However, the number of triadic patent families is 
revealed to trigger more environmental setbacks. In contrast, 
the number of researchers marks a potential push in causing 
environmental damage (but the impact is statistically not 
significant). The general observation from the entire result 
is that technology investments and innovation possess the 
ability to mitigate carbon emissions, especially by showing 
the different effects on carbon emissions in the examined 
OECD countries.

Similarly, a related inference from the nexus of carbon 
emission and green technology innovations was offered in 
the work of Du et al. (2019). Based on the panel analysis of 
selected 71 economies covering from 1996 to 2012, Du et al. 
(2019) employed the panel fixed effect model to examine the 
impact of green patent counts, energy consumption, trade 
openness, and the validity of the environmental Kuznets 
curve. Specifically, the study found that green technology 
innovations (as proxied by green patent count) reduce carbon 
emission in only some of the different economic levels. The 
desiring effect of green technology innovations on carbon 
emission is only significant in high-income level economies. 
Moreover, the study established the EKC hypothesis in the 
framework of environmental degradation and green techno-
logical innovation nexus. These highlighted studies are close 
reflections of the revealing insight of the study of Cheng 
et al. (2021) that also found an insignificant relationship 
between carbon emission and patent development.

Additionally, the dynamics of carbon emissions from 
the perspectives of both technological innovation and gains 
in efficiency for China were examined by Zhang et  al. 
(2016). By proposing the relevance of the non-radial global 

Malmquist carbon emission performance index (NGM-
CPI) to overcome inherent challenges in previous estima-
tion approaches, Zhang et al. (2016) examined the dynamic 
carbon emission performance (CEP) across 38 industrial 
sectors in China covering the period 1990–2012. The study 
found that the NGMCPI is capable of overcoming the chal-
lenge of decoupling CEP from radial efficiency measures 
and the infeasibility issue associated with the estimation 
process. Specifically, the NGMCPI is decomposed into the 
low-carbon catch-up (called the efficiency change) and the 
innovation effects (called the technological change) indexes. 
Thus, the study found that the low-carbon catch-up drove the 
dynamic (CEP) during the 1990s, while innovation further 
complemented the trigger between 2000 and 2012.

Furthermore, the studies of Khan et al. (2020) and Shah-
baz et al. (2020) considered the role of investment through 
public–private partnerships and innovations in technological 
advancement in mitigating emissions in China. By employ-
ing the bootstrapping autoregressive distributed lag (ARDL) 
technique, Shahbaz et al. (2020) found that technological 
innovations and public–private partnerships respectively 
mitigate and induce carbon emissions while both validat-
ing the EKC hypothesis. Thus, the study offered a concrete 
policy for the Chinese government especially as the coun-
try continues to battle the challenge associated with GHG 
emission. Although Khan et al. (2020) implemented a dif-
ferent set of co-integration approaches (such as the Maki 
co-integration, fully modified ordinary least square, dynamic 
ordinary least square, and canonical co-integration regres-
sion) along with frequency domain causality test, the obser-
vation is similar to that of Shahbaz et al. (2020). Specifically, 
Khan et al. (2020) found that technological innovation along 
with exports and renewable energy utilization is a significant 
measure toward the carbon emission mitigation approach 
in China. Additionally, the study found that public–private 
partnerships, import, and economic growth spur environ-
mental degradation through the outrush of carbon.

Moreover, there are several other recent and related stud-
ies that align with the framework of the current study (Ade-
doyin et al. 2020; Godil et al. 2021; Du et al. 2022; Sun et al. 
2021; Abbasi et al. 2022; Chien, et al. 2022; Onifade and 
Alola 2022). For instance, Godil et al. (2021) employed the 
quantile autoregressive distributed lag (QARDL) approach 
for the dataset covering 1990–2018 to examine the roles of 
technology innovation, conventional and unconventional 
energy resources in transport carbon emission in China. 
Specifically, the study reveals that advancement in techno-
logical innovation and renewable energy resource utilization 
are significantly leading to a decline in carbon emission in 
the country’s transport sector. At the same time, economic 
growth (measured by GDP) causes a surge in  CO2 emission 
in the sector. Similarly, Abbasi et al. (2022) examined Paki-
stan’s by deploying the dataset covering 1990Q1 to 2019Q4 
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and the newly developed dynamic ARDL. Importantly, the 
study shows that technological innovation reduces consump-
tion and territory-based  CO2 emissions, especially in the 
long run. At the same time, economic development, total 
energy utilization, and economic globalization largely spur 
consumption and territory-based  CO2 emissions in the long 
run.

While the studies mentioned above clearly demonstrate a 
significant revelation, especially about the role of innovation 
aspects on environmental quality, the current study provides 
a more expansive coverage and depth of the literature. In 
essence, the current study does not only incorporate a spread 
of the innovation aspects in the same model, the focus of the 
study, i.e., the high-tech-investing economies, also makes 
the current study a unique endeavor.

Theoretical literature

Reflecting on the proposition of the growth model, such 
as the work of Solow (1956) that is centered on the key 
drivers of economic growth, successive modifications have 
paved the way for the relevance of other growth factors. In 
addition, the increasing relevance of knowledge and techno-
logical change as essential resources for growth has yielded 
more evidence over time (Abramovitz 1956; Arrow 1971). 
Moreover, while looking at technological innovation from 
the perspective of patent (a proxy for innovation), as hinted 
by Griliches (1998), Dinda (2018) used the utility patent 
(UTPAT) to represent production technology and at the same 
time to understand the carbon emission effect. Considering 
that pollution is inherent in the production process, the pol-
lution aspect is derived from the relationship between output 
production and technological improvement. Earlier, Ehrlich 
and Holdren (1971) and their similar study (Holdren and 
Ehrlich 1974) illustrated the impact (I) of affluence (denoted 
as A = economic growth), population (denoted as P), and 
technological advancement (denoted as T), i.e., IPAT which 
was later modeled stochastically in a subsequent study. 
Thus, given that pollution per unit output (µ) decreases with 
technological innovation, then pollution = Output(�)

A
 , where 

0 < µ < 1 and A is the technological innovation parameters. 
In the case of the current study, the task expects to establish 
the environmental effect of technological innovation aspects, 
labor productivity, and capital stock as captured in the illus-
trated Fig. 1.

Data and preliminary tests

This study utilizes the annual data covering 2000 to 2018 for 
the most innovative countries1 as determined by the World 
Intellectual Property Organization (WIPO 2021) to examine 
the relationship between technological variables and car-
bon dioxide emissions. Modeling variables are illustrated 
in Table 1.

Model and preliminary tests

This study aims to examine the effect of technology param-
eters on carbon dioxide emissions. In this context, the math-
ematical and econometric model is given by the following:

From Eq. (1), the form of econometrics model is further 
represented as

with i denoting countries (1,2,3,…,N) and t denoting time 
(2000, 2001, 2002,…,T). The subscript i, therefore, states 
the cross-sectional dimension whereas t states the time series 
dimension. Β0 is constant term, μi is the unobservable indi-
vidual-specific effect, and uit is an idiosyncratic error term. 

(1)lnCO2 = f (lnLP, lnPA, lnRD, lnICT , lnCS, lnEN)

(2)

lnCO2it =�0 + �1lnLPit + �2lnPAit

+ �3lnRDit
+ �4ICTit

+ �5lnCSit + �6lnENit

+ �
i
+ �

it

Fig. 1  Conceptual illustration of the study

1 The selected countries are China, Denmark, Finland, France, Israel, 
Korea, Hong Kong, Germany, Japan, Netherlands, Singapore, Swe-
den, United Kingdom, and United States.
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ln displays the natural logarithmic. Additionally, since the 
econometric model has a full logarithmic form, the param-
eters should be interpreted by taking this into account. As 
seen in Table 2, this study is conducted using 266 observa-
tions. The natural logarithm of the variables is taken to elim-
inate scale differences and to calculate the slope coefficients. 
While the mean of lnCO2, lnLP, lnPA, and lnRD is calcu-
lated as 2.11, 11.28, 9.20, and 0.84, respectively, the mean 
of the lnICT, lnCS, and lnEN is calculated as 2.47, 15.5, and 
3.54, respectively. The standard deviations of the variables 
are found as 0.36, 0.50, 2.42, and 0.45 for lnCO2, lnLP, 
lnPA, and lnRD, respectively, and 0.78, 1.41, and 0.06 for 
lnICT, lnCS, and lnEN, respectively. Additionally, the maxi-
mum and minimum values of the variables were estimated; 
the difference between the maximum and minimum values 
is substantially low due to the logarithmic transformation.

A close relationship in all or at least two of the explana-
tory variables is called multi-collinearity. Ordinary least 
square (OLS) estimators are best linear unbiased estimator 

(BLUE). Specifically, in the case of multi-collinearity, 
the OLS estimates are unbiased, but the estimates may 
diverge from their true values as the variances become 
larger. For this reason, it is aimed to avoid this problem 
by employing some methods. The variance inflation fac-
tor (VIF) criterion is used to determine whether there is a 
multi-collinearity problem. If VIF < 5, there is no multi-
collinearity problem, if 5 < VIF < 10, there is a moderate 
multi-collinearity problem, and if VIF > 10, there is a high 
multi-collinearity problem. Table 3 shows that the results 
of the VIF criteria are determined to be less than 5 for 
both the independent variables and the mean. This result 
indicates that there is no multi-collinearity problem in 
the model.

Table 4 shows the individual effect and time effect 
results. Individual effects and time effects are often used 
to test for individual or time heterogeneity that is not 
observed in panel data models (Arellano 2003; Wool-
dridge 2010; Baltagi 2006; Hsiao 2014). There are vari-
ous tests in the literature to test the presence of fixed 
effects in one or multi-dimensional panel data models. 

Table 1  Definition of variables

PWT: Penn World Table; UNCTAD: United Nations Conference on Trade and Development. All data were 
used with logarithmic transformation
2 This category measures the availability, sustainability, and efficiency of power sources. For this reason, it 
is composed of the use of and access to energy, losses in distribution, and renewability of energy compo-
nents and sources and includes the GDP generated by each unit of oil to further highlight the importance of 
optimal energy systems (UNCTAD)

Variable Code Unit Source

Carbon dioxide emissions CO2
it

Metric tons Maddison
Labor productivity LP

it
Output per worker Own calculated

Patent applications of residents PA
it

Number of patent WIPO
Research and development expenditure (% of GDP) RD

it
Percent World Bank

Information and communication technology goods 
exports (% of total goods exports)

ICT
it

Percent World Bank

Capital stock at current PPPs (in mil. 2017 US$) CS
it

Current purchasing 
power parities in 
million 2017 USA 
dollars

PWT10.0

Energy2
EN

it
Index UNCTAD

Table 2  Descriptive statistics

Natural logarithms of all variables were taken to eliminate scale dif-
ferences

Variable Obs Mean Std. Dev Min Max

lnCO2
it

266 2.11 0.36 0.97 3.02
lnLP

it
266 11.28 0.50 8.90 11.78

lnPA
it

266 9.20 2.42 3.93 14.15
lnRD

it
266 0.84 0.45  − 0.77 1.60

lnICT
it

266 2.47 0.78 0.84 4.02
lnCS

it
266 15.51 1.41 13.50 18.35

lnEN
it

266 3.54 0.06 3.30 3.68

Table 3  Variance inflation 
factor (VIF)

Variable VIF 1/VIF

lnLP
it

2.60 0.38
lnPA

it
1.88 0.53

lnRD
it

1.80 0.55
lnCS

it
1.63 0.61

lnEN
it

1.40 0.71
lnICT

it
1.33 0.75

Mean VIF 1.77
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Most tests focus on static panel models. In this study, 
the hypothesis is separately examined for F, LR, and LM 
tests.

The null hypothesis of these tests shows that there is no 
individual effect, time effect or both, whereas the alternative 
hypothesis implies that there exists individual effect, time 
effect, or both, respectively. In this context, we test the fol-
lowing models to determine the correct model:

with i denoting countries and t denoting time for this study. 
Β0 is constant term, μi is the unobservable individual-spe-
cific effect, λt is the unobservable time-specific effect, and 
uit is an idiosyncratic error term. Equation (3) shows the 
classical model in which there is neither an individual effect 
nor a time effect. In the presence of such a model, the pooled 
least squares estimation results can be relied upon. While 
Eq. (4) expresses the one-way error component model with 
the individual effects, Eq. (5) shows the one-way error com-
ponent model with time effects model. Equation (6) shows 
the two-way error component model in which both effects 
exist together. If the pooled least squares estimation method 
is used in models with individual or time effects, biased 
results may occur. Against this situation, the use of fixed-
effects and random-effects models is recommended. As seen 

(3)
lnCO2

it
=�0 + �1lnLPit

+ �2lnPAit
+ �3lnRDit

+ �4ICTit
+ �5lnCSit + �6lnENit

+ u
it

(4)
lnCO2

it
=�0 + �1lnLPit

+ �2lnPAit
+ �3lnRDit

+ �4ICTit
+ �5lnCSit + �6lnENit

+ u
i
+ u

it

(5)
lnCO2

it
=�0 + �1lnLPit

+ �2lnPAit
+ �3lnRDit

+ �4ICTit
+ �5lnCSit + �6lnENit

+ �
t
+ u

it

(6)
lnCO2

it
=�0 + �1lnLPit

+ �2lnPAit
+ �3lnRDit

+ �4ICTit
+ �5lnCSit + �6lnENit

+ u
i
+ �

t
+ u

it

in Table 4, it has been shown that there is no time effect in 
the F, LR (Likelihood ratio), and LM (Lagrange multiplier 
by Breusch and Pagan 1980) tests. In other words, the null 
hypothesis is accepted based on three tests. However, the 
alternative hypothesis that there is an individual effect is 
accepted.

Accordingly, Eq. (2) is our final model for analysis. The 
econometric model (Eq. (2)) can be constructed under the 
presence of the individual effect. In addition, Hausman 
(1978) suggests comparing �̂GLS and�̃Within , both of which 
are consistent under the null hypothesis H0 ∶ E(u

it
∕X

it
) = 0, 

but which will have different probability limits if H0 is not 
true. In fact, �̃Within is consistent whether H0 is true or not, 
while �̂GLS is BLUE (best linear unbiased estimator) consist-
ent and asymptotically efficient underH0 , but is inconsist-
ent when H0 is false (Baltagi 2005: 67). On the other hand, 
the results of the Robust Hausman (rhausman) test used to 
determine whether the individual effect is related to the inde-
pendent variable allow the use of the random-effects model, 
which can be used when the individual effect is not related 
to the independent variable. Accordingly, the Hausman test 

Table 4  The hypothesis for F, LR, LM, and Hausman tests

FE and RE denote fixed effects and random effects, respectively

Tests Null hypothesis Alternative hypothesis Decision phase

Hypothesis for F test H0 ∶ �
i
= �

t
= 0 H1 ∶ �

i
or�

t
≠ 0 Is the model classic or not?

H0 ∶ �
i
= 0 H1 ∶ �

i
≠ 0 Does the model have individual effects or not?

H0 ∶ �
t
= 0 H1 ∶ �

t
≠ 0 Does the model have time effects or not?

Hypothesis for LR test H0 ∶ �� = �� = 0 H1 ∶ ��or�� ≠ 0 Is the model classic or not?
H0 ∶ �� = 0 H1 ∶ �� ≠ 0 Does the model have time effects or not?
H0 ∶ �� = 0 H1 ∶ �� ≠ 0 Time effects model or not?

Hypothesis for LM test H0 ∶ �2
�
= �2

�
= 0 H1 ∶ �2

�
or�2

�
≠ 0 Is the model classic or not?

H0 ∶ �2
�
= 0 H1 ∶ �2

�
≠ 0 Does the model have individual effects or not?

H0 ∶ �2
�
≠ 0 H1 ∶ �2

�
≠ 0 Does the model have time effects or not?

Hypothesis for Hausman test FE is consistent whereas 
RE is efficient

FE is consistent whereas RE 
is inconsistent

Which model FE or RE?

Table 5  Results of F, LR, LM, and Hausman test

* 5% significance level

Tests Individual effect Time effect

Test stat Prob Test stat Prob

F 138.21 (0.000) 0.46 (0.972)
LR 453.1 (0.000) 0.00 (1.000)
LM 1624.25 (0.000) 0.00 (1.000)
Hausman test
Robust Hausman Prob >  chi2 = 0.84
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arising from the results of the time and individual effect is 
displayed in Table 5.

Table 6 illustrates mainly the results of deviations from 
assumption. The normality test results for random effects 
initially demonstrate that the null hypothesis is accepted 
within the 5% significance level. In other words, the indi-
vidual effect error component and the residual error are 
normally distributed. By considering the heteroscedastic-
ity, all models are compared with the Snedecor F table 
for Levene et al. heteroscedasticity tests. Accordingly, the 
null hypothesis stating that there is no heteroscedasticity is 
rejected. This result proves the existence of heteroscedas-
ticity. Moreover, the Durbin Watson (DW) and LB auto-
correlation test results are smaller than critical values (it is 
accepted as ‘‘2’’). Accordingly, these results denote there 
is first-order autocorrelation. The cross-sectional depend-
ence is also found for this study. Statistically, there are 
deviations from the assumption; thus, the robust estima-
tors should be used (see Table 6). The robust estimators 
help to produce effective results against deviations from 
assumptions such as heteroscedasticity, autocorrelation, 
and cross-sectional dependence as respectively proposed 
by Brown and Forsythe (1974), Bhargava et al. (1982), 
and Pesaran (2004).

Empirical analysis and results

To estimate of the coefficient relationship between the 
environmental variable and the set of explanatory vari-
ables, we adopt the Driscoll-Kraay standard error robust 
estimator. The consideration of this approach is because 
the Driscoll-Kraay standard error robust estimator is 
highly effective in estimating models where deviations 
from these three assumptions occur simultaneously. F and 

Wald test results show that the equations are statistically 
significant, respectively. As seen in Table 7, we apply 
two different estimators based on Driscoll-Kraay standard 
error. Panel (a) provides the pooled least squares (POLS) 
results, while panel (b) presents the random effects 
(RE) generalized least squares (GLS) method. Columns 
1–6 represent regressions with different independent 
variables.

Panel Granger causality method

The Dumitrescu-Hurlin panel Granger causality test for the 
causality between Y and X during the period T for N units. 
The following heterogeneous model for each unit (i) at time 
t is as follows (Dumitrescu and Hurlin 2012):

where “K” symbol denotes optimum lag length and �
i
 illus-

trates that individual effects are constant. In addition, it 
is accepted that the autoregressive parameter 𝛾İ(k) and the 
regression coefficient slope 𝛽(k)

İ
 can differ between groups. 

The basic and alternative hypotheses tested using Eq. (7) 
are as follows:

Under the basic hypothesis (H0), among the variables of 
all units examined, there is no Granger causality and if oth-
erwise (the alternative hypothesis, H1), there is a significant 
relationship. Meanwhile, the other details about the estimation 
procedure and interpretations are provided in the literature.

(7)Y
i,t=�i

+

K
∑

k=1

�
(k)

i
Y
i,t−k +

K
∑

k=1

�
(k)

i
x
i,t−k + �

i,t

(8)
H0 = 𝛽

i
= 0 ∀

i
= 1,… ,N

H1 = 𝛽
i
= 0 ∀

i
= 1,… ,N 0 ≤ N1∕N < 1

𝛽
i
≠ 0 ∀

i
= N1,… ,N

Table 6  Testing for 
normality, heteroscedasticity, 
autocorrelation, and cross-
sectional dependence

* 5% significance level. The autocorrelation test results are compared with the critical value determined as 2

Prob

Normality test �
i

0.217
u
it

0.607
Brown, and Forsythe test for heteroscedasticity W0 = 7.955 0.000*

W50 = 3.929 0.000*

W10 = 6.980 0.000*

DW test proposed by Bhargava et al. (1982) and LBI test proposed by 
Baltagi-Wu for autocorrelation

0.385
0.608

Pesaran’s test of cross-sectional independence 6.531 0.000*

Friedman’s (1937) test of cross-sectional independence 55.624 0.000*
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Empirical results and discussion

We first focus on the POLS estimation results in panel (a) 
(see Table 7). Accordingly, the estimated labor productivity 
(lnLP) parameters (columns 1–2 and 5–6) are statistically sig-
nificant. Except for column 6, there is a positive relationship 
between labor productivity and carbon dioxide emissions. In 
other words, an increase in labor productivity boosts carbon 
dioxide emissions, thus responsible for more environmen-
tal degradation. Interestingly, the studies of Fitzgerald et al. 
(2018) and Simionescu et al. (2021) are among the rare inves-
tigation of the nexus between environmental quality and labor 

productivity (proxy as working hours). Specifically, these 
studies corroborate the observation in the current examina-
tion because Fitzgerald et al. (2018) found that working hours 
at state levels in the United States of America spurred carbon 
emissions during 2007–2013, while Simionescu et al. (2021) 
noted that working hours caused an increase and decline in 
GHG emissions in the Old European Union (EU) and new EU 
member states respectively.

Additionally, it is shown that patent (lnPA) parameter 
estimates are statistically significant and positively impact 
 (lnCO2) for five model specifications. The research and 
development expenditures (lnRD) parameter also shows 

Table 7  Results of regression 
with Driscoll-Kraay standard 
errors (robust)

The figures in the parentheses () denote probability values. *5% significance level

(a) Pooled least square estimates (POLS) method
Variable (1) (2) (3) (4) (5) (6)
lnLP

it
0.199*

(0.000)
0.120*

(0.000)
 − 0.005
(0.810)

 − 0.048
(0.381)

0.116*

(0.000)
 − 0.111*

(0.000)
lnPA

it
– 0.032*

(0.005)
0.032*

(0.002)
0.025*

(0.001)
0.013*

(0.232)
0.057*

(0.000)
lnRD

it
– – 0.237*

(0.000)
0.303*

(0.000)
0.311*

(0.000)
0.097*

(0.001)
lnICT

it
– – – 0.123*

(0.000)
0.134*

(0.000)
0.093*

(0.000)
lnCS

it
– – – – 0.043

(0.003)
 − 0.052*

(0.000)
lnEN

it
– – – – – 4.667*

(0.000)
�0i  − 0.142

(0.179)
0.453*

(0.037)
1.666*

(0.000)
0.764*

(0.000)
 − 0.602
(0.025)

 − 13.226*

(0.000)
F 605.92 555.49 3325.92 982.22 1281.80 7346.27
Prob. > F 0.000 0.000 0.000 0.000 0.000 0.000
R-squared 0.075 0.109 0.166 0.221 0.243 0.694
RMSE 0.350 0.344 0.334 0.323 0.319 0.203
Obs 266 266 266 266 266 266
(b) Random-effects (RE) generalized least squares (GLS) method
lnLP

it
 − 0.067
(0.386)

 − 0.416*

(0.000)
 − 0.448*

(0.000)
 − 0.327
(0.000)

 − 0.011
(0.873)

 − 0.037
(0.372)

lnPA
it

– 0.260*

(0.000)
0.240*

(0.000)
0.199*

(0.000)
0.216*

(0.000)
0.071*

(0.004)
lnRD

it
– – 0.128

(0.291)
0.183
(0.183)

0.258*

(0.017)
0.199*

(0.014)
lnICT

it
– – – 0.131*

(0.000)
0.084*

(0.000)
0.022
(0.193)

lnCS
it

– – – –  − 0.230*

(0.000)
 − 0.216*

(0.000)
lnEN

it
– – – – – 4.638

(0.000)
�0i 2.869*

(0.000)
4.409*

(0.000)
4.838*

(0.000)
3.488*

(0.000)
3.402*

(0.000)
 − 11.406*

(0.000)
Wald  chi2 0.79 134.95* 333.17* 382.38* 405.38* 7101.91*

Prob. >  chi2 0.374 0.000 0.000 0.000 0.000 0.000
R-squared 0.075 0.055 0.066 0.095 0.081 0.392
Obs 266 266 266 266 266 266
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statistically significant and has a positive impact on (lnCO2) 
for four model specifications. Information and communica-
tion technology (lnICT) and energy (lnEN) parameter esti-
mates reveal statistically significant and a positive impact 
on (lnCO2) for three models and one model specifications, 
respectively. It is seen that the capital stock (lnCS) param-
eter estimates are statistically significant. But the result in 
column 5 shows that an increase in capital stock causes a 
surge in lnCO2 emission (not statistically significant) while 
the result in column 6 shows the opposite. Looking at the 
results in our main equation with all independent variables 
expressed in column 6, we found that a 1% increase in lnLP 
and lnCS reduced carbon dioxide emissions by 0.11% and 
0.05%, respectively. In contrast, the result also shows that 
1% increase in lnPA, lnRD, lnICT, and lnEN parameters aug-
ments lnCO by 0.05%, 0.097%, 0.093%, and 4.6%. As can 
be seen, all interpreted parameters are significant accord-
ing to the t statistic. Comparing these outcomes with the 
existing literature, it is found that Yang and Liu (2022) and 
Churchill et al. (2019) established that R&D expenditures 
mitigate environmental degradation in the Chinese indus-
trial sectors and G-7 economies, respectively, while Gar-
rone and Grilli (2010) noted that public energy R&D failed 
to exert a statistically significant influence on carbon fac-
tor and carbon intensity in selected advanced economies. 
Additionally, while Adedoyin et al. (2020) and Onifade and 
Alola (2022) both affirm the desirable roles of R&D and 
environmental-related innovations in improving environ-
mental quality, Zhou et al. (2019) and Ganda (2019) allay 
the fear that environmental-related emissions are driven by 
increasing demand for ICT products and of patent families/
researchers, respectively.

Moreover, diagnostically, the R-square results in column 
6 show that 69.4% of the independent variables used can 
explain the dependent variables, and other variables can 
explain the remaining 31.6%. However, the results obtained 
by the robust pooled least squares method may be biased as 
it neglects the individual effect, time effect, or both. There-
fore, we examine the results of the random-effects (RE) 
generalized least squares (GLS) method, which provides 
consistent and efficient parameter estimates in the presence 
of an individual effect, as we have determined before.

Second, the RE-GLS estimation results are provided in 
panel (b). Although the coefficients are different, we see 
that the POLS-based estimation results in panel (a) and the 
RE-GLS-based estimation results in panel (b) have simi-
lar observations, especially for the environmental effects of 
the transformations in technology. According to panel (b) 
results, the estimated lnLP parameters (columns 2, 3, and 
4) are statistically significant and harm lnCO2. The lnPA 
parameter estimates are statistically significant and indicate 
a positive impact on lnCO2 for five model specifications. In 
comparison, the lnRD parameter estimates are statistically 

significant and reveal a positive impact on lnCO2 for two 
model specifications (in columns 4–5). Similarly, the lnICT 
and lnEN parameter estimates have a statistically significant 
and a positive impact on  lnCO2, whereas lnEN parameter 
estimates are seen to be statistically significant and exert 
a positive impact on lnCO2. When the RE-GLS estima-
tion results including all independent variables in column 
6 are evaluated, it is observed that a 1% increase in lnPA, 
lnRD, and lnEN increases lnCO2 by 0.07%, 0.19%, and 
4.6%, respectively. In comparison, a 1% increase in lnCS 
reduces lnCO2 by 0.21% by a statistically significant degree. 
In general, the estimations’ results show that technological 
advances lead to an upsurge in carbon dioxide emissions.

Panel Granger causality

Table 8 results illustrate the panel causality relationship 
between variables. According to this result, there are unidi-
rectional causality relationships from lnPA, lnICT, and lnCS 
to lnCO2. The results reveal that the parameters that deter-
mine technology trigger carbon emissions. Although this 
observation aligns with the above-highlighted coefficient 
estimates, it is not desirable to further mention that invest-
ments in technology lead to an increase in carbon dioxide 
emissions, thus contradicting a carbon–neutral program and 
strategies. These findings disclose the importance of har-
monizing the technological advances with the environment.

To reach more reliable results in the panel causality test, it 
is necessary to determine whether the panel is homogeneous 
or heterogeneous. For this purpose, the Swamy S homogene-
ity test was used before Dumitrescu-Hurlin’s (2012) panel 
causality considering the suitability of the Dumitrescu-
Hurlin (2012) panel causality for heterogeneous estimation. 
Although the step-by-step illustration of the approach is 
not detailed here for lack of space, the result is depicted in 
Table 9. As seen in Table 9, there is a unidirectional causal-
ity relationship between labor productivity (LP) and  CO2, a 
bidirectional relationship between patent number variable 

Table 8  Panel Granger causality test results

a,b,c Significance at 1%, 5%, and 10% levels, respectively. The test 
results give the panel Granger causality test results for homogeneous 
panels

Direction of causality Chi-sq df Prob

lnLP
it
→ lnCO2

it
4.277 2 0.117

lnPA
it
→ lnCO2

it
8.952 2 0.011b

lnRD
it
→ lnCO2

it
1.774 2 0.411

lnICT
it
→ lnCO2

it
17.672 2 0.000a

lnCS
it
→ lnCO2

it
7.850 2 0.019b

lnEN
it
→ lnCO2

it
1.859 2 0.394

All 64.686 18 0.000a
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(PA) and  CO2. Additionally, there is a unidirectional causal-
ity from research and development expenditures and infor-
mation communication technologies (ICT) to carbon dioxide 
emissions. Lastly, we have found a bidirectional causality 
relationship between capital stock and carbon dioxide emis-
sions. Generally, the Dumitrescu-Hurlin Granger causality 
test reveals that technological developments and investments 
without eco-sensitive design lead to carbon dioxide emis-
sions. Thus, the study provides insight about the profit-cen-
tered production activities of the examined countries.

Conclusion and policy dimension

Historically, human interaction with nature has revolution-
ized, thus characterizing several stages of both desirable and 
somewhat undesirable aspects. The process of transforming 
nature to generate a product that is (not) necessarily alien to 
nature is essentially possible with the use of labor tools and 
sometimes with the various division of labor. Additionally, 
technological advances and innovations in economic activities 
are consistently being recalibrated to meet present day chal-
lenges. However, the developments above from the aspects of 
nature, labor participation, technological advances, and inno-
vations are strongly incorporated into the subject of climate 
change. Thus, this study examined the role of high technology 
export, labor productivity, patent applications, research and 
development, and information and communication technol-
ogy in mitigating environmental degradation for the selected 
panel of high-tech investing developed countries over the 

period 2000–2018. According to the Durbin-Hausman test 
result, there is a significant long-term relationship between 
explanatory variables and carbon dioxide emission in the 
panel countries, which aligns with many studies that suggests 
that technology variables are important environmental factors.

The analysis results show that it is appropriate to use the 
one-way individual effect model as the final model. The Haus-
man test determines whether the individual effect affects the 
independent variable. Accordingly, the investigation found 
that the random-effects model is valid. Other necessary pre-
tests reveal the existence of deviations from the assumption, 
such as heteroscedasticity, autocorrelation, cross-sectional 
dependence, and the use of robust estimators like the Driscoll-
Kraay standard error robust estimators. Accordingly, the 
coefficient estimation reveals interesting perspectives. For 
instance, the indicators of technological progress such as the 
number of patents, research and development, information 
and communication technology, and total energy utilization 
increase carbon dioxide emission. However, there is statisti-
cally significant evidence that capital stock mitigates the emis-
sion of carbon dioxide, thus promoting environmental quality 
in the panel of examined countries. The panel Granger causal-
ity results also show a causal relationship from the number of 
patent applications, exports of information and communica-
tion technologies, and capital stock to carbon dioxide emis-
sions. However, the current study is limited in scope because 
it does not provide the environmental performance response 
to the sectoral advancement in technological innovations. As 
such, there should be consideration of this limitation in future 
implementation.

Table 9  Dumitrescu-Hurlin 
(2012) panel causality test

a,b,c Significance at 1%, 5%, and 10% levels, respectively. Swamy S  chi2(91) = 15,469.39 
Prob. >  chi2 = 0.000. When the probability value of the Swamy S homogeneity test was compared with the 
0.05 significance level, it was determined that the null hypothesis was rejected, and this panel had hetero-
geneous characteristics, not homogeneous. According to this result, we can perform Dumitrescu and Hurlin 
(2012) causality analysis being suitable for the heterogeneous panel

Null hypothesis: W-Stat Zbar-Stat Prob Decision

lnLP
it
→ lnCO2

it
4.531 2.712 0.006a Unidirectional causality from lnLP

it
 to lnCO2

it

lnCO2
it
→ lnLP

it
3.272 1.111 0.266

lnPA
it
→ lnCO2

it
3.845 1.840 0.065c Bidirectional causality from lnPA

it
 to lnCO2

it

lnCO2
it
→ lnPA

it
4.064 2.119 0.034b

lnRD
it
→ lnCO2

it
3.129 0.928 0.353 There are no causality relationships

lnCO2
it
→ lnRD

it
3.416 1.293 0.195

lnICT
it
→ lnCO2

it
4.102 2.166 0.030b Unidirectional causality from lnICT

it
 to lnCO2

it

lnCO2
it
→ lnICT

it
3.280 1.120 0.262

lnRD
it
→ lnCO2

it
2.257  − 0.228 0.819 Unidirectional causality from ICT to lnCe

lnCO2
it
→ lnRD

it
4.919 3.022 0.002b

lnCS
it
→ lnCO2

it
6.019 4.607 0.000a Bidirectional causality from lnCS

it
 to lnCO2

it

lnCO2
it
→ lnCS

it
3.904 1.915 0.055c

lnEN
it
→ lnCO2

it
2.719 0.406 0.684 There are no causality relationships

lnCO2
it
→ lnEN

it
2.145  − 0.324 0.745
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Policy

Since over a century, humanity has been faced with increas-
ing ecological problems, especially those associated 
with GHG emissions. Although a lot of success has been 
achieved, especially in the development of energy technolo-
gies and renewable sources, the result of this study suggests 
the need for a regular review of technological innovation 
channels to further improve the environmentally compatible 
technologies across the globe. Specifically, relevant actor 
should further review the guidelines for patent applications 
to accommodate more stringent measures or conditions for 
environmentally disadvantaged inventions. The motives for 
innovation should be guided and centered on sustainability 
dimensions and only driven by return on investment and 
profit mechanism. Moreover, decision-makers could provide 
more incentives such as patent application subsidy, access to 
financing, and other measures to encourage more interest in 
environmentally friendly investments and innovations.
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