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TURKISH ABSTRACT : 
Tıp bilimi teknolojisindeki hızlı ilerleyen 

değişim, özellikle rekonstrüksiyon yöntemleri, 

bilimsel hayal gücü alanında da tıbbi tanıda en büyük 

avantajlara sahiptir. İster uzamsal ister frekans 

açısından büyücü temellerinin çeşitli alanlarında 

temel filtreleme teknikleri kullanılarak görüntü 

iyileştirme ve restorasyon için farklı yöntemler 

geliştirilmiştir. Günümüzde tıp pratisyenleri ve 

üreticileri için, teknoloji fiziksel sınırlarına ulaştıkça 

ultrason görüntü kalitesini iyileştirmek bir zorluktur. 

Ultrason görüntüleri, non-invaziv tanılama için çok 

yardımcıdır, ancak gölgeleme, sınırlı görüş alanı ve 

benek gürültüsü gibi çok çeşitli artefaktlardan 

muzdariptir. Bu çalışmanın ana odağı, kardiyak 

ultrason görüntülemede yeni bir doğrusal olmayan 

görüntü işleme tekniğinin uygulanması ve daha 

spesifik olarak çarpımsal benek gürültüsünü azaltmak 

için çeşitli yöntemler üzerinedir. Geçmişte benek 
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gürültüsünü azaltmak için çeşitli filtreleme teknikleri 

önerilmiştir; ancak, benek paraziti azaltma ile görüntü 

özelliklerinin korunması arasında bir uzlaşmaya 

ulaşmak zor olduğundan performansları hala 

sınırlıdır. Bu çalışmada, kardiyak ultrason 

görüntülerinde çarpımsal gürültüyü azaltmak için 

anizotropik bir jeodezik filtreleme algoritması 

önerilmiştir. Algoritma, Gauss filtrelemeye benzer bir 

ölçek-uzay filtreleme tekniğine dayanmaktadır, ancak 

Gauss ağırlıklarının, kenarları otomatik olarak 

koruyabilen pikseller arasında doğrusal olmayan bir 

jeodezik mesafe hesaplaması kullanılarak otomatik 

olarak değiştirilmesidir. Araştırmada, önerilen 

anizotropik jeodezik filtre, Gauss filtresi, medyan 

filtresi ve gradyan tabanlı anizotropik difüzyona 

dayalı diğer doğrusal olmayan filtre türleri gibi çeşitli 

mevcut filtrelerle karşılaştırılmıştır. Önerilen 

anizotropik jeodezik filtrenin özellikleri koruma 

açısından en iyi performansı gösterdiğini ve aynı 

zamanda gerçek zamanlı 2D ve 3D eko-

kardiyografilerin sinyal-gürültü oranlarında 

iyileştirmeler sağlayabileceğini gösteriyoruz. Sinyal-

gürültü oranı (SNR), ortalama kare hata (RMSE), tepe 

sinyal-gürültü oranı (PSNR), kontrast oranı ve 

kontrast-gürültü oranını karşılaştıran gerçek dünya 

görüntülerinde, önerilen algoritma doğrulanır (CNR) 
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SUMMARY 

For many decades, the topic of medical imagery was of great interest. Diagnoses 

and care of the patient are important for mages in the medical profession. The 

restoration and improvement techniques of the medical magic have been widely 

explored and many questions remain unresolved.  Different methods for image 

enhancement and restoration have been developed using basic filtering techniques in 

various domains of image fundamentals whether it is spatial or in terms of frequency.  

It is a challenge today for medical practitioners and manufacturers to improve 

ultrasound image quality as the technology has reached its physical limits. Ultrasound 

images are a great help for non-invasive diagnostics but suffer from a wide variety of 

artifacts such as shadowing, limited field of view, and speckle noise. The main focus 

of this study is on the application of a non-linear image processing technique in cardiac 

ultrasound imaging and more specifically on various methods to reduce multiplicative 

speckle noise. Various filtering techniques for speckle noise reduction have been 

proposed in the past; however, their performances are still limited as a compromise 

between speckle noise reduction and image features preservation is difficult to reach. 

In this study, an anisotropic geodesic filtering algorithm is proposed to reduce the 

multiplicative noise in CUIs. The algorithm is based on a scale-space filtering 

technique comparable to Gaussian filtering which automatically modified using a non-

linear geodesic distance calculation between the pixels which is capable of 

automatically preserving edges. In the research, the proposed anisotropic geodesic 

filter is compared to various existing filters such as Gaussian filter, median filter. We 

demonstrate that the proposed anisotropic geodesic filter performs better in terms of 

preserving features and at the same time can provide improvements to the SNR of real-

time 2D and 3D echo-cardiographs. In real-world images comparing SNR, RMSE, 

PSNR, contrast ratio, and contrast-to-noise ratio, the proposed algorithm is validated 

(CNR). 

Keywords : Cardiac Ultrasound Imaging, Anisotropic Geodesic Filter, Gaussian 

Filtering. 
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ÖZET 

On yıllar boyunca tıbbi görüntü konusu büyük ilgi gördü. Hastanın teşhisi ve 

bakımı, tıp mesleğindeki büyücüler için önemlidir. Tıbbi büyünün restorasyon ve 

iyileştirme teknikleri geniş çapta araştırıldı ve birçok soru çözülmeden kaldı. İster 

uzamsal ister frekans açısından büyücü temellerinin çeşitli alanlarında temel filtreleme 

teknikleri kullanılarak görüntü iyileştirme ve restorasyon için farklı yöntemler 

geliştirilmiştir. Günümüzde tıp pratisyenleri ve üreticileri için, teknoloji fiziksel 

sınırlarına ulaştıkça ultrason görüntü kalitesini iyileştirmek bir zorluktur. Ultrason 

görüntüleri, non-invaziv tanılama için çok yardımcıdır, ancak gölgeleme, sınırlı görüş 

alanı ve benek gürültüsü gibi çok çeşitli artefaktlardan muzdariptir. Bu çalışmanın ana 

odağı, kardiyak ultrason görüntülemede yeni bir doğrusal olmayan görüntü işleme 

tekniğinin uygulanması ve daha spesifik olarak çarpımsal benek gürültüsünü azaltmak 

için çeşitli yöntemler üzerinedir. Geçmişte benek gürültüsünü azaltmak için çeşitli 

filtreleme teknikleri önerilmiştir; ancak, benek paraziti azaltma ile görüntü 

özelliklerinin korunması arasında bir uzlaşmaya ulaşmak zor olduğundan 

performansları hala sınırlıdır. Bu çalışmada, kardiyak ultrason görüntülerinde 

çarpımsal gürültüyü azaltmak için anizotropik bir jeodezik filtreleme algoritması 

önerilmiştir. Algoritma, Gauss filtrelemeye benzer bir ölçek-uzay filtreleme tekniğine 

dayanmaktadır, ancak Gauss ağırlıklarının, kenarları otomatik olarak koruyabilen 

pikseller arasında doğrusal olmayan bir jeodezik mesafe hesaplaması kullanılarak 

otomatik olarak değiştirilmesidir. Araştırmada, önerilen anizotropik jeodezik filtre, 

Gauss filtresi, medyan filtresi ve gradyan tabanlı anizotropik difüzyona dayalı diğer 

doğrusal olmayan filtre türleri gibi çeşitli mevcut filtrelerle karşılaştırılmıştır. Önerilen 

anizotropik jeodezik filtrenin özellikleri koruma açısından en iyi performansı 

gösterdiğini ve aynı zamanda gerçek zamanlı 2D ve 3D eko-kardiyografilerin sinyal-

gürültü oranlarında iyileştirmeler sağlayabileceğini gösteriyoruz. SNR, RMSE, PSNR, 

kontrast oranı ve kontrast-gürültü oranını karşılaştıran gerçek dünya görüntülerinde, 

önerilen algoritma doğrulanır (CNR).. 

Anahtar Kelimeler 

 
: kardiyak ultrason görüntüleme, anizotropik jeodezik filtre, 

Gauss filtreleme. 
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Noise is a common factor that affects the resolution of images causing blurring of fine and 

sharp details of the images. The occurrence of noises in the images is in general due to the 

physical nature of the imaging systems. Noises in the images can be broadly categorized into 

additive or multiplicative. Additive noises are easy to remove but multiplicative noises are image 

dependent, so it is complex to model and difficult to remove. Speckle is a multiplicative noise 

found in all coherent imaging systems. Medical ultrasound imaging known also as 

ultrasonography, is a coherent imaging technique widely used in medical applications like 

general abdominal imaging, obstetrics and gynecology, urology, cardiology, and as a guide in 

many surgical procedures. The images are generated by the pulse-echo technique with 

frequencies ranging from 1-20 MHz, Lopes, Nezry, Touzi, and Laur. (1990). Ultrasound waves 

are transmitted from the transducer into the region of interest and the reflection of these waves 

are detected by the same transducer and then will display.  Echo signals resulting from the 

scattering and reflection are detected and then, the ultrasound waves are transmitted and 

displayed Perona P., Malik J. (1990). 

 

1.1 General Overview 

In medical image processing, noise reduction still remains a challenge for researchers and 

clinicians. Reliable image processing methods for Magnetic Resonance Imaging (MRI), X- Rays 

Scan tomography (CT), and ultrasound (US) are essential to improve the diagnostic analysis and 

compensate for instrumental artifacts. The quality of medical images is determined by a number 

of factors which originates from the physical phenomenon measured by the sensors and by the 

reconstruction algorithms Perona P., Malik J. (1990) and Lifeng Yu, Mayo Clinic, Rochester, 

Shuai Leng, (2016). The main challenge for developing different noise reduction techniques is 

to improve SNR without losing important clinical features in the image. Over the past decades, 

several image processing techniques focusing on reducing multiplicative ‘speckle’ noise 

prevalent in ultrasound imaging has been proposed. The system consists of a 2D ultrasound 

machine as shown in Fig 1.1. 
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Picture post-handling procedures don't need any kind of equipment changes and can be 

applied to both old and new picture informational indexes, Michailovich, O. V., Tannenbaum A. 

(2006). The compromise between the need to reduce multiplicative and additive noises in 

ultrasound images and the preservation of important image features represents a great challenge, 

which we will attempt to address in this thesis. Several techniques for reducing ultrasound 

multiplicative and additive noises have been developed in the past and a majority of these 

filtering techniques fall in one of the three categories - local algorithms, anisotropic based 

techniques, and wavelet-based methods.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 0.1: Siemens ACUSON SC2000 image acquisition 

1.2 Background 

1.2.1 Speckle Noise in Ultrasound Images 

Speckle noise is an impedance design found in a picture framed with sound radiation of a 

medium containing many sub-goals dissipates. Various rudimentary dissipates mirror the 

occurrence wave towards the sensor. The dispersed, coherent waves with different phases are 

randomly interfered with constructively or destructively. A random granular motif, the speckle, 

is the distorting effect on the interpretation of the content of the image. 

Speckle noise is a peculiarity that goes with all sound imaging modalities wherein pictures 

are delivered by meddling reverberations of a communicated waveform that exude from 

heterogeneities of the concentrated-on objects. The superposition of acoustical reverberations 

accompanying arbitrary stages and amplitudes will in general create an unpredictable impedance 
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design, known as spot commotion, that scales from zero to a most extreme, contingent upon 

whether the obstruction is horrendous or valuable, Michailovich, O. V., Tannenbaum A. (2006). 

Digital images contain various forms of noises including noise impulse, additional sound, 

and frequency noise.  In general, speckle   noises   are generated   because   of   the travelling 

path difference of the particular coherent acoustic waves that presents the interference. Speckle 

noises are quite different from other classical noises sorts such as impulse and Gaussian noises.  

It has a shape like the granular spot in the whole image space. The specific denoising techniques 

applied to remove impulse noise or Gaussian noises are not sufficient or de-speckling unless 

these methods are adjusted based on the characteristic of speckle noise. It is quite difficult for 

recognizing and extracting features of ultrasound imaging since this sort of noise is particularly 

being directly affecting the   diagnostic   value   of   the   imaging   form. Where   the elimination 

of these noises is a primary target while analysing and observing the ultrasound images for 

significant disease characterization.  

Though there is no any ideal solution for image noise issues, there are so many techniques 

available which can reduce/minimize image noise at desired level.  So, image denoising is the 

process of removing/minimizing noise from a noisy image resulting from the superposition of 

both the clean/original image and the noisy-image component as in Fig. 1.2, S. Hariharasudhan 

and Dr. B. Raghu. (2016). 

 

Fig. 0.2: Mathematical formulation of Noisy Image, Hariharasudhan S., and Dr. Raghu B.(2016) 

 

1.3 Literature Survey  

Speckle reduces the accuracy of ultrasound images and thus reduces a human observer's 

ability to discern fine diagnostic data. Speckle is not a picture sound, but a contrasting noise like 

shift. As discussed above, the speckle noise is basically a multiplicative noise when a sound wave 

pulse interferes on a sound wave-length scale spontaneous. Speckle sounds are characterized as 

multiple sounds, which is intrinsic to an ultrasound image with a granular pattern. Speckle is the 
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outcome of diffuse diffusion if an ultrasound pulse interferes at random, on a scale close to the 

sound wavelength, with tiny particles or artifacts. 

The Speckle algorithms attempt to erase the spindle without losing the essential fine image 

characteristics. Most previous approaches to denoise ultrasound pictures are based on in adaptive 

and adaptive filters to be addressed in the next section. It is understood, however, that standard 

filtering methods in noise sometimes lead to boring images. Speckle noise images reduce the 

image contrast and make it hard to perform image processing operations such as border detection, 

segmentation etc. 

The problem with photos losses is that unnecessary distortions must be reduced because of 

the presence of noise, or due to the poor image acquisition process, which adversely affects image 

analyses and the process of interpretation., Jing Bianca S. Gerendas Christian Simader Georg 

Langs Sebastian M. Waldstein Ursula Schmidt-Erfurth Ehsan Shahrian Varnousfaderani, Wolf-

Dieter Vogl. (2016). 

Speckle filters come from the community of the synthetic opening radar. These filters have 

been used since the early 1980s for ultrasound imaging. The work of reducing or suppressing 

speckle noise in ultrasound going on for a long time now. 

Miscelled noise, based on various mathematical models, is eliminated using several 

methods. For example, one approach uses Multi-Look Processing to avoid the speckle noise in a 

single ultrasound scan by taking a view of several" Yao Zhang, Heng Xue, Mixue Wang, Nan 

He, Zhibin Lv, Ligang Cui. (2021) and Franceschi A. M, and Rosenkrantz A. B. (2017). 

Besides, it is needed to utilize versatile and non-versatile sign channels (where versatile 

channels adjust their loads across the picture to the dot level, and non-versatile channels apply 

similar loads consistently across the whole picture). This filter excludes information from the 

current image, particularly information of high frequency including fine anatomical 

characteristics. Adaptive filtering in high-texture areas improvement at the preservation of edges 

and detail. Non-adaptive filtering is easier to apply and less computer power is required, but 

unfortunately many essential fine structures are eliminated. Yao Zhang, Heng Xue, Mixue Wang, 

Nan He, Zhibin Lv, Ligang Cui. (2021) and Franceschi A. M, and Rosenkrantz A. B. (2017). 

Using the wavelet transformation recently led to important progress in ultrasonic filtering. 

The key explanation for the use of multi-scaling processing is that many natural signals are 

greatly streamlined and modelled by established distributions when broken down into wavelet 

bases. In addition, the decomposition of a wavelet is possible at various scales and directions to 

distinguish noise and signal. The original signal can therefore be restored at all levels and 

directions and valuable information is not lost. 
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The first methods for multi-scale wavelet reduction based on detailed sub-band coefficient 

thresholds. The basis for these algorithms is the observation that in each spectral band (VW, WV, 

WW blocks) the wavelet coefficients (almost nil) and R covariance matrix can be modelled as a 

two-normal median distribution (Vx; vy) (real and imaginary parts are correlated). Furthermore, 

each block normally has a differently directed distributions. In light of this reality, a calculation 

that performs wavelet coefficients thresholding concerning the chief tomahawks of the 2-D 

appropriations, Mathew K., Shibu S. (2014) and Hongga Li, Bo Huang, Xiaoxia Huang, (2010). 

Unfortunately, wavelet algorithms suffer from many limitations which makes their use in 

ultrasound image processing difficult. 

• The threshold is chosen ad hoc, so that signal and noise elements, irrespective of their 

size and orientation, are known to their distributions.; 

• The threshold technique usually results in the de-noised picture of certain objects.; 

• Non-linear estimators based on Bayes theory were designed to solve these issues.; 

Several authors in literature have suggested various ways of solving this dilemma. One 

approach involves transforming picture signals with Gaussian in-creasing (size) kernels and then 

evaluating the evolution of signal functions along the scale. Adaptive smoothing was suggested 

to facilitate the analysis of scale-space representations rather than gaussian smoothing. The 

general principle behind adaptive smoothing is to use various kernels with supports and shapes 

depending on the local properties of the signal to be smoothed. In Palwinder Singh, Leena Jain. 

(2013) and Noor H. Resham, Heba Kh. Abbas, Haidar J. Mohamad, Anwar H. Al-Saleh (2021) 

a description of the adaptive filters. 

 

1.4 MOTIVATION 

As reviewed in this chapter there are several adaptive filters in literature which are pro- 

posed to achieve a better result by varying window size and also preserve the feature like edges. 

Filters that have adaptive nature include Lee, Frost, Kuan, Enhanced Frost, and Enhanced Lee 

filter Lopes, Nezry, Touzi, and Laur. (1990). One of major problems in applying all of these 

algorithms to ultrasound image analysis is that the weight used to compute the pixel similarities 

in a neighbourhood are all based on ad-hoc functions. Therefore, linear methods with fixed 

weights are not suitable in the kernel because it assumes that the neighbouring pixels come from 

a smooth distribution where only geometric distance from the central pixel is important. A 

convolution kernel with locally determined coefficients is required for a non-linear geodesic 

distance transform that measure the true distance between the central pixel with its neighbours 
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in space and in intensity, which is the basis of this work. The presence of the speckle noise is the 

biggest problem in ultrasound imaging. Speckle noise has a negative effect on the images’ quality 

because the pattern of the speckle does not correspond to the organ structure underlying the 

photograph. Speckle noise is responsible in comparison with other imaging options for the poorer 

resolution of an ultrasonic image. Speckle reduction has therefore become an active research 

field. To compensate for such data corruption, it is very important to use an effective denoising 

technique. 

1.5 Problem Formulation 

The accurate and effective human interpretation and computer assisted analysis of many 

imaging modalities is often dependent on the image quality and operational experience. 

Interpretation of ultrasound images requires special training and experience. Due to strong 

artifacts in the ultrasound image by speckle noise, even experienced sonographers cannot make 

a confident diagnosis from the images. Speckle is a textured appearance that is caused by small, 

tightly spaced structures, too small for the point diffusion function to solve. Speckle noise 

generally does not reflect the underlying tissue structure. The regional mean texture luminosity 

reflects the tissue's regional echogenicity. The presence of speckle noise has severely degraded 

the image quality in applications such as visualization image and auto segmentation. In order to 

improve visualization and texture recovery in the picture, the speckle reduction filters were 

developed. Removal of texture increases automated object detection speed and accuracy. The 

main objective of this research work, is to design an efficient diffusion filter to enhance the details 

of the image by suppressing the speckle noise while preserving the edge details in the ultrasound 

images 

1.6 Research Aims 

The main contributions of the thesis are: 

1.The development of a filter capable of reducing additive and speckle (multiplicative) noises in 

2D and 3D ultrasound images without losing the localization of important features; 

2.The ability to create a multi-resolution scale space where edge localization is preserved by 

using an efficient algorithm to compute geodesic distances; 

3.A quantitative comparison of the performance of the geodesic filter with two of the most 

popular filters found in the literature namely: Gaussian, median. 
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1.7 THESIS ORGANIZATION 

The thesis is organized as follows. Chapter 2 reviews the theoretical background of 

ultrasound imaging as well as the physics of ultrasound image formation and the various type of 

noises found in those images.  Chapter 3 describes the proposed method for Cardiac Ultrasound 

Image (CUI) using Geodesic algorithm. Chapters 4 discusses the qualitative and quantitative 

comparison with two of the most popular filters found in the literature. In Chapter 5, we conclude 

the thesis with the analysis of the pros and cons of the geodesic filter to perform speckle reduction 

in ultrasound images and discuss some possible future works and improvements. 
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CHAPTER TWO 

THEORETICAL BACKGROUND 

This chapter presents a brief history of ultrasound imaging and discusses the different noise 

types associated with this modality as well as various techniques used to reduce its effect. Out of 

the numerous filters one can find in the literature, we will review the filters that will be used for 

the comparison with the proposed geodesic filter. 

2.1 MEDICAL ULTRASOUND IMAGING 

Ultrasonography displays the cross-sectional view of the object being scanned. The 

essential activity is the transmission of high recurrence sound waves into the body, trailed by 

gathering, handling and parametric showcase of reverberations getting back from the organs and 

tissues inside the body. This imaging strategy has become famous, as it is compact, and cre’’’ates 

pictures with great goal without the utilization of ionizing radiation in a savvy way. This is a 

minimally invasive technique, and is very useful in the diagnosis of obstetrics. It is used to image 

the internal organs like heart, liver, gallbladder, spleen, kidney and to detect problems with 

muscles, tendons, ligaments, joints and soft tissue. Since ultrasonic imaging is real time, it 

demonstrates the movement of internal organs, tissues, and blood flow and heart valve functions. 

Ultrasound images are used to identify the presence of cysts, tumours, and fluid filled sacs. They 

are also used to examine the superficial structures in the body. The operating frequencies for 

typical application of the ultrasound imaging are listed in Table.2.1. High frequency waves 

cannot penetrate deeply and thus it is used in imaging superficial organs. Low frequency waves 

penetrate into the body, to image the deeply seated organs. 

The fundamental limit of ultrasound imaging framework is the presence of spot commotion 

in the picture. Dot commotion is signal ward clamor, that emerges because of the obstruction of 

sent and reflected ultrasound waves in the locale of interest. Spot design is a type of multiplicative 

clamor and it relies upon the idea of the tissue being imaged, and different imaging boundaries. 

 

Table 0.1. Frequency range of an Ultrasound imaging 

Typical Application Operating Frequency Range (MHz) 

Cardiology, Obstetrics, Abdominal imaging 2 - 5 

Ophthalmology, Peripheral Vascular imaging, 

Testicular imaging 

10 -20 

Intra-arterial imaging 20 - 50 
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Skin, Cellular Imaging Up to 200 

 

Speckle noise degrades the detecting ability of the target and reduces the contrast and 

resolution of the ultrasound image. This affects the human ability to identify the difference 

between a pathological tissue and a normal tissue. Bamber & Draft (1980) had suggested that the 

speckle noise reduces the detecting ability of the lesion by a factor of eight. Hence the main 

objective of this thesis is to address the problem of speckle noise reduction in the Ultrasound 

images. 

Ultrasound is non-invasive imaging modality and one of the most inexpensive tools used 

for qualitative and quantitative assessments of patient’s conditions. Ultrasound imaging 

technology is constantly and rapidly changing, ranging from cardiac imaging to pre-natal 

assessment. The use of ultrasound for medical imaging application is advantageous because it is 

safe to use, non-invasive in most applications and the image acquisition is real-time. Ultrasound 

imaging uses ultrasound waves produced from piezoelectric transducers that travel through the 

body tissues and/or organs which are then reflected back to receptors which turns ultrasound 

vibrations into electrical pulses where they are processed to compute the location of the reflected 

wave using time-of-flight. These transducers arrays are organized as 1D arrays or 2D arrays 

which produce respectively 2D or 3D images as in Figure 2.1, Lopes, Nezry, Touzi, and Laur. 

(1990). In general, the resolution of an ultrasound image varies with the number of elements in 

the transducer array and with the frequency of the ultrasound transducer used. In general, higher 

time resolution can be achieved when higher ultrasound frequencies are used but higher 

frequencies attenuate or are absorbed, faster than lower frequencies limiting the ability to observe 

deeper anatomical structures. Hence, there is a fundamental physical limit between time 

resolution and depth penetration. In addition, other artifacts can be created by the loss of proper 

contact or a gap between the transducer probe and the body. This can be solved by using 

impedance adaptive gel that reduces the reflection of the ultrasound from the contact between air 

and skin. 
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       Fig. 0.1: Ultrasound technique for image acquisition  

2.2 Ultrasound Diagnostic Characteristics 

2.2.1 Acoustic Impedance  

In a medium, the sound impedance (Z) may be defined as the product of medium density 

and ultrasound velocity of the medium. The degree to which the medium particles resist a 

change due to mechanical disturbances differs in various media, Hariharasudhan S., and 

Dr. Raghu B. (2016). 

2.2.2 Acoustic Boundaries  

Acoustic boundaries are tissue positions in which the value of acoustic impedance changes 

in tissue interactions during ultrasound interactions. The unique characteristics of 

diagnostic ultrasounds are based on the nature and spread of acoustic limits within the 

body's tissues. 

2.2.3 Reflection of Ultrasound Waves  

When an ultrasound beam hits an acoustic border, some of the energy in the beam is 

transmitted across the border and reverse or reflected. Depending on the size of the 

boundary, two kinds of reflection can occur. These reflections are specular and non-

specular. The limits are smooth and larger than the dimension of the beam when the 

interface is smaller than the dimension of the beam, with special reflections. 
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2.2.4 Refraction of Ultrasound Waves  

Refraction is a change of direction of the beam at the border between two media at different 

speeds. The wavelength of the ultrasound is changed, while the frequency of the beam 

remains unchanged, between the first and the second medium. speed = frequency x 

wavelength, when the speed changes to the frequency value, the wavelength changes. 

2.2.5 Scattering of Ultrasound Waves  

The incident beam is reflected in many different directions when the reflecting interface is 

irregular in form, and its dimensions are smaller than the diameter of the ultrasound beam. 

This is called dispersion. The direction of dispersion depends on the relative dimensions of 

the dispersion target and the ultrasound beam diameter. The dispersion rises rapidly as the 

ultrasound frequency increases, Hariharasudhan S., and Dr. Raghu B. (2016). 

2.2.6 Absorption of ultrasound Waves  

Absorption is the process through which energy is transferred to the spreading medium in 

the ultrasound beam where it is converted into heat power. The medium absorbs energy 

from the beam and is affected by the medium's viscosity, the relaxing time and the 

frequency of the beam. 

2.2.7 Beam divergence and Interference  

Divergence of the ultrasound beam is defined as the spread of beam energy when moving 

away from the source while ultrasound interference refers to how the wave fronts interact. 

The intensity of the beam is affected axially as well as laterally (along the beam direction) 

(perpendicularly to the beam direction). Stressing or weakening the wave results. 

Interference. The dimensions and the way they differ have a great influence on image 

resolution in ultrasound diagnosis. 

2.3 SPECKLE NOISE IN ULTRASOUND IMAGES 

Speckle noise is a pattern of interference in an image that contains a consistent radiation 

medium that contains many scatters in sub resolution. A number of basic dispersions mirror 

the sensor wave incident. The dispersed, coherent waves with different phases are 

randomly interfered with constructively or destructively. A random granular motif, the 
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speckle, is the distorting effect on the interpretation of the content of the image. Blister 

noise in B-scan image degrades the target detection and reduces contrast, which affects the 

human ability to identify normal and pathological tissue. It also reduces the speed and 

accuracy of image processing ultrasound tasks such as segmentation and recording, Jing 

Bianca S. Gerendas Christian Simader Georg Langs Sebastian M. Waldstein Ursula Schmidt-

Erfurth Ehsan Shahrian Varnousfaderani, Wolf-Dieter Vogl. (2016). 

2.3.1 Types of Noise 

Digital images contain various forms of noise. These include noise impulse, additional 

sound, frequency noise and a range of noises. There may be an impulse noise on one aspect of 

the sensor and on the loss of a signal. In this case, the picture is too high or too low for outlines. 

Wide-band adding noise comes from many natural causes, including thermal atomic vibrations 

in conductive systems, shot noise, black body, and amplifier changes. Additive noise follows 

simple statistical models such as Gaussian or normal distributions, and its effect can be reduced 

with linear filters. Frequency noise is characterized by the interference of a signal at specific 

frequencies, for example, 60 Hz noise created by the interference of a house electrical system 

with an instrument. Multiplying noise is a random signal that is unwanted, which multiplies by a 

signal. For ultrasound imaging, speckle noise is multiplicative. In most ultrasound images, we 

have a combination of additive and multiplicative noises. 

 

2.3.2 Reduction of Speckle Noise 

Speckle reduces the accuracy of ultrasound images and thus reduces a human observer's 

ability to discern fine diagnostic data. Speckle is not a picture sound, but a contrasting noise like 

shift. As discussed above, the speckle noise is basically a multiplicative noise when a sound wave 

pulse interferes on a sound wave-length scale spontaneous. Speckle sounds are characterized as 

multiple sounds, which is intrinsic to an ultrasound image with a granular pattern. Speckle is the 

result of diffuse spreading, when an ultrasound pulse interferes at random, on a scale close to the 

sound wavelength, with tiny particles or artifacts. 

Dot decrease calculations attempt to eliminate the dot without annihilating the significant 

fine picture highlights. A large portion of the past methodologies for de-noising ultrasound 

pictures depend on non-versatile and versatile sifting strategies that will be examined in the 

following segment. In any case, it is notable that standard clamor sifting techniques regularly 

bring about obscured picture highlights. Pictures with dot commotion will bring about 
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diminishing the difference of a picture and make it hard to perform picture handling activities 

like edge identification, division, and so on. 

The problem of image smoothing consists of reducing unwanted distortion due to the noise 

or poor image acquisition process that adversely affects the analysis and interpretation of images, 

with the preservation of important characteristics, including homogenic areas, discontinuities, 

edges, and textures, Jing Bianca S. Gerendas Christian Simader Georg Langs Sebastian M. 

Waldstein Ursula Schmidt-Erfurth Ehsan Shahrian Varnousfaderani, Wolf-Dieter Vogl. (2016). 

Filters that reduce speckles originated in the community of the synthetic opening radar (SAR), J. 

S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlinckm, (2009). Those filters have been 

applied since the early 1980s to ultrasound imaging. Long work is being done now to reduce or 

suppress ultrasound spatula noise. 

  

Two principal channel arrangements, to be specific single-scale spatial channels and 

change multi-scale space channels, have been created. The spatial channel is utilized to flush a 

picture; in other words, it decreases the variety in power between neighboring pixels. The 

straightforward sliding window spatial channel replaces the middle worth of the window by the 

normal of all the close by pixel esteems. It replaces, in this manner, pixels which are not agent 

of their current circumstance. It is normally completed with a convertible cover that ascertains 

another worth as a weighted amount of pixel and its neighbors' esteems for the focal plexin. On 

the off chance that the coefficients of the veil standardized to one, the normal brilliance of the 

picture won't change. 

Several methods are used, based on various mathematical models to eliminate speckles of 

noise. One way for example is by using multiple looks, which means by taking a couple of 

"views" in a single ultrasound Yao Zhang, Heng Xue, Mixue Wang, Nan He, Zhibin Lv, Ligang 

Cui. (2021) the speckle noise, averages. The average of the views is the incoherent, Franceschi 

A. M, and Rosenkrantz A. B. (2017) 

This filters also remove actual image information, especially high-frequency information 

such as fine anatomical characteristics. Adaptive sprocket filtering in high-texture areas is better 

for preserving edges and detail. Non-adaptive filters are easier to apply and require less computer 

power, but sadly remove many important fine structures, Franceschi A. M, and Rosenkrantz A. 

B. (2017). 

Two non-adaptive forms of spring filtration are available: one based on moving mean and 

one based on the median (within a given rectangular window centered at a pixel). The medium 

filter better preserves the edges when noise spikes are eliminated, than move the average filter 
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like the Gaussian. The Lee filter, Frost filter and Maximum-A-posteriori (RGMAP) filter include 

numerous types of adaptive speckle filters. In their mathematical models they all base on three 

fundamental assumptions. 

 

2.4 Filters  

2.4.1 Wavelet Filter 

The utilization of wavelet change has as of late prompted significant advancement in 

ultrasound separating. The primary justification for the utilization of multi-scale handling is that 

a considerable number of normal signs can be altogether worked on when deteriorated into 

wavelet puts together and demonstrated with respect to known disseminations. Besides, the 

wavelet breakdown can isolate sign and commotion on various scales and directions. The first 

sign can in this manner be recuperated on any scale and heading and valuable data isn't lost. 

The first methods of multi-sized wavelet reduction were based on detailed sub-band 

coefficients thresholding, Hongga Li, Bo Huang, Xiaoxia Huang (2010). These algorithms are 

based on observation which indicates that wavelet coefficients in each spectral band can be 

modeled on a bi-normal (Vx; Vy) (nearly zero) and covariance R (normally not diagonal) 

distribution of mean (Vx; Vy) (real and imaginary parts are correlated). Moreover, distributions 

in each block are normally oriented differently. Therefore, an algorithm performs a threshold of 

wavelet coefficients for the main axis of 2-D distributions. Sixin Zhang, Stéphane Mallat (2021) 

and Hongga Li, Bo Huang, Xiaoxia Huang (2010). 

 

2.4.2 Kuan Filter 

This filter is used primarily to suppress speckle. It smooths image data without removing edges 

or sharp features in the images while minimizing the loss of radiometric and textural information. 

The Kuan filter first transforms the multiplicative noise model into a signal-dependent additive 

noise model. Then the minimum mean square error criteria is applied to the model. The resulting 

gray-level value (R) for the smoothed pixel is: 

𝑅 = (𝐼𝑐 ∗ 𝑊) + (𝐼𝑚 ∗ (1 − 𝑤))                                                            (2.1) 

where: 

 𝑊 =
1−

𝐶𝑢2

𝐶𝑖2

1+𝐶𝑢2 

 𝐶𝑢 =
1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑘𝑠
 

  𝐶𝑖 =
𝑆

𝐼𝑚
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  𝐼𝑐 =Center pixel in the kernel 

  𝐼𝑚 =Mean value of intensity within the kernel 

  𝑆 =standard deviation of intensity within the kernel 

 

2.4.3 Gamma Filter 

A filter based on a Bayesian analysis of the image statistics is a Gamma filter, Palwinder Singh, 

Leena Jain (2013). This assumes the Gamma distribution is based on both scene reflection and 

speckle noise. The "overlay" of these distributions produces a K-distribution that is known to 

match many radar return distributions. α is gamma filter parameter The estimate x is given by: 

 

                      𝑥 =
(𝛼−𝐿−1)�̅�+√�̅�2(𝛼−𝐿−1)2+4𝛼𝐿𝑦�̅�

2𝛼
                              (2.2) 

                           𝛼 =
𝐿+1

𝐿(𝜎𝑦/�̅�)
2
−1

                                                          (2.3) 

2.4.4 Forst Filter 

The Frost Filter is a versatile Wiener Filter which convolves the pixel esteems inside a 

decent size window with a dramatic drive reaction m given by: 

 

                    𝑚 = 𝑒𝑥𝑝[−𝐾𝐶𝑦(𝑡0)|𝑡|]  𝐶𝑦 =
𝜎𝑦

�̅�
                                   (2.4) 

 

Where K is a channel boundary, 𝑡0 shows the place of the pixel handled and |t| the 

separation from pixel 𝑡0. is estimated. This answer comes from an autoregressive outstanding 

model expected for the scene x, Noor H. Resham, Heba Kh. Abbas, Haidar J. Mohamad, Anwar 

H. Al-Saleh (2021). 
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2.4.5 Kalman Filter 

A 2D Kalman channel has been carried out on a causal expectation window, the supposed 

Non-Symmetric Half Plane (NSHP). In this channel, the picture is thought to be addressed by a 

Markov Field which fulfills the causal autoregressive (AR) model Lopes, Nezry, Touzi, and Laur. 

(1990). 

 

𝑥(𝑚, 𝑛) = ∑ 𝑎𝑝𝑞(𝑝,𝑞)∈𝑊 𝑥(𝑚 − 𝑝, 𝑛 − 𝑞) + 𝑢 (𝑚, 𝑛)                              (2.5) 

 

where 𝑥(𝑚, 𝑛) addresses the pixel esteem at area (𝑚, 𝑛), 𝑢(𝑚, 𝑛)is a clamor grouping (this 

isn't the spot commotion) which drives the Markov interaction and 𝑎𝑝𝑞 are the reflection 

coefficients of the autoregressive model. The boundaries 𝑎𝑝𝑞are assessed in view of the 

worldwide evaluations of the autocorrelation grouping of the picture over the limited window W. 

The AR model for Kalman filter equations is arranged from these parameters into a recursive 2D 

block form. This filter is very involved and we are referring to the 2D cinematic model for further 

data and the Kalman filter equation (which is limited here to speckle modelling), Lopes, Nezry, 

Touzi, and Laur. (1990). 

 

2.4.6 Geometric Filter 

The geometric filter is a morphological nonlinear filter that uses the graphic concept. The 

graph is obtained through the transformation of the original picture into a 3D diagram, in which 

pixel cords indicate the pixel's position in the plane and the pixel value specifies the pixel height 

for that plane. The filtering process is first conducted with an 8-hulling algorithm on line 

segments of the image graph. Slice pixels are set to 1 when pixels are on or lower than the image 

graph surface, whereas pixels are set to 0. This algorithm scans for 4 different configurations 

and, when found one, the pixel of the graph that matches the main pixel for a mask shall be set 

to 0. The filtering algorithm scans 4 different configurations. For additional graphs and masks 

the procedure is repeated except that the central pixel is increased by 1. On columns and diagonal 

slices, the entire procedure is repeated. The geometric filter completes an iterative step. A 

filtering is made because speckles appear on the binary slice images like narrow walls and valleys 

and the geometric filter gradually fills and tears down these features through iterative repetition. 
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2.4.7 Oddy Filter 

The Oddy filter can be considered as a mean filter whose window shape varies according 

to the local statistics Patel B. C., Sinha G. R. (2014). This filter is the closest to the one proposed 

in this thesis. The estimate �̂� is given by: 

�̂� = �̅� 𝑖𝑓 𝑚 < 𝛼�̅�   �̂� =
∑ ∑ 𝑊𝑘𝑙𝑦(𝑘,𝑙)𝑙𝑘

∑ ∑ 𝑊𝑘𝑙𝑙𝑘
 𝑖𝑓 𝑚 > 𝛼�̅�              (2.6) 

𝑊𝑘𝑙 = 1  𝑖𝑓 |𝑦(𝑘, 𝑙) − 𝑦| < 𝑚 𝑊𝑘𝑙 = 0 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒             (2.7) 

 

where �̂� is evaluated locally over a 3 × 3 window, | and α is the filter parameter. W plays 

the role of an adaptive binary mask that is applied over the window. 

 

 

 

2.4.8 Adaptive Surface Filter (ASF)  

The Adaptive Surface Filter is known as the ASF filter Gravel P., Beaudoin G., De Guise, 

J. A. (2004). The concept of the local emerging surface is another adaptive mask filter. The l.e.s. 

is the area defined over the window of the image graph surface. For the 9 binary masks, the l.e.s. 

is calculated. The mask with a minimum l.e.s. is chosen and a medium filtering over the mask 

pixels is performed. A central pixel of the 5 - 5 window assigns the mean value. 

 

2.4.9 Homomorphic Filter 

Multiplicative clamor is considered in ultrasound pictures. This makes holes in past 

strategies as they are basically used to dispense with the added substance irregular commotion. 

Accordingly, a legitimate logarithmic change appears to happen on the first picture, which makes 

spot commotion added substance as displayed in the accompanying fairness: 

 

𝑙𝑜𝑔[𝑓(𝑥, 𝑦, 𝑧)] = 𝑙𝑜𝑔[𝑔(𝑥, 𝑦, 𝑧)] + log[𝜂(𝑥, 𝑦, 𝑧)]                          (2.8) 

 

We now have an image that can be processed through traditional methods without 

multiplying noise. We can choose from various options at this point, one of the most common 

being the use of different convolution filters. In order to compare the proposed algorithm to the 

most common filters in the homomorphic context we will review: Gaussian filter, median filter. 

A description of each filters follows. 
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2.5 Benchmark Filters 

2.5.1 Gaussian Filter 

Gaussian is a filter that has a Gaussian function as an impulse (or an approximation to it). 

As it is expanded (standard deviation), the Gaussian has the special capacity to not make any 

more current arcades. This property permits the expulsion of edges that address different degrees 

of detail. The quantity of feeble and bogus edges separated is diminished by an expanding scale. 

This, notwithstanding, makes edges shift from their real or genuine position and the size of the 

Gaussian channel as well as the power conveyances behind that picture rely upon the edge's shift. 

The Gaussian channels numerically alter the information signal through a Gaussian capacity (the 

bit in light of the typical conveyance bend) that produces great outcomes in sound decrease and 

picture smoothness. The 2D form with the standard deviation 𝜎 for picture 𝐼(𝑥, 𝑦)of the Gaussian 

appropriation is given: 

𝐺𝑎𝑢𝑠𝑠[𝐼(𝑥, 𝑦)] =
1

𝜎√2𝜋
exp−

(𝑥2+𝑦2)

2𝜎2                           (2.9) 

 

2.5.2 Median Filter 

An intermediate filter is a strong, non-linear filter. It is mainly used in the photographic 

application that changes the average value of the image intensity where the distribution of spatial 

noise within the picture is not symmetrical and also eliminates pulses and spike noise, Jing Bianca 

S. Gerendas Christian Simader Georg Langs Sebastian M. Waldstein Ursula Schmidt-Erfurth 

Ehsan Shahrian Varnousfaderani, Wolf-Dieter Vogl. (2016). Median filter is similar to the 

averaging filter except that the center pixel is replaced by the median value of all pixels in the 

window neighborhood. Due to one of its properties, it is used to reduce impulse noise. Its main 

advantage is it preserves edges localization. Its main disadvantage is that extra time is needed for 

computation of the median value by sorting N pixel in the window. 

2.6 A Geodesic Filter 

Define an image I as the mapping: 

𝐼 ∶  (𝑥, 𝑦)  → (𝐼1 (𝑥, 𝑦), 𝐼2 (𝑥, 𝑦), . . . , 𝐼𝑛 (𝑥, 𝑦))            (2.10) 

where n is the number of channels. We can now introduce the matrix G is as positive semidefinite, 

since it is symmetric and all its principal minors are non-negative. Hence both its eigenvalues λ1 

and λ2 are non-negative. These eigenvalues contain information about the multichannel gradients 

of the image. 
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Distances on orthogonal domain can be computed by solving an eikonal equation with 

appropriate boundary conditions: 

|𝛻𝑇(𝑥, 𝑦)|  =  𝜆1(𝑥, 𝑦)              (2.13) 

In order to preserve the edges in the filtering process, we propose to define the kernel function κ 

as a function of the geodesic distance between two points on the domain. 

The eikonal equation in (2.13) has to be solved once for every pixel in the image in order to 

compute geodesic distances to the neighbours within the filter window, S. Di Zenzo, (1986). 
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CHAPTER THREE 

METHODOLOGY 

An approach to perform noise filtering for speckle reduction on 2D and 3D ultrasound 

images using an anisotropic geodesic filter is proposed. Anisotropic geodesic filtering is a 

Gaussian like filter, where as opposed to standard Gaussian filtering with fixed weight values are 

used, the weights are determined dynamically. In this scheme each convolution window is 

different and can adapt to local intensity and geometry variations. As will be demonstrated, this 

category of filter can preserve the localization of fine structures automatically without prior 

knowledge of the locations of intensity discontinuities and without the need to compute gradients 

like in Perona’s algorithm Yao Zhang, Heng Xue, Mixue Wang, Nan He, Zhibin Lv, Ligang Cui. 

(2021). The filter is an application of an older concept developed during Boulanger’s PhD thesis, 

Piotr Osinski, Jakub Markiewicz, Jarosław Nowisz, Michał Remiszewski, Albert Rasi nski and 

Robert Sitnik. 

3.1 Proposed System Overview 

This study proposes an approach to perform noise filtering for speckle reduction on 2D and 

3D ultrasound images using an anisotropic geodesic filter. Anisotropic geodesic filtering is a 

Gaussian like filter, whereas opposed to standard Gaussian filtering with fixed weight values are 

used, the weights are determined by the local geodesic distances computed from the cumulative 

spatial and intensity distances of the neighbouring pixels with the centre pixel inside a 

convolution window. In this scheme each convolution window is different and can adapt to local 

intensity and geometry variations. As will be demonstrated, this category of filter can preserve 

the localization of fine structures automatically without prior knowledge of the locations of 

intensity discontinuities and without the need to compute gradients like in Perona’s algorithm 

Perona P., Malik J. (1990). 

 

3.2 Theoretical Modeling 

 It is not an easy task to filter volumetric ultrasound data since it is contaminated by additive 

and multiplicative noises at the same time. Speckle is basically a form of multiplicative noise 

that displays a granular pattern caused by the transducer. The distribution of speckle noise in 

ultrasound images has been largely studied in the literature and many models have been 

proposed. In this research, we use the noise model proposed by Mohammad Ashraful Islam, 

Rafid Mostafiz, Mithun Kumar PK, Mohammad Motiur Rahman (2018), which is the most 
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widely accepted recently, and has been successfully used in many studies. The noise model is the 

following: 

 

                𝑓(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑦, 𝑧) × 𝜂(𝑥, 𝑦, 𝑧) + 𝛽(𝑥, 𝑦, 𝑧)                   (3.1) 

 

where 𝑓(𝑥, 𝑦, 𝑧), is a noisy ultrasound volumetric image, 𝑔(𝑥, 𝑦, 𝑧) is the noise-free ultrasound 

volumetric image, 𝜂(𝑥, 𝑦, 𝑧) and 𝛽(𝑥, 𝑦, 𝑧) are the multiplicative and additive noise respectively. 

The additive noise 𝛽(𝑥, 𝑦, 𝑧) is assumed to follow a Gaussian distribution with variance 

𝜎(𝑥, 𝑦, 𝑧) and an expected value 𝐸(𝛽(𝑥, 𝑦, 𝑧))  =  0 in all directions. In this frame- work, the 

expected value of the difference between the measured volumetric image and the contribution 

from the multiplicative noise is equal to the expected value of the additive noise and is assumed 

to be equal to zero: 

𝐸(𝑓(𝑥, 𝑦, 𝑧) − 𝑔(𝑥, 𝑦, 𝑧) × 𝜂(𝑥, 𝑦, 𝑧)) = 𝐸(𝛽(𝑥, 𝑦, 𝑧)) = 0            (3.2) 

 

Therefore, it seems logical to transform the original measured ultrasound images with a 

logarithmic function, where the multiplicative speckle noise becomes additive: 

 

𝑙𝑜𝑔[𝑓(𝑥, 𝑦, 𝑧)] = 𝑙𝑜𝑔[𝑔(𝑥, 𝑦, 𝑧)] + 𝑙𝑜𝑔[𝜂(𝑥, 𝑦, 𝑧)]                            (3.3) 

 

In order to respect this condition, one must first filter 𝑓 (𝑥, 𝑦, 𝑧) using Anisotropic Geodesic (AG) 

Filter capable of preserving key features and reducing the effect of additive noise and then 

perform a logarithm transform of the resulting image to convert the multiplicative noise to 

additive noise as demonstrated in equation (3.3), then filtered again with a similar filter (AG) to 

eliminate the noise. An inverse log-function is then applied to the image produced by this second 

filter. The purpose of the inverse log-function is just to remove the logarithm operation effect. 

These process steps illustrate in Figure 3.1 that show the block diagram of the proposed filtering 

approach. 
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Fig. 0.2: Block diagram of the proposed filtering approach 

3.3 Geodesic Filter Algorithm 

The proposed algorithm is similar to Gaussian filtering but can adapt to local intensity and 

geometry variations. Similar to standard Gaussian filtering, the filter can produce a multi-

resolution scale-space representation with very interesting properties such as edge or 

boundary preservation. Let us now discuss in more details the geodesic filter. 

A sample collection of 3-D measurements corresponding to an area observed in a specific 

sensor point was used in the original definition range images, Piotr Osinski, Jakub Markiewicz, 

Jarosław Nowisz, Michał Remiszewski, Albert Rasi nski and Robert Sitnik. (2022). 

 The filter can be applied to any complex signal, including color range pictures, MRI, and 

CT scans. One of the algorithm's most essential qualities is its ability to filter continuous 

regions while maintaining the localisation of critical features. 

This is an important characteristic for medical applications. In continuous regions, the filter 

behaves like a Gaussian filter, whereas in regions with abrupt discontinuities, it behaves 

like an anisotropic filter. Its greater capability at filtering ultrasonic pictures was 

demonstrated in experimental comparisons with two of the most well-known filters.  

To explain this filter in detail, we will first explain the definition of geodesic distance or 

geodesic trajectories and then present how to compute the geodesic distance using a single 

source shortest path algorithm that was developed for the purpose of this work. 

 

3.3.1 Geodesic Distances  

The actual length of the minimum path defined on the 4D manifold is an interesting 

geodesic metric. In the manufacturing multiple, the generalized geodesic distance 𝑑𝑠 = (p, 

q) between two points p and q is defined as the shortest length 𝐿𝑠 of all the paths linked to 

q. These geodesics trajectories maybe called minimal paths since the sum of the grey-levels 
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and the spatial distance along these paths is minimum. Let us now discuss how to compute 

these geodesic trajectories and distances. 

 

3.3.2 Geodesics Trajectory algorithm using Single-Source Shortest Path Algorithm 

In order to achieve geodesic distances from a convolution window's center point to its 

neighboring points, a minimum trajectory must be found between the center and all other 

points on the window. From Piotr Osinski, Jakub Markiewicz, Jarosław Nowisz, Michał 

Remiszewski, Albert Rasi nski and Robert Sitnik. (2022), we know that the manifold 

distances ds and that is the minimum distance between the two points p (u, v) and q (u−τ, 

v−ξ) between all trajectories p (𝑢𝑖, 𝑣𝑖) and q (𝑢𝑖+1, 𝑣𝑖) are described: 

                             𝑑𝑠(𝑝, 𝑞) = 𝑚𝑖𝑛𝛼𝑠𝛼(𝑝, 𝑞)                                              (3.4) 

Where 𝑠𝛼(𝑝, 𝑞) is the cumulative arc-length between the two points for a trajectoryαjoining 

them on the manifold? Note that the value of ds will be large if the minimum trajectory goes 

across for example an intensity discontinuity. From the above equation, one can design an 

efficient algorithm to compute the geodesic distances by using the Single-Source Shortest 

Paths Algorithm for weighted graphs, Nikpour, M., & Hassanpour, H. (2010). 

The diagram vertices are the points in the convolution window and the edges are the next-

door connections. The discreet arc of the edges between points, for example. p (𝑢𝑖 , 𝑣𝑖) and 

q (𝑢𝑖+1, 𝑣𝑖) is given by: 

                           √||𝑑(𝑢𝑖 , 𝑣𝑗) − 𝑑(𝑢𝑖+1, 𝑣𝑗)||2                                      (3.5) 

 

3.4 Ultrasound Medical Imaging Restoration   

In this study, we were able to demonstrate that by adapting a non-linear filter developed to 

process range images, we were able to filter multiplicative noise in ultrasound images. This filter 

called anisotropic geodesic filter possess similar quality as the well-known anisotropic gradient-

based filter from Perona P., Malik J. (1990) but do not require to compute image gradients and 

is free of non-intuitive parameters like integration time and diffusion coefficient. The filter can 

be easily generalized to any complex signals such as colour range images, MRI, CT etc. One of 

the key properties of this algorithm is its ability to filter continuous regions without the loss of 

localization of important features. This is a key property for medical applications. The filter is 

akin to a Gaussian filter in continuous regions and responds like an anisotropic filter in regions 
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with sharp discontinuities. Experimental com- parisons with two of the most well-known filters 

were able to demonstrate its superior capability at filtering ultrasound images. 

This filter has numerous potential applications in medical imaging and image processing. Its 

applications are not just limited to medical and medicine field but can also be used to suppress 

speckle noise from SAR images as well. In case of ultrasound, it can be used to improve surgical 

guidance and robotic-assisted interventions which necessitate high quality images where the 

filtering can be embedded directly in the ultrasound machine. 

The algorithm to find the minimum distances, Greeksfor Greeks (2021), is given as follows: 

Input: G = (V,E) (a weighted graph) and v (the source vertex corresponding to the center 

point) 

Output: for each vertex w, w,sp is the length of the shortest path from v to w and 

corresponding minimum trajectories w,tr 

begin 

for all vertices w do 

/*w.mark indicates if the vertex distance is determined*/ 

w.mark := false; 

w.sp :=∞; 

v.sp: = 0; 

v.tr: = 0; 

while there exists and unmarked vertex do 

let w be an unmarked vertex such that w.sp is minimum; 

w.mark := true; 

for all neighboring edges (w,x) such that x is unmarked do 

if w.sp + length(w,x) ¡ x.sp then 

x.sp := w.sp + length(w,x); 

x.tr := w; 

end 

 

In this algorithm the distances between a number of track lengths must be determined 

and track lengths must be periodically updated. We use a heap structure to execute this 

efficiently. The existing established shortest track length from center point V are held in a 

heap with all undeclared vertices. To find an undeclared vertex so we can only take it from 

the top of the heap to make the trajectory w.sp a minimum. We can monitor all the edges 

linked to the vertex and easily upgrade path lengths. 
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3.5 Filtering a 3D and 2D Ultrasound Images 

For a 3D ultrasound represented by a voxel space 𝑉(𝑖, 𝑗,𝑚) each slice located at position 

zm is represented by a 4D manifold 𝑟𝑚(𝑖, 𝑗) = (𝑥𝑚(i, j), 𝑦𝑚(i, j), 𝑧𝑚(i, j), ln V (i, j, m)). Equation 

3.8 is reduced for each slice 𝑧𝑚 to: 

 

𝑣 (𝑖, 𝑗,𝑚) = 𝑒𝑥𝑝 (
∑ ∑ 𝑙𝑛(𝑉(𝑖+𝑘,𝑖+𝑙,𝑚))𝑒𝑥𝑝(−𝑑2(𝑟𝑚(𝑖+𝑘,𝑗+𝑙),𝑟𝑚(𝑖,𝑗))/(2𝜎2))

𝑙=𝑊/2 
𝑙=−𝑊/2

𝑘=𝑊/2
𝑘=−𝑊/2

∑ ∑ 𝑒𝑥𝑝(−𝑑2(𝑟𝑚(𝑖+𝑘,𝑗+𝑙),𝑟𝑚 (𝑖,𝑗))/(2𝜎2))
𝑙=𝑊/2 
𝑙=−𝑊/2

𝑘=𝑊/2
𝑘=−𝑊/2

) (3.6) 

 

where the logarithmic transformation for the multiplicative noise case is included. For the 2D 

case, Equation 3.5 is simply when m = 1 

In this chapter, a filtering method to reduce speckle noise, based on geodesic calculation for two-

dimensional and three-dimensional cardiac ultrasound is proposed. In the next chapter, we will 

demonstrate that the proposed filter can reduce speckle noise better than the two filters mentioned 

in literature review. We will demonstrate that it is a good choice to filter curves and edges in an 

ultrasound image as it preserves these features localization automatically. In the writing, the 

writers have considered ultrasound pictures (normal/manufactured) with falsely added dot 

commotion content and have proposed techniques for smothering this spot clamor in such 

pictures. Be that as it may, in this proposal, we use pictures estimated by genuine ultrasound gear 

which contain inborn spot commotion. 
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CHAPTER FOUR 

EXPERIMENTS 

In order to demonstrate the performance of the intrinsic filter, we performed a systematic 

comparison with the most two well-known filters found in the literature: Gaussian filter, median 

filter. This comparison was achieved by measuring traditional distortion measures such as 

contrast-to-noise-ratio (CNR), signal to-noise-ratio (SNR), mean-square error (MSE), peak 

signal-to-noise-ratio (PSNR), and correlation coefficients between reference images. 

4.1 Image Data Set 

For the purpose of this comparison, echocardiography scans from a cardiac ultrasound 

phantom with known dimension as well as six human volunteers were acquired using the Siemens 

ACUSON SC2000 ultrasound scanner It was taken from a patient named examined by the  Dr. 

Saad, Zidan, Baqubah hospital, Diyala city (2021The first data set had a 50 2D images of 558 x 

558 pixels with an image size of (79.5 KB) and the second data set was measured from six 

patients which included parasternal and apical views of their heart. The number of volume data 

frames were 7 - 34 per cardiac cycle with a volumes size of 137 x 131 x 120 voxels with a voxel 

size of (0.74 mm x 0.74 mm x 0.63 mm). To reduce the presence of additive noise each volume 

slices were first filtered by a Gaussian filter of size 5 × 5 with σ = 0.5. 

 

4.2 2D Ultrasound Filtering Results 

Let us look first visually at the evolution of a slice in both data sets as a function of each filter 

parameters. One can see at Figure 4.1 and 4.2 the evolution of the ultrasound slice images as a 

function of the parameter σ for the Gaussian filter and at Figure 4.3 and 4.4 the evolution of the 

same ultrasound slice images with median filters with window sizes from 3 × 3, 5 × 5, and 7 × 

7. As expected, the Gaussian filter can reduce the speckle but at the expense of losing important 

features. On the other hand, the median filter is capable of filtering the speckle without the loss 

of small feature when the window size is small but as the window increase the median filter loses 

fine image features like Gaussian filter. In Figure 4.5 and one can see the result of the proposed 

geodesic filter. One can see that not only does the proposed filter reduce speckle noise as a 

function of σ but also preserves boundaries and fine features. 
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Fig. 4.2: Gaussian filter S=1.5 

Fig. 0.1: Gaussian filter S=1 
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Fig. 0.2: Gaussian filter S=2 

 

Fig. 4.4: Median filter S =1 
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Fig. 0.3: Median filter at S=1.5 

Fig. 0.6: Median filter at S=2 
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a. Original Image 

d. At sigma = 1.5 

After AG filter 

b. At Sigma = 1 c. After AG filter 

e. After AG filter 
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Fig. 0.7: Proposed filter with varying sigma for volunteer CUI 

f. At sigma = 2 g. After AG filter 



 
 

32 
 

4.3 3D Ultrasound Filtering Results 

 

Before systematically comparing the results with the other filters, we would like to show 

for the different data sets results for the geodesic filter only. The 2D implementation of the 

geodesic anisotropic diffusion is extended to 3D as described in Chapter 3. The implementation 

of the filter was done in MATLAB and the vis3D function was used to display the 3D data set. 

One can see in the Figure 4.8 the original cardiac phantom data set in the YX-plane, YZ-plane, 

and XZ-plane as well as a combined 3D rendering. One can see in Figure 4.9 the filtered volume 

for σ = 5. One can see in the Figure 4.10 the original cardiac patient data. One can see in Figure 

4.12 the filtered volume for σ = 5. While Figures 4.11, 4.12, 4.13, 4.14 and 4.15 demonstrate the 

anisotropic filter at 3D for σ = 5, at 3×3 window size, 5×5 window size, 7×7 window size and 

11×11 window size, respectively. 

 

 Fig. 0.8 Proposed filter with varying window size for volunteer CUI 
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Figure 0.9: Original cardiac phantom ultrasound. 
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Fig. 0.10: Proposed 3D filter for the cardiac phantom ultrasound σ = 5 
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Fig. 0.11: Original volunteer cardiac ultrasound 
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Fig. 0.42: Proposed 3D filter for Volunteer cardiac ultrasound for σ = 5 
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Fig. 0.13: Proposed 3D filter for volunteer cardiac ultrasound for windows size=3x3 
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Fig. 0.54: Proposed 3D filter for volunteer cardiac ultrasound for 

windows size=5x5 
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Fig. 0.15: Proposed 3D filter for volunteer cardiac ultrasound for 

windows size=7x7 
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Fig. 0.16: Proposed 3D filter for volunteer cardiac ultrasound for windows size=11x11 

 

For visual comparison, one can see in Figure 4.17, 4.18 and 4.19 the filtering results for 

the two other methods. 
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Fig. 0.17: Gaussian Filter-Volunteer CUI for σ = 5 
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Fig. 0.18: Median filter - volunteer CUI for a window size of 5 × 5 
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4.4 Quantitative Analysis 

This section describes a number of quantitative validation measures used to assess the 

quality of ultrasound images filtering using well known metrics such as: image contrast (IC), 

CNR, SNR, and PSNR. Let’s first define those metrics mathematically and then study how the 

four filters compare to each other. 

4.4.1 Signal-to-Noise-Ratio 

The ratio between average and standard pixels variance values within a range of interests 

is defined as SNR for a quantitative comparison, i.e., the percentage of change in the SNR, i.e., 

the SNR for filtering: 

∆𝑆𝑁𝑅 =
∆(𝑆𝑁𝑅)𝑚𝑦+∆(𝑆𝑁𝑅)𝑏𝑝

2
,                                   (4.1) 

where ∆(𝑆𝑁𝑅)𝑚𝑦 and ∆(𝑆𝑁𝑅)𝑏𝑝 denote the percentage of change in the SNR in the 

myocardial and blood-pool regions, respectively. The percentage of change in SNR in the 

myocardial region, ∆(𝑆𝑁𝑅)𝑚𝑦, is computed as: 

∆(𝑆𝑁𝑅)𝑚𝑦 =

[
 
 
 

𝜇
𝑓
𝑚𝑦

𝜎
𝑓
𝑚𝑦

1

𝑁
∑ (

𝜇
𝑖
𝑚𝑦

𝜎
𝑖
𝑚𝑦)𝑁

𝑖=1

− 1

]
 
 
 
∗ 100,                      (4.2) 

The percentage of change in SNR in the blood-pool region, ∆(𝑆𝑁𝑅)𝑏𝑝, is computed in a 

similar way to ∆(𝑆𝑁𝑅)𝑚𝑦 . SNR is a strong spring strength test. The higher the SNR, the lower 

the sprinkling noise and the greater the sprinkling effect. When SNR is measured it is taken as 

the average between the myocardial and blood-pool regions. 

4.4.2 Root-Mean-Square-Error 

The MSE helps us to compare our original image with our decayed picture version for 

"real" pixel values. The MSE represents the mean of the "error" squares between the current 

picture and the bright image. The mistake is that the original image's values are different from 

the deteriorated image. Mean square error is given by: 

 

𝑀𝑆𝐸 =
∑ [𝑓(𝑖,𝑗)−𝐹(𝑖,𝑗)]2𝑁

(𝑖,𝑗)

𝑁2 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                   (4.3) 

where f is the original image and F is the de-noised image and N is the size in pixel of the 

image. 
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4.4.3 Peak-Signal-to-Noise-Ratio 

The PSNR gives the proportion of likely sign capacity to the force of the defiling clamor 

in the image. The term 'top sign to-clamor' signifies the greatest sign (power) proportion that 

influences its productivity and contortion of the commotion. As many signs have an 

exceptionally wide scope of elements (connection between the greatest and littlest potential 

upsides of an evolving amount), the logarithmic decibel size of the PSNR is commonly utilized. 

The right picture network and the debased picture framework aspects should be something 

similar. PSNR is set to: 

 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10((𝑀𝐴𝑋)2/𝑀𝑆𝐸),                                  (4.4) 

 

where MAX represents the maximum signal value that exists in our original image. The 

higher the PSNR is the lower the noise in the image is, which implies a higher image quality 

image. 

4.5 Image Contrast Change 

Image contrast is the percentage of intensity changes in global image contrast, ∆C. Contract 

changes caused by filtering is defined as: the difference in mean intensity between the myocardial 

and blood pool regions, which is calculated as follows: 

 

∆𝐶 = [
𝜇𝑓

𝑚𝑦
−𝜇𝑓

𝑏𝑝

1

𝑁
∑ (𝜇

𝑖
𝑚𝑦

−𝜇
𝑖
𝑏𝑝

)𝑁
𝑖=1

− 1] ∗ 100                                 (4.5) 

where μ my f and μ bp f represent the mean strength value in the myocardial and blood-

pool regions manually selected after filtering.; µ my i and µ bp i denote the mean intensity before 

filtering, the value N represents the total number of source single-view images; m represents the 

i the image and f denotes the filtered image. 

4.5.1 Contrast-to-Noise-Ratio: 

The percentage change in CNR, ∆𝐶𝑁𝑅, caused by filtering is defined as: 

∆𝐶𝑁𝑅 = [
𝐶𝑁𝑅𝑓

1

𝑁
∑ 𝐶𝑁𝑅𝑖

𝑁
𝑚=1

− 1] ∗ 100                                    (4.6) 

whereas the CNR for the filtered image (f) or the 𝑚𝑡ℎ single-view image is computed as: 

 

𝐶𝑁𝑅 =
𝜇𝑚𝑦−𝜇𝑏𝑝

√(𝜎𝑚𝑦)2+(𝜎𝑚𝑦)2
                                                     (4.7) 

where μ refers to the default picture area deviation. 
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4.6 Comparison Between the Four Algorithms 

We will now take a look at the results of the variation of these metrics for the THREE 

filters presented in this research. For the purpose of performance evaluation, we only consider a 

region of interest of size 6x5 in both the myocardial and blood pool region for the SNR, Contrast 

changes, and CNR values as shown in the Figure 4.8. One can see in Table 4.1 the estimated 

RMSE, PSNR, SNR, Contrast, and CNR of the region of interest without filtering. Table 4.2 and 

Table 4.3 show the same metrics for the Gaussian filter and the median filters for various σ and 

window size values. As expected, most metrics deteriorate as a function of σ for the Gaussian 

filter case and as a function of window size for the median filter case. This is due to the fact that 

the filters cannot adapt to local variation common when speckle noise is present. 

Table 0.1. Metrics values for Noisy Image 

RMSE PSNR SNR Contrast CNR 

34.7870 17.3025 2.0917 1.771 0.0047 

 

Table 0.2. Metrics values for Gaussian filtering with variable sigma. 

Parameter - Sigma RMSE PSNR SNR Contrast CNR 

σ = 1 41.9413 15.6780 0.0074 0.0197 1.1704e-05 

σ = 1.5 41.9489 15.6764 0.0100 0.0213 1.2392e-05 

σ = 2 41.9665 15.6728 0.0119 0.0219 1.2953e-05 

σ = 3 41.9644 15.6732 0.0138 0.0226 1.3176e-05 

σ = 5 41.9916 15.6676 0.0162 0.0236 1.3311e-05 

 

Table 0.3. Metrics values for Median filtering with variable sigma  

Parameter - Window RMSE PSNR SNR Contrast CNR 

σ = 1 25.7879 19.9025 1.6491 1.9239 0.0040 

σ = 1.5 26.0949 19.7997 1.3072 2.0867 0.0033 

σ = 2 26.6714 19.6099 1.1437 2.2495 0.0029 

σ = 3 27.0229 19.4962 0.9793 2.3686 0.0026 

σ = 5 29.3685 18.7732 0.8203 2.4483 0.0023 

 

Table 4.4. Metrics values for Anisotropic Geodesic with variable sigma; window size=3x3 

Parameter RMSE PSNR SNR Contrast CNR 

σ = 1.5 35.5443 17.1154 4.4659 2.0808 0.0059 

σ = 2 36.5636 16.8698 3.9210 2.2084 0.0054 

σ = 3 37.0061 16.7653 3.7597 2.3980 0.0049 

σ = 5 37.4865 16.6533 3.6804 2.4517 0.0047 
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σ = 7 37.7554 16.5912 3.3045 2.4903 0.0044 

 

 

 

Table 4.5. Metrics values for Anisotropic Geodesic with variable sigma; window size 

=11x11 

 

Parameter - Sigma RMSE PSNR SNR Contrast CNR 

σ = 1.5 69.6833 11.2570 0.0809 0.0297 2.9220e-05 

σ = 2 69.7171 11.2753 0.0726 0.257 2.9474e-05 

σ = 3 69.7589 11.2691 0.0834 0.0361 2.3383e-05 

σ = 5 69.8462 11.2223 0.1272 0.399 2.3453e-05 

σ = 7 69.9521 11.1848 0.2421 0.4471 2.3731e-05 

 

This filter has numerous potential applications in medical imaging and image processing. 

Its applications are not just limited to medical and medicine field but can also be used to suppress 

speckle noise from SAR images as well. In case of ultrasound, it can be used to improve surgical 

guidance and robotic-assisted interventions which necessitate high quality images where the 

filtering can be embedded directly in the ultrasound machine. 

4.7 Discussion: 

In this work, we were able to demonstrate that by adapting a non-linear filter developed to 

process range images, we were able to filter multiplicative noise in ultrasound images. This filter 

called anisotropic geodesic filter possess similar quality as the well-known anisotropic gradient-

based filter from Perona-Malik but do not require to compute image gradients and is free of non-

intuitive parameters like integration time and diffusion coefficient. The filter can be easily 

generalized to any complex signals such as colour range images, MRI, CT etc. One of the key 

properties of this algorithm is its ability to filter continuous regions without the loss of 

localization of important features. This is a key property for medical applications. The filter is 

akin to a Gaussian filter in continuous regions and responds like an anisotropic filter in regions 

with sharp discontinuities. Experimental com- parisons with two of the most well-known filters 

were able to demonstrate its superior capability at filtering ultrasound images. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORKS 

5.1 Conclusions 

In this thesis, we have demonstrated that by adapting a non-linear filter developed to 

process a range of images, we are able to filter multiplicative noise in ultrasound images. This 

filter called anisotropic geodesic filter possess similar quality as the well-known anisotropic 

gradient-based filter from Perona-Malik but do not require to compute image gradients and is 

free of non-intuitive parameters like integration time and diffusion coefficient. The filter can be 

easily generalized to any complex signals such as colour range images, MRI, CT etc. One of the 

key properties of this algorithm is its ability to filter continuous regions without the loss of 

localization of important features. This is a key property for medical applications. The filter is 

akin to a Gaussian filter in continuous regions and responds like an anisotropic filter in regions 

with sharp discontinuities. Experimental com- parisons with two of the most well-known filters 

were able to demonstrate its superior capability at filtering ultrasound images. 

This filter has numerous potential applications in medical imaging and image processing. 

Its applications are not just limited to medical and medicine field but can also be used to suppress 

speckle noise from SAR images as well. In case of ultrasound, it can be used to improve surgical 

guidance and robotic-assisted interventions which necessitate high quality images where the 

filtering can be embedded directly in the ultrasound machine. 

 

5.2 Future Works 

The proposed filter is application specific and can be further generalized for different types 

of imaging applications. For instance: 

• Instead of using a 2-D manifold immersed in an N-D space one could easily generalized 

the approach to a 3-D or even 4-D manifold immersed in an N-D space. This will allow to process 

volumetric not only at the slice level but truly at the voxel level for the 3-D case and time varying 

voxels in the 4-D case; 

• Using this framework, one could filter not only CT and MRI but also, with a 4-D 

framework, real-time cardiac MR data; 

• This would require to generalize our Single Source Shortest Path (SS-SP) algorithm to 

the 3-D and 4-D cases; 

• Real-time implementation of the SS-SP algorithm using GPU could be done in order to 

achieve real-time performance; 
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• Other medical imaging modalities such as CT, MRI and multi-view ultrasound can be 

incorporated by applying the filter as a pre-processing step to smooth out 2-D and 3-D images 

while preserving the fine features of the image such as edges; 

• The method can be further extended to multi-spectral images. 
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