

REPUBLIC OF TURKEY

ISTANBUL GELISIM UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

Department of Electrical-Electronic Engineering

AN EFFICIENT FPGA IMPLEMENTATION OF CNN

SPECIALIZED IN IMAGE RECOGNITION

FOR BREAST CANCER

Master Thesis

Omar Mhmood ABDULHADI

Supervisor

Assoc. Prof. Dr. Indrit MYDERRIZI

Istanbul – 2022

THESIS INTRODUCTION FORM

Name and Surname : Omar Mhmood Abdulhadi

Language of the Thesis : English

Name of the Thesis : An Efficient FPGA Implementation of CNN

Specialized in Image Recognition for

Breast Cancer

Institute : Istanbul Gelişim University Graduate Education

Institute

Department : Electrical-Electronic Engineering

Thesis Type : Post Graduate

Date of the Thesis : 27.01.2022

Page Number : 138

Thesis Supervisors : Assoc. Prof. Dr. INDRIT MYDERRIZI

Index Terms : Convolutional neural network (CNN), Field

Programmable Gate Arrays (FPGA), Image

recognition of breast cancer

Turkish Abstract :
Görüntü işlemenin popülaritesi ve sağladığı

avantajlar nedeniyle, medikal sektörlerde özellikle

hastalıkların teşhisinde görüntü işleme teknolojisinin

kullanıldığı yeni alanlar oluşmaya başlamıştır. tıbbi

uygulamaların sınıflandırma sorunu, yalnızca gri

kanala ilişkin bilgilerin bulunduğu ve hiçbir kronik

bilginin bulunmadığı X-ray, CT taraması vb. gri

tonlamalı görüntülerde kendini göstermektedir. Bu

çalışmada, meme kanseri tespiti için bir evrişimsel

sinir ağı (CNN) kullanılmıştır; bu nedenle, CNN

modelinin eğitimi için büyük, renkli biyopsi

görüntüleri kullanılır. Rastgele orman, k-en yakın

komşular, saf Bayes, destek vektör makinesi vb. gibi

diğer modeller de kullanıldı. CNN sonunda kanser

tahmininin doğruluğunu %97'ye kadar koruyabilir.

Ayrıca VGG-16, AlexNet, ResNet-18, ShuffleNet ve

Omar Mhmood ABDULHADI

LeNet gibi önceden eğitilmiş derin öğrenme

paradigmaları da aynı amaç için kullanıldı. Önerilen

CNN ağı, birçok derin öğrenme ağından daha iyi

performans gösterdi.

Distribution List : 1. To the Institute of Graduate Studies of Istanbul

Gelisim University

2. To the National Thesis Center of YÖK (Higher

Education Council)

REPUBLIC OF TURKEY

ISTANBUL GELISIM UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

Department of Electrical-Electronic Engineering

AN EFFICIENT FPGA IMPLEMENTATION OF CNN

SPECIALIZED IN IMAGE RECOGNITION

FOR BREAST CANCER

Master Thesis

Omar Mhmood ABDULHADI

Supervisor

Assoc. Prof. Dr. Indrit MYDERRIZI

Istanbul – 2022

DECLARATION

I hereby declare that in the preparation of this thesis, scientific ethical rules have

been followed, the works of other persons have been referenced in accordance with

the scientific norms if used, there is no falsification in the used data, any part of the

thesis has not been submitted to this university or any other university as another

thesis.

Omar Mhmood ABDULHADI

…/…/2022

TO ISTANBUL GELISIM UNIVERSITY

 THE DIRECTORATE OF INSTITUTE OF GRADUATE STUDIES

The thesis study of Omar Mhmood ABDULHADI titled as AN EFFICIENT FPGA

IMPLEMENTATION OF CNN SPECIALIZED IN IMAGE RECOGNITION FOR

BREAST CANCER has been accepted as MASTER THESIS in the department of

ELECTRICAL-ELECTRONIC ENGINEERING by out jury.

 Director

 Assoc. Prof. Dr. Indrıt MYDERRİZİ

(Supervisor)

Member

Asst. Prof. Dr. Ahmed Amin Ahmed SOLYMAN

Member

Asst. Prof. Dr. AFM Shahen SHAH

APPROVAL

I approve that the signatures above signatures belong to the aforementioned faculty

members.

... / ... / 2022

Prof. Dr. İzzet GÜMÜŞ

Director of the Institute

i

SUMMARY

Due to the popularity of image processing and its advantages, new fields have

begun to be established using image processing technology in the medical sector,

especially for diagnosing diseases. The information used for the diagnosis is preserved

within the image pixels, and the quality of the diagnosis is restricted by the amount or

quality of information preserved in every pixel. The problem arises when there is not

enough pixel information in some/specific images, making it unfit for processing under

all mentioned applications. In other words, the value of information preserved by any

image is a function of what each pixel preserved. This problem is manifested in grayscale

images (that are widely populated in medical applications) where only information about

grey channels is available, and no chronic information exists. Because of that, grayscale

images are unfit for image processing since the pixel information of the image is

represented by one value only (grayscale channel), and no strong correlation can be

ensured between any two images in grayscale (assumed for the same event/object).

Convolution neural networks have achieved a wide range of classification challenges,

including facial, object and activity recognition. However, short development time

comes at the cost of performance and energy economy. Although PYNQ development

boards have recently reached a level of maturity, where FPGA prototypes effort is

equivalent to that of CPUs or GPUs, FPGA prototyping is still a solid alternative for

developing embedded CNN applications. The research published here describes a design

to speed up FPGA prototyping using an open-source framework; it offers a simplified

platform for developing CNN-powered FPGA applications quickly. In this thesis, the

proposed framework incorporates high-level convolutional networks, which are

programmable for a wide range of network specifications and offer superior performance

in a time-efficient manner. In this work, a convolutional neural network (CNN) is utilised

for breast cancer detection; hence, big, coloured biopsy images are used for the training

of the CNN model. Other models, such as random forest, k-nearest neighbors, naïve

Bayes, support vector machine, etc., were also used. CNN could eventually preserve the

accuracy of cancer prediction to 97%. Moreover, pre-trained deep learning paradigms

were used for the same purpose, such as VGG-16, AlexNet, ResNet-18, ShuffleNet and

LeNet. The proposed CNN network has outperformed many deep learning networks.

ii

Keywords : Convolutional neural network (CNN), field-programmable gate

array (FPGA), Python productivity for ZYNQ (PYNQ), Central

processing units (CPUs), Graphics processing units (GPUs)

iii

ÖZET

Görüntü işlemenin popülaritesi ve sağladığı avantajlar nedeniyle tıp sektöründe

özellikle hastalıkların teşhisinde görüntü işleme teknolojisi kullanılarak yeni alanlar

kurulmaya başlanmıştır. Teşhis için kullanılan bilgiler görüntü pikselleri içinde korunur

ve teşhisin kalitesi, her pikselde korunan bilgi miktarı veya kalitesi ile sınırlandırılır.

Sorun, bazı/belirli görüntülerde yeterli piksel bilgisi olmadığında ortaya çıkar, bu da onu

belirtilen tüm uygulamalar altında işlemeye uygun hale getirmez. Başka bir deyişle,

herhangi bir görüntü tarafından korunan bilginin değeri, her pikselin koruduğu şeyin bir

fonksiyonudur. Bu sorun, yalnızca gri kanallarla ilgili bilgilerin mevcut olduğu ve hiçbir

kronik bilginin bulunmadığı gri tonlamalı görüntülerde (tıbbi uygulamalarda yaygın

olarak kullanılan) kendini gösterir. Bu nedenle, görüntünün piksel bilgisi yalnızca bir

değerle temsil edildiğinden (gri tonlamalı kanal) gri tonlamalı görüntüler görüntü işleme

için uygun değildir ve gri tonlamalı herhangi iki görüntü arasında (aynı olay/nesne için

varsayılır) güçlü bir korelasyon sağlanamaz.). Evrişim sinir ağları, yüz, nesne ve aktivite

tanıma dahil olmak üzere çok çeşitli sınıflandırma zorluklarına ulaştı. Ancak, kısa

geliştirme süresi performans ve enerji ekonomisi pahasına gelir. PYNQ geliştirme

kartları, son zamanlarda FPGA prototiplerinin CPU veya GPU'larınkine eşdeğer olduğu

bir olgunluk düzeyine ulaşmış olsa da, FPGA prototipleme, gömülü CNN uygulamaları

geliştirmek için hala sağlam bir alternatiftir. Burada yayınlanan araştırma, açık kaynaklı

bir çerçeve kullanarak FPGA prototiplemeyi hızlandıracak bir tasarımı açıklamaktadır;

CNN destekli FPGA uygulamalarını hızlı bir şekilde geliştirmek için basitleştirilmiş bir

platform sunar. Bu tezde önerilen çerçeve, çok çeşitli ağ özellikleri için programlanabilen

ve zaman açısından verimli bir şekilde üstün performans sunan yüksek seviyeli evrişimli

ağları içermektedir. Bu çalışmada, meme kanseri tespiti için bir evrişimsel sinir ağı

(CNN) kullanılmıştır; bu nedenle, CNN modelinin eğitimi için büyük, renkli biyopsi

görüntüleri kullanılır. Rastgele orman, k-en yakın komşular, saf Bayes, destek vektör

makinesi vb. gibi diğer modeller de kullanıldı. CNN sonunda kanser tahmininin

doğruluğunu %97'ye kadar koruyabilir. Ayrıca VGG-16, AlexNet, ResNet-18,

ShuffleNet ve LeNet gibi önceden eğitilmiş derin öğrenme paradigmaları da aynı amaç

için kullanıldı. Önerilen CNN ağı, birçok derin öğrenme ağından daha iyi performans

gösterdi.

iv

Anahtar Kelimeler

: Evrişimli sinir ağı (CNN), sahada programlanabilir kapı

dizisi (FPGA), ZYNQ için Python üretkenliği (PYNQ),

Merkezi işlem birimleri (CPU'lar), Grafik işleme birimleri

(GPU'lar)

v

TABLE OF CONTENTS

SUMMARY .. i

ÖZET .. iii

TABLE OF CONTENTS ... v

ABBREVIATIONS ... ix

LIST OF TABLES .. x

LIST OF FIGURES .. xii

LIST OF ANNEXES .. xv

PREFACE .. ix

INTRODUCTION .. 1

CHAPTER ONE

PURPOSE OF THIS THESIS

1.1. Literature Survey ... 3

1.2. Problem Statement .. 10

1.3. Study Objectives .. 11

1.4. Thesis Organization ... 12

CHAPTER TWO

THEORETICAL AND BACKGROUND

2.1. Anatomy of the Breast ... 13

 2.1.1. Anatomy and Physiology of the Breast ... 13

 2.1.2. Structure of the Breast ... 13

 2.1.3. Breast Conditions .. 14

2.2. Introduction to Machine Learning and Neural Networks 16

 2.2.1. Neural Networks .. 16

 2.2.2. A brief Introduction to Machine Learning .. 17

 2.2.3. Machine Learning .. 18

 2.2.4. Deep Learning ... 19

 2.2.5. Convolutional Neural Networks .. 20

vi

 2.2.5.1. Convolutional Layer .. 23

 2.2.5.2. Non-linearity (Activation Function) .. 24

 2.2.5.3. Stride………………………………………………………………25

 2.2.5.4. Padding .. 26

 2.2.5.5. Pooling layer .. 26

 2.2.5.6. Fully-Connected layer ... 27

 2.2.5.7. Dropout layer .. 28

 2.2.5.8. Classification layer .. 29

 2.2.5.9. Grouping layers ... 29

2.3. Popular CNN Architectures ... 30

 2.3.1. LeNet ... 30

 2.3.2. AlexNet ... 31

 2.3.3. VGGNet ... 32

 2.3.4. Residual Network (ResNet) ... 33

2.4. Introduction to Field Programmable Gate Arrays 35

 2.4.1. Field-Programmable Gate Arrays.. 35

 2.4.1.1. Programmable logic... 36

 2.4.1.2. Programmable interconnect ... 37

 2.4.1.3. Programmable I/O ... 37

 2.4.1.4. Customizable Functional Blocks ... 37

 2.4.2. FPGAs Versus Other Hardware Platforms .. 38

 2.4.3. FPGAs Versus ASICs ... 38

CHAPTER THREE

METHODOLOGY

3.1. Overview ... 40

3.2. Database .. 40

3.3. Preprocessing ... 40

3.4. Image Decomposition .. 42

3.5. Neural Network Modelling ... 45

3.6. Model Establishment ... 47

3.7. Performance Metrics ... 48

vii

 3.7.1. Mean Square Error …………………………………………………… 49

 3.7.2. Mean Absolute Error ………………………………………………….. 49

 3.7.3. Root Mean Square Error …………………………………………….... 49

 3.7.4. Accuracy ……………………………………………………………... 49

 3.7.5. Confusion Matrix …………………………………………………….. 50

CHAPTER FOUR

HARDWARE MODEL

4.1. Overview ... 51

4.2. PYNQ Development Board ... 52

4.3 Image Flashing. ... 55

4.4. Image Configuration ... 55

4.5. Prediction Models on FPGA ... 56

4.6. Deep Learning on FPGA .. 56

 4.6.1. Model 1 .. 57

 4.6.2. Model 2 .. 59

 4.6.3. Implementation LeNet-5 - ARM Linux OS .. 60

 4.6.4. Implementation AlexNet – ARM Linux OS ... 63

 4.6.5. Implementation Prototypes: Test Phase .. 66

CHAPTER FIVE

RESULTS AND DISCUSSION

5.1. Methods Overview .. 67

5.2. Results and Discussion of Proposed CNN .. 70

5.3. Pre-trained Models .. 76

5.4. Confusion Matrix .. 82

5.5. Machine Learning Models ... 82

5.6. Regression Model .. 86

5.7. ROC and AUC Measures .. 91

 5.7.1 Proposed Model (CNN) .. 92

 5.7.2. Machine Learning Models ... 92

5.8. Comparisons Between Implementation (CPU and PYNQ) 93

viii

5.9. Comparisons Between the Implementation of AlexNet and LeNet (CPU and

PYNQ) .. 96

CHAPTER SIX

CONCLUSION AND DISCUSSION

6.1. Conclusion .. 98

6.2. Discussion .. 99

6.3. Proposed CNN Over FPGA Development Board 100

REFERENCES ... 102

ANNEXES ... 109

RESUME ... 117

ix

 ABBREVIATIONS

CAD : Computer Aided Design

KNN : K-Nearest Neighbor

FPGA : Field Programmable Gate Array

CNN : Convolutional Neural Network

CPU : Central Processing Unit

SVM : Support Vector Machine

ANN : Artificial Neural Network

GPU : Graphics Processing Unit

PYNQ : Python Productivity for Zynq

BC : Breast Cancer

RF : Random Forests

ReLU : Rectified Linear Unit

API : application programming interface

DL : Deep Learning

ML : Machine Learning

MAE : Mean Absolute Error

MSE : Mean Square Error

RMSE : Root Mean Square Error

x

LIST OF TABLES

Table 1. Confusion Matrix Candidates’ Formula. ... 56

Table 2. PYNQ-Z2 Development Board Features. ... 56

Table 3. Required Libraries to be Installed on the PYNQ Development Board. 56

Table 4. The First Proposed Model of FPGA-based Breast Cancer Detection. 56

Table 5. Epoch-wise Results (MSE and Time Computation) for the First Proposed

Model.. ... 56

Table 6. The Second Proposed Model of FPGA Environments (Model 2)... 56

Table 7. Epoch-wise Results (MSE and Time Computation) for the Second Proposed

CNN Model 56

Table 8. Lasagne LeNet Configuration. .. 56

Table 9. Epoch-wise Results (MSE and Time Computation) for the LeNet-5 Model...

 .. 56

Table 10. Lasagne AlexNet Configuration.. .. 56

Table 11. Epoch-wise Results (MSE and Time Computation) for the AlexNet

Model…... .. 56

Table 12. The Configuration of the Proposed CNN Structure used in CPU-based

Learning.. ... 56

Table 13. CNN Model Training Coefficients.. .. 56

Table 14. Results of the First and Second Iterations of the CNN Model. 63

Table 15. Results of the Third and Fourth Iterations of the CNN Model. 63

Table 16. Results of the Fifth and Sixth Iterations of the CNN Model. 63

Table 17. Results of the Seventh and Eighth Iterations of the CNN Model. 63

Table 18. VGG-16 Neural Network Structure. ... 63

Table 19. AlexNet Neural Network Structure. ... 59

Table 20. LeNet Neural Network Structure .. 60

Table 21. Proposed Network Structure... ... 63

Table 22. Pre-trained Deep Learning Classification Performance Measures. 65

Table 23. Accuracy of Prediction Measures for all the Algorithms 68

Table 24. Regression Model Performance Metrics for the Machine Learning

Algorithms as Compared with the Proposed CNN. ... 69

Table 25. AUC Values for the Machine Learning Algorithms 68

xi

Table 26. Performance Comparison of the Proposed Models (CPU and FPGA) 68

Table 27. Performance Comparison of the AlexNet and LeNet Models (CPU and

FPGA) .. 68

xii

LIST OF FIGURES

Figure 1. Classification Categories of Breast Cancer ... 4

Figure 2. Comparison performance evaluation between VGG-16, ResNet-50 and Q 5

Figure 3. ROC curve for the 5-folds of cross-validation and the mean ROC curve 7

Figure 4. The surrounding structure and the breast ... 13

Figure 5. Breast structure .. 14

Figure 6. Histologically distinct breast cancers .. 16

Figure 7. Artificial intelligence (AI), machine learning (ML), neural networks (NN),

deep learning (DL) and spiking neural networks (SNN) ... 19

Figure 8. Features of extraction and classification of the visual image using

convolution neural networks .. 23

Figure 9. An illustrative example of arithmetic operations performed in the

convolutional layer of the CNN network ... 23

Figure 10. Activation functions: ReLU, tanh and sigmoid ... 25

Figure 11. Example of stride with convolution ... 26

Figure 12. Pooling output averages and maximums for a 2 x 2 filter with a stride of 2

 .. 27

Figure 13. A three-layer fully connected matrix ... 28

Figure 14. Representation of dropouts .. 28

Figure 15. CNN architecture as an example ... 30

Figure 16. Example of image classification using CNN architecture 31

Figure 17. LeNet mode's architecture ... 32

Figure 18. AlexNet mode's architecture .. 33

Figure 19. A structure of VGG network building blocks: convolution (Conv) and fully

connected (FC) ... 34

Figure 20. Basis of the residual network architecture ... 34

Figure 21. Residual learning: block of the residual network architecture 35

Figure 22. FPGA internal architecture .. 36

Figure 23. Coloured and RGB image channels ... 42

Figure 24. Neural network fundamental structure .. 44

Figure 25. A demonstration of CNN training processes ... 47

Figure 26. CNN training model procedure.. 48

xiii

Figure 27. PYNQ-Z2 FPGA development board structure ... 56

Figure 28. Software to flash the image OS into the PYNQ development board........... 57

Figure 29. Sample application for breast cancer image .. 68

Figure 30. Preprocessing model flow diagram.. 70

Figure 31. Confusion matrix of proposed CNN .. 78

Figure 32. Pre-trained deep learning classifier results (graphical representation) 84

Figure 33. Confusion matrix of VGG-16 .. 85

Figure 34. Confusion matrix of AlexNet .. 85

Figure 35. Confusion matrix of LeNet-5 ... 86

Figure 36. Confusion matrix of ResNet-18 ... 87

Figure 37. Confusion matrix of ShuffleNet .. 88

Figure 38. Graphical representation of the results of machine learning approaches

showing prediction measures for all the algorithms .. 89

Figure 39. Confusion matrix of Logistic Regression .. 90

Figure 40. Confusion matrix of Kernel Naïve Bayes .. 91

Figure 41. Confusion matrix of Linear Discriminant .. 91

Figure 42. Confusion matrix of KNN ... 92

Figure 43. Confusion matrix of Gaussian Naïve Bayes .. 92

Figure 44. Confusion matrix of Fine Tree... 93

Figure 45. Confusion matrix of linear SVM ... 94

Figure 46. Demonstration of ROC and AUC region for proposed CNN 96

Figure 47. ROC and AUC demonstration for the Kernal Naïve Bayes algorithm 97

Figure 48. ROC and AUC demonstration for the Logistoc Regression agorithm 97

Figure 49. ROC and AUC demonstration for Fine Tree algorithm 98

Figure 50. ROC and AUC demonstration for the Gaussian Naïve Bayes algorithm 98

Figure 51. ROC and AUC demonstration for KNN alorithm 98

Figure 52. ROC and AUC demonstration for the Linear Discrimant algorithm 98

Figure 53. ROC and AUC demonstration for the Linear SVM algorithm 99

Figure 54. Graphical comparison of AUC values between the proposed CNN and

machine learning algorithms .. 100

Figure 55. Graphical representation of the training time comparison of the proposed

models (CPU and FPGA) ... 101

Figure 56. Graphical representation of the accuracy comparison of the proposed

models (CPU and FPGA) ... 101

xiv

LIST OF ANNEXES

ANNEXES A. Three main requirements are to be fulfilled upon reaching to this step

 .. 109

ANNEXES B. Deep Learning Libraries ... 111

ANNEXES C. Caffe Project... 112

ANNEXES D. Uploading database file .. 115

ix

PREFACE

During the process of preparing this thesis , I would like to express my gratitude and

thanks to Assoc. Prof. Dr. Indrit MYDERRİZİ, who supported and guided me

throughout the period .

I do not forget my family, my wife who supported me until this moment .

Thanks to all of my friends who have always encouraged me.

1

INTRODUCTION

 Cancer is a major problem for public health worldwide, causing many deaths

and straining public and private health systems. For women, breast cancer is one of

the most common types of cancer, and it is also one of the most fatal unless detected

and treated early. More than 2.4 million new cases have been diagnosed, and 523,000

people are missing (Fitzmaurice et al., 2017). Breast carcinoma histopathology may

generally be analysed by examining the different types of tumours present, including

20 major tumours and 18 minor subtypes (Fletcher et al., 2002). A biopsy is the only

way to know for sure if cancer is present. The final diagnosis of breast cancer,

including grading and staging, is still performed by pathologists who examine minute

pictures under a microscope for visual findings. The histopathological analysis is a

demanding and lengthy procedure requiring enormous skill, attention and patience.

Computer-aided diagnosis (CAD) technologies, in turn, can enable pathologists to be

more productive, objective and consistent with their diagnoses (Motlagh et al., 2018).

 On the other hand, numerous advances in neural network technologies, including

transfer learning, ensemble learning and many types of regularisation, have

significantly enhanced neural networks' performance and have yielded tremendous

success in numerous disciplines. Pathologists currently utilise the major method to

assess cancers' stage, kind and subtype through visual evaluation of histopathology

slides. Many years ago, as the medical databases increased, a larger number of

histopathological slides were added. Advanced machine learning approaches were

incorporated. This naturally entails introducing deep learning techniques to the

medical problem picture categorisation (Gurcan et al., 2009). Deep neural networks

have shown their ability to revolutionise existing technologies by delivering

exceptional performance in both visual and audio processing. Over the last few years,

research on a deep neural network (CNN) has seen a dramatic increase. While a neural

network (NN) is like an average brain, CNN is an interconnected group of neurons

that are subject to learnable weight and bias adjustments. CNN focuses on image

processing. Thus, it may take advantage of certain aspects of images to boost its speed,

allowing it to handle big picture databases more efficiently (Rahman et al., 2016). On

embedded systems, the use of CNN allows real-time classification processes to be

2

done more dynamically. By off-line training, models can be established and used for

application deployment, allowing the system to concern itself with improving the

efficiency of forwarding propagation (i.e. deployment). Embedded CNN systems can

have a huge impact on numerous fields of study. Field-programmable gate arrays

(FPGAs) have the potential to make CNN acceleration more practical. FPGA is an

integrated circuit that allows them to be reconfigured at the gate level. A great deal of

bespoke logic (or look-up tables) is contained in it, which can be programmed into

multiple and varied digital modules for countless and various purposes (Gschwend et

al., 2020).

There are several ways to use FPGA to take advantage of the many benefits of

embedded CNN applications.

 FPGA's powerful parallel processing capacity enables the incorporation of CNNs

into embedded systems to significantly increase the rate of deployment.

 The reconfigurability of FPGA makes it possible to synthesise hardware

accelerators for a particular purpose. Each CNN model offers better resource

management and more customisation of the application.

 FPGA provides increased data processing capacity while using less electricity than

other systems, where energy consumption is an essential factor in the use of

devices.

The implementation side of the thesis aims to implement the CNN deployment design

flow on FPGA in a manner comparable to how it is implemented on CPU or GPU

platforms to enable FPGA-based CNN deployment with insights familiar to engineers.

In order to run Theano, which is a popular AI framework, the framework utilises the

Ubuntu OS on PYNQ's ARM core. Instead of packaging the FPGA application

programming interface (API) as an ordinary Theano CNN layer function, it is

packaged as a built-in Theano function, which could be instantiated in the same way

as a Theano built-in function. In this work, breast cancer is being studied using deep

learning and machine learning paradigms.

3

CHAPTER ONE

PURPOSE OF THE THESIS

1.1. Literature Survey

Outline

 Substantial attempts have been made for the detection of histological and X-ray

images of breast cancer (BC), where the two primary types of BC (benign and

malignant) are more generally detected by CAD and FPGAs. The current project is

about digital photographs of breast biopsy specimens, particularly open (surgical)

biopsies. Therefore, this state-of-the-art study will focus on image databases scanned

from breast biopsy samples. Several literary studies that focus on the histopathology

field, where there has been a considerable surge in research, use the researchers' own

datasets, various evaluation techniques and different performance measures (Irshad et

al., 2013).

Classification Categories of Breast Cancer

Two basic types of automatic BC classification-related works can be created based on

the feature representation. In the first type, efforts to automate the feature extraction

technique are included. Mammograms, magnetic resonance imaging, biopsy

thermography and digital imaging of biopsy slides, for example, could all be used to

image breast pathology (Yan et al., 2020). The features of the second type, the

Wisconsin Breast Cancer Dataset, have already been extracted. Figure 1 shows the

types of classification categories of BC. In this chapter, the most recent and important

procedures in the literature are presented, where technology is used to deal with

different data types of BC images. The results of the literature review are listed below.

4

Breast Cancer
Classification

MRI
Ultrasound

Thermography

Automatic
Image Processing

Previously
Extracted Features

FNA

Mammogram
(x-ray)

Biopsy

Others

CNB/VABB

Surgical

Image Processing

Aly et al. (2021) proposed a CAD system based on YOLO deep learning

approaches to discriminate between cancer and benign tumours in full-field digital

imaging and images of mammograms from the INbreast dataset. By employing the

suggested approach, the overall accuracy was 94.2%. The YOLO v3 algorithm,

ResNet and Inception were used to detect masses. Feature extraction methods and k-

means clustering for the creation of anchors that correspond to the original dataset.

Tsochatzidis et al. (2021) proposed a novel way for integrating segmentation

information into a CNN. The strategy was used to improve the diagnosis performance

of a CNN classifier by using both ground-truth and artificially generated segmentation

maps. Because segmentation quality has been found to have an important impact on

diagnosis performance, the current study should focus on enhancing automatic

segmentation in the future. Two datasets were used: DDSM-400. There are 400

mammograms in this dataset (196 benign and 204 malignant), with masses chosen

from the DDSM.

Rahman et al. (2020) presented a BC CT image diagnosis using pre-trained CNN

models and classifying mammographic mass tumour images as benign or malignant.

Transfer learning, special preprocessing and data increases were introduced to address

Figure 1. Classification Categories of Breast Cancer

5

the restricted availability of training datasets. The proposed architectures were

evaluated in the digital database for screening mammography (DDSM) and achieved

a precision of 0.796, 0.754 accuracies and a reminder of 0.891 on a CNN-like

InceptionV3 model. However, a 0.857 precision and a retrieval rate of 0.873 with a

ResNet-50-like CNN network were achieved. Overall, proposed a model similar to the

ResNet-50 network achieved ~5% better than the InceptionV3 network.

Omonigho et al. (2020) improved AlexNet deep CNN to classify BC into benign

and malignant tumours, including the BreakHis dataset. The work included different

convolutional 5 x 5 and 3 x 3 filter sizes in each of the first four layers. A preprocessing

algorithm was used to eliminate noise factors and reduce calculation time. The results

show that the completely connected layer used as a classifier in the updated

architecture of AlexNet provided an overall rating accuracy of 95.70%, which was

improved over the conventional techniques used for mammogram analysis.

Ismail et al. (2019) compared the detection of BC with two model networks for

deep learning. The overall process included preprocessing images, classification and

evaluation of performance. Using MIAs mammography datasets, researchers

evaluated the efficacy of deep learning models VGG-16 and ResNet50 in

distinguishing between benign and malignant cancers. The results show that VGG-16

produced 94% better results in accuracy than ResNet-50 with 91.7%.

 VGG-16 ResNet50 Q. Zhang et.al [11]
Precision 89% 88% 82%
Recall 99% 94% 86%
Accuracy 94% 91.7% 83.2%

89% 88%
82%

99%
94%

86%
94% 91.70%

83.20%

VGG-16 ResNet50 Q. Zhang et.al [11]

Precision Recall Accuracy

Figure 2. Comparison performance evaluation between VGG-16,

ResNet-50 and Q (Ismail, N. S., & Sovuthy, C., 2019)

6

Zhang et al. (2019) presented the detailed learning approach linked with object

identification to identify and classify lesions in order to detect BC. Transfer learning

was also applied based on the faster R-CNN network. Also, the five network extractors

ResNet101, InceptionV2, InceptionV3, MobileNet and Inception ResNetV2, were

analysed to examine the model's effect (DDSM) on the mammography screening

dataset. The accuracy of the neural networks used in this study was demonstrated

(MobileNet 71.1%, InceptionV2 73.9%, ResNet-101 76.4%, InceptionV3 78% and

Inception ResNetV2 80%).

Motlagh et al. (2018) employed multiple types of ResNet networks on BC digital

pictures, including the BreakHis dataset. Colour map selection and data augmentation

were used as preprocessing techniques to prepare data for further extraction and

categorisation. Deep CNNs were then used to identify and detect malignant and benign

instances using pre-trained and fine-tuned deep CNNs. Approximately 85% of the

shots were chosen at random, with the remaining images used for testing to create a

training set. For benign and malignant subtype classifications, this was done at 94.8

and 96.4%, respectively. The binary classification job had a precision of 98.7% when

it came to benign and malignant classes.

Salem et al. (2018) presented the study of DCNN multi-view for the

classification of mammograms. Despite the small size of the BC image dataset, the

ability of DCNN appeared to be superior to even a small dataset. Also, the recall metric

was considered an important factor in network performance. The recall metric should

be maximised to demonstrate the significance of using cross-validation to ensure that

the learning process is not overfitting. The results show an average rating accuracy of

80.10% for 5-fold cross-validation and an average AUC of 0.78.

7

Figure 3. ROC curve for the 5-folds of cross-validation and the mean ROC curve

(Salem, M. A. M., 2018, December)

Akbar et al. (2017) presented a new strategy for CNN regularisation. The key

notion was the transition from convolutional to fully connected layers (FC). The

modified transition model learned filters of different dimensions and then compressed

them using average pooling. According to the authors, the total test accuracy of the

BreakHis dataset was 82.7%.

Han et al. (2017) proposed an additional deep learning multi-classification

model. The class-structured deep convolutional neural network (CSDCNN) was an

end-to-end recognition approach that used a hierarchical representation and feature

space constraints to maximise the Euclidean distance between inter-class labels. The

original BreakHis dataset, which includes both oversampled imbalanced classes and

the same database augmented on the training set, was employed to evaluate the

technique's performance. Using the BreakHis dataset boosted the achieved

performance for the picture- and patient-level analysis. Overall, the accuracy was

96.07 and 96.25% for image- and patient-level binary classification, respectively.

Wei et al. (2017) have developed an approach called BiCNN, which was inspired

by the CNN network. Two datasets were used, the original and an augmented version,

incorporating class and sub-class labels. A total of 50, 25 and 25% of the photos were

8

in the training, validation and test sets, respectively. The stated patient- and image-

level identification rate was 97%.

Kahya et al. (2017) suggested an adaptative sparse support vector intended to

accomplish the feature selection and classifications on histopathology pictures. The

algorithm they created was based on the smooth support vector machine (SSVM) with

L1-norm and Wilcoxon rank sum test. A 10-fold cross-validation was utilised in the

proposed adaptive SSVM in the experimental context and resulted in enhanced

classification accuracy across all magnification factors, with an average value of 94.97

(40×), 93.62 (100×), 94.54 (200×) and 94.42 (400×).

Spanhol et al. (2017) presented a study on the deep convolutional activation

feature (DeCAF) use of the BreakHis dataset for BC identification, the results of the

image-based evaluation and the results of the correction-based evaluation. The CNN-

based method had an accuracy of approximately 77.8% when running a four-class

experiment and 83.3% binary category test accuracy when validating the 2015 dataset

for the BC classification challenge. Also, the CSDCNN standardised deep learning

model was used to classify histopathological images of BC.

Araújo et al. (2017) proposed an additional deep learning CNN model for

classifying haematoxylin biopsy images of the BC dataset. Images were placed in four

categories: normal tissues, lesions, malignant neoplastic tumours or invasive

carcinomas. The network's architecture was set up to focus on both nuclei and overall

tissue organisation, depending on the scale of the details. This architecture allowed for

whole-slide pathology images to be expanded upon. Some of the features extracted by

CNNs were fed into the classifier to train it. Accuracies of 77.8% for four different

types of class and 83% for carcinoma/non-carcinoma were reached. Within that small

statistical error, the cancer detection system was about 96% sensitive.

Gupta et al. (2017) proposed two NNs of BC using DL methods, in which CNN

variants were being classified. The data on the two proposed NNs were trained by the

BreakHis dataset. An independent magnification classification of BC was suggested

in 2016 based on a CNN with different sizes of convolution kernels (seven, five and

three kernels). Multi-task CNN (MTCNN) classification used the BreakHis dataset for

BC and recorded an 83.25% recognition accuracy.

9

Spanhall et al. (2016) presented how a CNN (a network of computers known as

a cluster neural network) trained directly from histopathological images to produce the

described results. The patch method used by CNNs takes advantage of extracting sub-

images during training and testing phases. It was important to extend the training set

through randomly defined extraction of patches from the data in training. After

classifying each patch, their classification findings were brought together, and the

overall findings of the patch analysis were produced. Baseline accuracy increased by

between 4 and 6% due to the methodology used in this study.

Chan and Tuszynski (2016) presented an approach that sought to use fractal

dimension as a descriptor and SVM as a classifier to examine BCs. In terms of their

experimental approach, the authors implemented their methodology and tried to

categorise the tumour subtypes they found in the BreakHis dataset. Despite the F1

score of 97.9%, the reported accuracy was only 55.6%.

Spanhol et al. (2015) compiled several combinations of six different visual

feature descriptors, each tested with classifiers, and average accuracies were 80 to

85%. The BreakHis dataset was used for training 70% of the data, while the remaining

30% was used for testing. It was instead used to create the training set. For example,

in order to employ the five divisions of a practice test as well as the relevant results, a

procedure must be established that includes both the five divisions of the practice test

and the results. The possibility to make a fair comparison of approaches was enabled

because the samples for each trial are publicly available.

Filipczuk et al. (2013) employed a database including 737 pictures of cytological

samples taken from Fine Needle Aspiration (FNA) biopsies done on 67 individuals at

Polish Regional Hospital. This breast cytological material was transformed into virtual

slides, and a pathologist then manually selected 8-bit RGB TIFF files of 1,538 × 828

pixels generated from each of the selected locations. This dataset contained 25 benign

(with an aggregate total of 275 photos) and 42 malignant (an aggregate count of 462

images) samples. Four separate classifiers in 25 characteristics represented the nuclei.

The proposed approach correctly classified 98.51% of samples as benign or malignant.

George et al. (2013) presented a method for accurately identifying and tracking

nuclei in breast cytological images using an automated cell nuclei identification and

segmentation method. Classifying images as malignant or benign breast tumours was

10

done using the extracted features from this method. This study's dataset was collected

in partnership with the Early Cancer Detection Unit at the Ain Shams University

Hospital in Egypt. Breast lumps, also known as fibroadenomas, were taken for the fine

needle aspiration cytology (FNAC) procedure, where samples were stained with May-

Grünwald-Giemsa3 or Diff4 stain. There were 92 photographs in this set of RGB JPEG

microscopic photos with a resolution of 2,560 x 1,920 pixels, 45 of which depict

benign lesions and 47 of which depict malignant tumours.

1.2. Problem Statement

According to the literature, medical applications-based image processing is an

evolving topic that is still under the reliability improvement phase. Researches are

competing to implement a reliable structure for computer vision for medical purposes.

As per the literature survey illustrated in this chapter, machine learning-based

medical applications can predict the conditions of patients or, in other words, diagnose

the case objects for infections in various diseases. The current application of machine

learning-based medical applications is still under development and has not yet come

into practical fields.

Some works seen in the literature are deploying the NNs with a large number of

hidden layers for classification of the data, impacting the performance of the overall

model by consuming a big amount of computational cost and, hence, increasing the

processing time.

Today, images have become vital for various applications, such as pattern

recognition, security systems, face recognition, remote sensing, etc. Medical

applications of image processing are important fields aimed for human living

enhancement.

Due to the popularity of image processing applications, new fields have begun

to be established using the technology of image processing called medical image

processing for diagnosis.

Considering that noise interference with the image could manipulate the

information of every channel, and the noise impact is different in each channel, the

need for multiple channels while processing the image digitally is a must and is the

11

only way for matching two images with each other in applications like face or pattern

recognition. Noise impacting the signal channel, such as a grayscale image, may

corrupt all information preserved in the pixel, while the noise impact is lesser while

dealing with the multi-channel image such as coloured images. However, this poses

another challenge because of the amount of information and the difference between

the states of the image data, which affects the system’s accuracy.

1.3. Study Objectives

A machine learning-based predictor is used to predict BC in a large image dataset.

The model is aimed to provide a high accuracy prediction of the disease by satisfying

the following points.

1. To conduct FPGA-based learning for BC diagnosis by training the model in FPGA

environments to enhance the model’s accuracy.

2. Predict cancer occurrence in picture data using sophisticated NNs such as CNN.

This model is predicted to forecast with high accuracy. This type of technology was

created recently to address the problems associated with learning and error when

training classic NN models.

3. The prediction performance of the CNN is evaluated in different model

hyperparameters to meet the optimum optimisation of the aforementioned outcomes

to justify its performance.

4. To understand the prediction performance, other paradigms, such as deep learning

and machine learning, i.e. machine learning tools such as k-nearest neighbor (KNN),

random forest (RF), etc., were also used for performance comparison. Pre-trained deep

learning paradigms were used for the same purpose, such as VGG-16, AlexNet,

ResNet-18, ShuffleNet and LeNet.

5. The mean square error, mean absolute error, root mean square error, prediction time

and prediction accuracy were used to evaluate the performance of the models

employed in this study.

6. Implementation of smart and consistent data preprocessing models that tackles the

drawbacks, such as data variance.

12

1.4.Thesis Organization

 There are six technical chapters in this thesis report.

 Chapter One presents a collection of literature surveys and related works,

including general information, related work, the problem statement and the

objective of the thesis.

 Chapter Two provides a theoretical background of BC disease, explains the deep

neural network structures and introduces field-programmable gate arrays (FPGA).

 Chapter Three, entitled ‘methodology’, illustrates the methods and theoretical

parts with coding parts that form the project paradigms, such as the preprocessing

model, developing the algorithms with the details and evaluating developed

algorithms.

 Chapter Four presents the practical implementation of the FPGA board with

experimental results.

 Chapter Five is meant to demonstrate the results and the outcomes of this study,

along with the discussion and comparison of the results with the experiments.

 Chapter Six presents the conclusion and discussion.

13

CHAPTER TWO

THEORETICAL AND BACKGROUND

2.1. Anatomy of the Breast

 2.1.1. Anatomy and Physiology of the Breast

The breast is the tissue of the thoracic muscles. Women's breasts are specialised

tissue containing milk (glandular) and fatty tissue. The fat quantity determines the

breast size. The milk-producing breast is arranged in 15 to 20 parts, known as lobes.

Each lobe contains smaller structures, called lobules, in which milk is produced. The

milk moves through a network of narrow tubes known as ducts. The ducts attach and

form larger ducts, which essentially leave the skin in the nipple. The dark skin region

around the nipple is known as the areola (Ellis, H., & Mahadevan, V., 2013).

Connective tissue and ligaments sustain and form the breast. Nerves give the breast

feelings. Figure 4 shows the collarbone, pectoral muscle, armpit and breastbone.

2.1.2. Structure of the Breast

The breast consists of a mass of glandular, fatty and connective tissue. The breast is

lying on the chest muscle called the pectoral muscle. The female breast, as shown in

Figure 4, stretches from below the collarbone (clavicle), the axilla (axilla) and over to

the breastbone (sternum) (Ellis, H., & Mahadevan, V., 2013). The breast consists of:

Figure 4. The surrounding structure and the breast (Zhang, H., 2015)

14

Lobules: glands whose primary function is to make milk, and a portion of the breast

lobe connects to the nipple through ducts. During pregnancy, the lobules of the breast

enlarge naturally; this is an example of normal adenosis. After pregnancy and nursing,

the lobules partially retreat.

Ducts: the milk ducts, also known as lactiferous ducts, are the tubes that bring breast

milk from the breast tissue to the nipple. In the breast, there are between 15 to 20 milk

ducts.

Fatty and connective tissue: these are terms used for describing breast tissue composed

of nearly all fatty tissue. Fatty breast tissue does not appear dense in a mammogram,

making identifying tumours or other breast changes simpler. Fatty breast tissue in older

women is more prevalent than in younger women.

Areola: is the pigmented region around the nipple on the breast. More commonly, the

areola is a small circular region on the body, with a different histology from the

surrounding tissue or other small circular areas, such as inflamed skin. The adult

human female nipple has numerous small openings arranged radially at the tip of a

nipple (lactiferous duct). Other small openings in the areola, known as Montgomery's

drums, are sebaceous glands, as shown in Figure 5.

Figure 5. Breast structure (Zhang, H., 2015)

15

2.1.3. Breast Conditions

Breast cancer: Malignant (cancerous) cells that grow abnormally in the breast

and, if left unchecked, spread to the rest of the body are known as BC. BC is a disease

that affects almost primarily women, although men can be afflicted as well.

Lumpiness, swelling or changes in the skin are all signs of BC, according to Dixon, J.

M. (Ed.) (2012).

Ductal carcinoma in situ: Ductal carcinoma in situ (DCIS) of the breast refers to

lesions made up of aberrant epithelial cells that are entirely contained within breast

ducts and do not spread beyond the basement membrane. BC in duct cells has not

penetrated or disseminated across the body. Women diagnosed with DCIS are likely

to be healed, as shown in Figure 6 (A). Women with DCIS diagnoses are exceptionally

likely to be cured since BC in duct cells has not infiltrated or spread farther into the

body.

Lobular in situ carcinoma (LISC): While it is known as LCIS, it does not invade or

spread and is not real cancer in the milk-producing lobular cells. However, in the

future, women with LCIS are more likely to develop invasive BC, as shown in Figure

6 (B).

Invasive ductal carcinoma: This is a BC that starts in the cells of the duct but then

invades the breast more deeply and is able to spread to the rest of the body

(metastasising). The most common type of invasive BC is invasive ductal carcinoma,

as shown in Figure 6 (C).

Invasive lobular carcinoma: A BC that starts in cells that produce milk but then

deepens in the breast, which can spread (metastasise) to the rest of the body. Invasive

lobular carcinoma is a rare type of cancer of the breast, as shown in Figure 6 (D).

Tubular carcinoma: A tubular form of invasive BC that is extremely rare. The most

common cancer found in the colon is tubular in form. Tubular cancer is a kind of ductal

carcinoma that originates in the tubular tissues of the body (IDC). The IDC’s progress

to other locations in the duct and invade other tissues, as shown in Figure 6 (E).

Medullary carcinoma: This is a type of breast carcinoma. BC that starts in the milk

ducts is known as ductal carcinoma. The tumour on this BC is named for the medulla.

https://www.webmd.com/breast-cancer/ductal-carcinoma-invasive-in-situ

16

Medullary carcinoma of the breast accounts for 3 to 5% of all confirmed BC cases, as

shown in Figure 6 (F).

Mucinous carcinoma: Also known as mucinous, it makes up just 2% of all BCs.

Mucinous BC occurs in the breast's milk ducts, much as other forms of invasive ductal

cancer, before spreading to the tissues around the duct, as shown in Figure 6 (G).

Papillary Carcinoma: This is a rare form of BC that only occurs in the ducts. The

name derives from the papules, or finger-like projections, that can be seen as cells are

examined under a microscope, as shown in Figure 6 (H).

2.2. Introduction to Machine Learning and Neural Networks

2.2.1. Neural Networks

It was in the early 19th century that the first NN architecture was created. NNs, which

were derived from neuroscience, have influenced ANN, modelling their formation,

which often involves many artificial neurons. The neurons are arranged in a network

to form a neural feed network. The synaptic dendrites are modelled by the weighted

sum of the input received from other neurons. The neuron's input value (Xi) is based

on the total weighted inputs (W i), which are impacted by a constant value of 1. This

input is then fed into a non-linear function that yields the neuron's output signal

equation.

Figure 6. Histologically distinct breast cancers (Gour, M., Jain, S., & Sunil Kumar,

T., 2020)

17

𝑂𝑈𝑇𝑛𝑒𝑢𝑟𝑜𝑛
𝑖 = ∑ 𝐼𝑁𝑃𝑈𝑇𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝐵𝑖𝑎𝑠𝑖 (1)

𝐾𝑖𝑛𝑝𝑢𝑡

𝐽=1

The idea behind NNs is that they are designed to learn with minimal guidance from

humans. When training is completed, the performance of the NN improves. The

network knows how to connect data points that include problems with solutions,

putting in the input and getting out the output to help find solutions to new problems.

Before implementing any system, the network must be trained on limited data

collection, as it is impossible to set up parameters like weights and biases without a

training system. The initial weights are all tiny and have a haphazard weight

distribution. Non-linearity supplies weighted inputs that have been multiplied when

calculating the difference between the actual output (labelled samples) and the output

produced by non-linearity. Because parameters (weights and biases) are not picked

manually in the NN but learned during this process, the network must be trained on a

specific collection of instances before it can be set up. A network of labelled training

samples is provided, small random weights are used to begin the workout. Non-

linearity provides inputs that are multiplied by weights. Weight values are optimised

to reduce error. The backpropagation algorithm (Le, Q. V., Ngiam, J., Coates, A.,

Lahiri, A., Prochnow, B., & Ng, A. Y., 2011) is used to spread the results output across

the network and reduce error. The stochastic gradient descent (SGD) (Bottou, L.,

2010) is frequently used to solve this.

2.2.2. A brief Introduction to Machine Learning

Machine learning is an approach to artificial intelligence whereby ‘computers’,

like humans, learn. Machine learning discusses how program structures can learn and

develop experience automatically. Learning in this sense is not heart learning but

identifying problematic trends and smart decisions based on data. The challenge arises

from the fact that all conceivable options are too difficult to define given all possible

inputs. Machine learning develops algorithms that discover information based on

sound statistical and computational principles from real data and experience to tackle

this issue. Machine learning is generally divided into two main types: supervised

learning and unsupervised learning (Mohri, M., Rostamizadeh, A., & Talwalkar, A.,

2018).

18

Supervised learning: For training, the learner is given different samples labeled, and

then guesses what is wrong; this is the most common scenario in which problems with

categorisation, regression and classification develop. If supervised training is

employed, the network receives input and output, comparing the processed output to

the desired output. Errors are then propagated back through the network to change the

network's weights. This process repeatedly happens as the weights are changed

continuously to reduce the error. A training dataset is called the training package.

While improving the link weights, the data set gets processed numerous times by

utilising the current framework (Mohri, M., Rostamizadeh, A., & Talwalkar, A.,

2018).

Unsupervised learning: The learner only receives unlabelled training data and

forecasts all unknown areas. As no labelled example is commonly available in this

context, it can be difficult to measure a learner's output quantitatively. Clustering and

reduced dimensionality are examples of unsupervised learning issues. In unsupervised

training, input is given but not desired output. Then the device itself must determine

what features it uses to group input data. This is also called adaptation. Clustering

typically uses unsupervised learning (Mohri, M., Rostamizadeh, A., & Talwalkar, A.,

2018).

2.2.3. Machine Learning

One way to understand machine learning is to think of it as a collection of

algorithms that make decisions without being explicitly programmed. When a

computer programme learns from experience E concerning some task T and some

success measure P, it is said to learn from experience E if its performance on T, as

calculated by P, increases with experience E (Mitchell et al., 1997). The experience E

will be watching the software classify tens of thousands of images since this term

pertains to image classification. Assignment T would be image classification, and the

success measure P would be the likelihood that the image is correctly classified. More

often than not, learning algorithms have been effective in fields such as:

1- Medical diagnosis

2- Computational biology applications

3- Speech recognition

4- Natural language processing

19

5- Computer vision tasks

6- Text or document classification

7- Optical character recognition (OCR)

8- Games

9- Unassisted vehicle control (robots, navigation)

10- Recommendation systems, search engines, information extraction systems

2.2.4. Deep Learning

An extensive list of fields has been changed by a subset of AI called machine

learning in recent decades. Deep learning originated from NN, a type of machine

learning (ML). Since its inception, DL has become increasingly effective, improving

its performance greatly in nearly every application sector. Figure 7 depicts the

taxonomy of AI. Deep learning is an ML class that was mostly developed in 2006.

AI

ML

Brain-Inspired

SNN NN

DL

DL takes place using an artificial NN, which comprises a number of levels organised

in a hierarchy. At the initial level in the hierarchy, the network discovers something

easy and transfers this information to the next level. This basic knowledge is taken

Figure 7. Artificial intelligence (AI), machine learning (ML), neural

networks (NN), deep learning (DL) and spiking neural networks (SNN)

(Chandra, A. L., Desai, S. V., Guo, W., & Balasubramanian, V. N., 2020)

20

from that level, merged into something a little more complicated and passed on to the

third level. This process continues as each level in the hierarchy builds on the feedback

it receives from the previous level. For example, a deep study network's initial level

of an image of a cat might use differences in a picture's light and dark areas to learn

where the edges or lines are in a cat. The first level transfers this knowledge about the

edges to the second level, combining the edges in simple forms like a right angle or

diagonal line. The third stage blends basic types with complex shapes such as ovals or

rectangles. The next step might merge the ovals and the rectangles into rudiments. The

method continues until the top hierarchy is reached, where the network can classify

cats. The network also learns to classify all other species it encounters with the cats

when learning about them. Architectures of core DL, as we saw in the examples above

of what DL and ML are, are the essential part of this form of AI data set used to train

the NN model. For the image classification mission, many researchers used the well-

known ‘ImageNet’ database. ImageNet is a WordNet hierarchy-organised image

dataset. WordNet is a broad English lexical database. Nouns, verbs, adjectives and

adverbs are grouped into a collection of cognitive synonyms (synsets). Synsets are

interconnected through conceptual-semantic and linguistic relationships. A browser

will navigate the resulting network of meaningfully linked terms and concepts

(Fellbaum, 1998). A meaningful concept in WordNet, probably represented in several

words or sentences, is called a 'synonym collection' or a 'synnet’. (Fellbaum, 1998).

WordNet has more than 100,000 sysnets, with more than 80,000 nouns. (Fellbaum,

1998).

Classification: Predicting a data point's class is known as classification. In other

contexts, classes are referred to as goals/labels or divisions. For example, it might

assign items to categories like politics, business, sports or weather, while picture

classification might assign items to landscape, portrait or animal. The number of

categories in such tasks is typically limited, but in certain complicated tasks, such as

OCR, text labelling or speech recognition, it may be high and even unbounded (Mohri,

M., Rostamizadeh, A., & Talwalkar, A., 2018).

Ranking: Object ranking is a relatively new field of study within information retrieval

that is concerned with ranking objects, such as named entities, in the context of a user

query or application. The canonical ranking example is web search, which returns web

pages specific to a search query. In the framework of the implementation of knowledge

21

extraction or natural language processing systems, several other rating issues occur

(Mohri, M., Rostamizadeh, A., & Talwalkar, A., 2018).

Clustering: The objective of clustering is to divide a population or set of data points

into a number of categories. Data points in the same groupings are more comparable

to one another than data points in other groups. Put another way, the goal is to separate

groups with similar characteristics and assign them to clusters for analysing very large

data sets. Clustering algorithms, for example, seek to classify ‘communities’ within

large numbers of individuals in the sense of social network research (Mohri, M.,

Rostamizadeh, A., & Talwalkar, A., 2018).

Manifold Learning and Dimensionality Reduction: Carry out an operation on the

items, thus transforming their original representation into a lower-dimensional

representation. One of the key difficulties in image, video and signal processing, in

general, as well as ML, is dimensionality reduction of high-dimensional data. The

digital image preprocessing method can include multiple elements (Mohri, M.,

Rostamizadeh, A., & Talwalkar, A., 2018).

2.2.5. Convolutional Neural Networks

 In the 1990s, the CNN algorithm was applied to the manuscript digit

classification problem, and it was successful (LeCun, Y., Bottou, L., Bengio, Y., &

Haffner, P., 1998). This led to the advancement of CNNs, which led to additional

advancements and superior results in recognition tasks. Deep neural networks (DNNs)

may have the advantage over CNNs in terms of the ability to provide facial

recognition, but they fall short of human visual processing ability and require greater

processing. The process learns and extracts 2D functionality abstractions, but it also

structures 2D and 3D images. The maximum pooling layer of CNNs absorbs changes

in shape. Also, the CNNs have far fewer parameters than a fully connected network of

comparable size, where each connection is sparse, meaning it is only active in a subset

of nodes and has fixed weights. In particular, CNNs can better overcome the gradient

problem by decreasing gradient-based learning. CNNs are known to develop an

extremely well-tuned weighting algorithm if a gradient-based algorithm can trace the

complete network and minimise an error criterion (LeCun, Y., Bottou, L., Bengio, Y.,

& Haffner, P., 1998).

22

Figure 8 depicts two components of the CNNs architecture: feature extractors and a

classifier. Every function extraction layer has layers for each network layer that

receives information from another layer. In the previous layer, the origin is output and

automatically transferred to the next layer as input. The three types of layers in the

CNN architecture are concentration, max pooling and classification (Alom, M. Z.,

Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K.,

2018). Convolution and max pooling layers exist in the lower and middle layers of the

network. The levels numbered one through ten represent ‘turns’ (in a game of pool,

one would consider ten turns) for max pooling, while odd-numbered layers are for

turning and bending. The feature mapping is made up of max pooling layer output and

convertible layer output nodes. Each layer is produced by combining two or more prior

layers. Each layer is associated with a limited section of the connected plane, and the

next layer's nodes are linked to these regions. The input node is translated into a feature

extraction point via the convolution layer node. The organisation of features occurs

from the basic components. The size of a feature decreases when the feature extends

to the top layer or stage. Depending on the kernel's size, procedures like convolution

and max pooling depend on how long they take. To better represent the classification

of an input image, the number of feature maps should increase (Schmidhuber, J.,

2015). The last layer of the CNN is utilised as a path to create a grading layer, which

is a fully connected network. It has come about thanks to better performance and the

use of neural feed networks as a classification. The necessary number of variables (in

the form of weights) are used to populate the dimensions of the weight matrix in the

final NN, which is used in the classification layer. This is quite complex but also quite

expensive concerning network or learning parameters. Numerous options exist as an

alternative to networks, such as average pooling and worldwide average pooling,

which are entirely connected. The classification of a particular class is made in the top

classification layer, where a SoftMax layer is used to evaluate the score. The classifier

categorises the findings in groups based on its highest-ranking class. Following the

next part, details on the mathematical aspects of each layer of CNNs are presented.

23

2.2.5.1. Convolutional Layer

 A CNN's key component is the convolutional layer, which holds most of the

model's operations. A three-dimensional multiply–accumulation (MACC) operation is

used in the convolutional layer. This layer also executes the mathematical method

known as convolution, which includes the operation. Figure 9 depicts a kernel/filter

with a given input multiplied by an input set (the receptive area) and then combining

weighted inputs with a given input multiplied by an input set (the receptive area).

In NNs, where the constant value effectively transposes the line, bias is akin to the role

of a constant in a linear function. The input to the activation function in a scenario with

Figure 8. Features of extraction and classification of the visual image using

convolution neural networks (Alom et al., 2018)

Figure 9. An illustrative example of arithmetic operations performed in the

convolutional layer of the CNN network (Hamdan, M. K., & Rover, D. T., 2017)

24

no bias is 'x' multiplied by the connection weight 'w0'. The activation function

introduces non-linearity and restricts the output to an appropriate range by an

activating function like the rectified linear unit (ReLU). Effects of the activation

feature are transmitted in the next layer to corresponding neurons. The spatial output

computation size is shown in Equation 2.

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =
(𝐼𝑛𝑝𝑢𝑡𝑤𝑖𝑑𝑡ℎ − 𝐹𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1 (2)

Three hyperparameters occur when determining the size of the output in Equation 2:

1. Depth. It is the number of filters we want to use, an input learning to look for

something different.

2. Stride. The move. When we pass the filter along with the input, we must determine

how to do several pixels every time.

3. Zero padding. Often it is simple to pad the volume of input types; a border of one-

pixel size is used with zeros around the edge, summarising a convolutional layer.

2.2.5.2. Non-linearity (Activation Function)

 The most frequent activation functions are sigmoid, tanh and ReLU. Tanh =

tanh(x) activation functions must be applied to each pixel in the input to ensure non-

linearity in the network and remove unneeded information. Unlike ReLU, which

converges faster during training, it requires a longer CNN setup time (Krizhevsky, A.,

Sutskever, I., & Hinton, G. E., 2012). In addition, ReLU is generally defined as a zero-

threshold operation ReLU = max (0, x). The various forms of activation functions are

shown in Figure 10.

25

.

Figure 10. Activation functions: ReLU, tanh and sigmoid (Dureja, A., & Pahwa, P.,

2019)

2.2.5.3. Stride

 Another basic building component of convolution utilised in CNNs is a strided

convolution. This can be thought of as downsampling of the complete convolution

function's contribution. If every s pixel is sampled in every direction in the display, a

convolution function can be created down the sample c that is shown in Equation 3.

𝑍𝑖,𝑗,𝑘 = 𝑐(𝐾, 𝑉, 𝑠)𝑖,𝑗,𝑘 = ∑ [𝑉𝑙(𝑗−1)×𝑠+𝑚,(𝑘−1)×𝑠+𝑛𝐾𝑖,𝑙,𝑚,𝑛] (3)

𝑙,𝑚,𝑛

The stride of this downsampled convolution is referred to as s. It is also possible to

designate a different stride for each motion direction. Figure 11 shows a visual

illustration of the concept (stride with convolution). Figure 11 shows an example of

how to employ a double stride. A two-stepped convolution with a phase of one-pixel

is the same as a one-pixel forward skip, and a stride of one-pixel can be seen as

convolution accompanied by downsampling. Obviously, the two-step solution requires

the computation of several values and then discarding them (Goodfellow, I., Bengio,

Y., Courville, A., & Bengio, Y., 2016).

26

S1 S2 S3

X1 X2 X3 X4 X5

S1 S2 S3

X1 X2 X3 X4 X5

X1
X2 X3 X4 X5

Strided
convolution

Downsampl
ing

Convolution

2.2.5.4. Padding

 The single most important characteristic of any convolution network is the

capacity to initialise the input to a uniform V. Without this explicitly, the user

interfaces element, the image's width would be one pixel less for each level of the

representation. Zero-padded feedback to monitor the kernel width and the scale of the

resulting picture independent of input growth is required of the network, which shrinks

the network's spatial extent (Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y.,

2016).

2.2.5.5. Pooling layer

Another component of a CNN is the pooling layer. Its purpose is to gradually

shrink the representation's spatial size in order to reduce the number of parameters and

computations in the network. Each feature map is treated separately by the pooling

layer. The most popular pooling strategy is maximum pooling. Non-linear

subsampling, which reduces the number of network layers in our function, is known

as spatial pooling. Common ways to pool include max and average pooling. Max

pooling will take the maximum value of the neurons and move it to the next layer,

Figure 11. Example of stride with convolution (Zhou, Y., Zhao, H., Chen, J.,

& Pan, X., 2019)

27

leaving just the neurons whose values have the maximum in the pooling filter. In

average pooling, every neuron in the filter contributes to the output of each neuron in

the next layer, as seen in Figure 12.

2.2.5.6. Fully-Connected layer

 The fully connected (FC) layer typically comes before the classification layer,

which includes the largest number of parameters, as each neuron in this layer is

connected to all neurons in the layer before it, and parameters on the relation between

those neurons are translated. Input in this layer is multiplied by corresponding weights,

biases added and nonlinearity introduced as convolutional layers, as shown in Figure

13.

Input

Hidden

Output

6 8

3 4
1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4
6 8

3 4

Figure 12. Pooling output averages and maximums for a 2 x 2 filter with a stride of

2 (Akhtar, N., & Ragavendran, U., 2020)

Figure 13. A three-layer fully connected matrix (Rørmann Olsen, I., 2018)

Max pool with 2×2

filters and stride 2

Avg pool with 2×2

filters and stride 2

x

Single depth slice

y

28

2.2.5.7. Dropout layer

 The dropout layer is a method used in large CNNs to prevent overfitting during

training. This layer drops a selectable percentage of its connections randomly not to

learn specific mappings and imposes redundancies into the weights learned. Figure 14

is an example showing the use of the dropout method used in CNN networks.

(b) After applying dropout(a) Standard Neural Net

2.2.5.8. Classification layer

 The final class output of the preceding layers needs to be classified by the last

layer of a CNN, and this layer's primary responsibility is to do so. This layer uses

SoftMax for the classification process. In short, the SoftMax classification takes a

previously computed value of zi (in the range of 0 to 1) and changes it according to Pi

to fulfil the common scaling method as shown in Equation 4. The accuracy of each

class's label comparison is matched to the results of the SoftMax probabilities to check

the quality of the model.

𝑃𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑘
 (4)

2.2.5.9. Grouping layers

 Now that the fundamental principles of CNNs have been defined, we can look

more closely at how a system with CNNs employs those layers. As defined in the

Figure 14. Representation of dropouts (Jørgensen, H., 2017)

29

classification layer section, a simple convolutional network is a sequence of layers and

transforms a volume of activation by a differentiated feature in each network layer.

The fundamental layers of constructing a CNN

i Convolutional Layer

ii Rectified Linear Activation Layer

iii Pooling Layer

iv Fully Connected Layer

The complete architecture of the CNN stacks these layers. Look briefly at an

illustration of how feasible CNNs are designed. If there is an input image for the

CIFAR-10 vehicle dataset that is 32 x 32 x 3, the size is 32 pixels high and 32 pixels

wide, and in this case, three channels or colours. The CIFAR-10 dataset is a much

smaller image database, with each 32 x 32 x 3 image and only ten groups, like the

ImageNet database. As shown in Figure 15, the layered architecture may have a simple

CIFAR-10 classification CNN (Sinha, T., Verma, B., & Haidar, A., 2017).

C
O

N
V

R
E

LU

P
O

O
L

FC
/A

FFIN
E

Figure 15. CNN architecture as an example (Sinha, T., Verma, B., & Haidar, A.,

2017)

30

CONV Layer: The CONV layer assesses the output result as 32 x 32 x 12 inches if

12 filters are employed.

ReLu Layer: In this layer, the size is not changed (32 x 32 x 12).

Maxpool Layer: The POOL layer performs spatial sampling by reducing the

dimensions that convert the image dimensions to 16 x 16 x 12.

Affine / Fully Connected Layer: The class values are decided in the FC layer,

meaning the result is a volume size (1 x 1 x 10) in which each of the ten integers equals

a class score, a 10-image CIFAR-10 image set classifies to a single class. This NN is

typical in that each neuron is connected to the names of the number that came before

it, as its name suggests. This occurs when CNN reads through the image layer by layer,

as shown in Figure 16.

2.3. Popular CNN Architectures

 This section examines several important cutting-edge CNN architectures. Basic

layers, such as the convolution, sub-sampling, dense and SoftMax layers, are generally

utilised as the basic collections for the most significant CNNs. Convolutional and

pooling layers are combined with linked and SoftMax layers in the architectural stack

of many convolutional layers for all these networks.

Figure 16. Example of image classification using CNN architecture (Jiang, Z.

2019, December)

31

2.3.1. LeNet

Although LeNet was proposed in the 1990s, the algorithm's implementation by

2010 was hampered by factors, such as processing ability and memory capacities.

LeCun proposed backpropagation techniques for CNNs and experimented with

handwritten numbers to obtain state-of-the-art accuracy. LeNet-5 (LeCun et al., 1998)

is a well-known architecture. The LeNet-5 has two convolution layers, two

subsampling layers and two fully sampled layers, as shown in Figure 17, and layers

linked with a Gaussian relation output layer. The total weights and accumulations

(MACs) are 431 thousand and 2.3 million, respectively.

In
pu

t :
 3

2×
32

Co
nv

ol
ut

io
n

(6
@

28
×2

8)

Su
bs

am
pl

in
g

(6

@
14

×1
4)

Co
nv

ol
ut

io
n

(1
6@

10
×1

0)

Su
bs

am
pl

in
g

(1

6@
5×

5)

FC
 (1

20
)

FC
 (8

4)

O
ut

pu
t (

10
)

Layer #1

Layer #2

Layer #3

Layer #4

Layer #5

Layer #6

2.3.2. AlexNet

AlexNet is a pioneer in computer vision, excelling at both ML and traditional

computer programming (Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2012). DL

developed importance for image recognition and classification in ML and computer

vision. Figure 18 depicts AlexNet's architecture. The first convolutional layer is

modified and combined with 96 distinct layers using local response standardisation

(LRN). The signal is received by 11 11 squares. The 3 x 3 filters use two stride

measures, one small and one large, and 5 * 5 filters finish the second layer filtering

procedure. The third, fourth and fifth convolution layers use 384, 384 and 296 map

filter types, respectively, with three and three filters. This leaves the network with two

fully linked layers to finish the SoftMax layer. This model is made up of two networks

with the same structure and maps. This network uses LRN and dropout. LRN can be

used in two ways. First, when normalising a single channel, either the N to N patch or

Figure 17. LeNet mode's architecture

32

feature maps are applicable. A character set or a keyboard can be added to the LRN (a

third dimension neighbourhood with just one pixel or location) (Krizhevsky, A.,

Sutskever, I., & Hinton, G. E. 2012).

In
pu

t

C
on

v.
, M

XP
, L

R
N

C
on

v.
, M

XP
,

LR
N

C
on

v.
, &

 R
eL

U

C
on

v.
, &

 R
eL

U

C
on

v.
, &

R

eL
U

FC FC

Layer #1:96

Layer #2
: 256

Layer #3
: 384

Layer #4
: 384

Layer #5
: 256

Layer #6
: 4096

So
ft

-m
ax

Layer #7
: 4096

Figure 18. AlexNet mode's architecture

AlexNet has three convolution layers, two linked. When handling the ImageNet

dataset, averaging the total number of parameters for each layer for AlexNet yields

17.7 thousand parameters. The input sample is 2242243, the reception field or filter

(kernels or masks) is 11, the stride is 4, the output is 555596, the first layer weight was

290400 neurons (55 total) and 364 weights. They are 290400364 = 105,705,600 of the

first convolution layer's 105,705,600 parameters. The network has 61 million weight

and 724 million MACs.

2.3.3. VGGNet

Simonyan and Zisserman (2014) proposed the visual geometry group (VGG),

a CNN model. The most important contribution of this research is that it demonstrates

the importance of network depth and improves the accuracy of CNN classification or

identification. Each of VGG's convolutional layers uses ReLU activation. In a single

max pooling layer, numerous completely connected layers use ReLU activation. The

model's conclusion is SoftMax. VGG-19 is a 3 x 3 two-staged filter. Simonyan and

Zisserman (2014) suggested VGG-11, VGG-16 and VGG-19 models with 11, 16 and

19 layers, as shown in Figure 19.

33

In
pu

t

C
O

N
V

 &
 R

eL
U

C
O

N
V

 &
 R

eL
U

M
ax

-P
o

o
lin

g

C
O

N
V

 &
 R

eL
U

C
O

N
V

 &
 R

eL
U

M
ax

-P
o

o
lin

g

C
O

N
V

 &
 R

eL
U

C
O

N
V

 &
 R

eL
U

M
ax

-P
o

o
lin

g

FC FC FC

So
ft

-M
ax.

Figure 19. A structure of VGG network building blocks: convolution (Conv) and

fully connected (FC)

The VGG-E variants all feature three connection layers. VGG-11, VGG-16 and VGG-

19 have eight to sixteen convolution layers. VGG-19 has 138 million weights and 15.5

M.

2.3.4. Residual Network (ResNet)

ResNets are a type of NN that is commonly utilised as the backbone for

computer vision applications. In 2015, this model won the ImageNet challenge

(Szegedy et al., 2015). Kaiming created ResNet to create new ultra-deep networks

without the problems of disappearing gradients. The ResNet has layer numbers from

34 to 1,202. Real-world applications frequently use ResNet-50, a network with 49

convolution layers and one fully linked layer at the end. Figure 20 depicts the ResNet

architecture's foundation. In total, the network employs 25.5 M weights.

Figure 20. Basis of the residual network

architecture

34

The ResNet design is based on VGGNet; however, convolutional layers only employ

3 x 3 filter kernels. ResNet designed a 34-layer flat network with and without shortcut

connections, as shown in Figure 21, also creating networks from 34 to 152 layers.

Overall, ResNet's 34-layer network defeated ImageNet's 152-layer network in the

2015 ImageNet LSVRC competition. ImageNet 2015's LSVRC network architecture

won.

Figure 21. Residual learning: block of the residual network architecture

2.4. Introduction to Field Programmable Gate Arrays

 This section offers a brief introduction to the Field-Programmable Gate

Arrays(FPGAs), where FPGAs are shown to demonstrate characteristics, strengths,

and limitations compared to other hardware platforms such as central processing units

35

(CPUs), application specific integrated circuits (ASICs) and graphics processing units

(GPUs).

2.4.1. Field-Programmable Gate Arrays

FPGAs are prefabricated semiconductor devices that are coupled to 2D arrays

of adjustable logic blocks via programmable logic (CLBs, or logic slices). Interconnect

resembles a wired network that connects logic blocks horizontally and vertically with

switch boxes (matrices of switches) at any crossroads with horizontal and vertical

bundles, as shown in Figure 22. The logic blocks, fixed-function units and connections

are electronically programmed by creating a bitstream configuration to add some

digital design into the unit. With the reprogramming of FPGAs numerous times, the

configuration activity is frequently recorded in SRAM memory cells (Trimberger, S.

M. (Ed.)., 2012). In 1967, Wahlstrom proposed the first static memory-based (SRAM)

FPGA, which used configuration bits stream to enable logic and connectivity settings.

In 1984, Xilinx released the first commercial modern-day FPGA. Arrays of adjustable

input/output logic blocks were incorporated. Hundreds of thousands of customisable

logic blocks, as well as a plethora of hard-held functional units, are available in today's

high-end FPGA generations, allowing for quick and efficient deployment of common

(Wahlstrom, S. E., 1967).

Figure 22. FPGA internal architecture (Wahlstrom, S. E., 1967)

36

2.4.1.1. Programmable Logic

 In FPGA, programmable logic blocks provide the hardware resources for

supporting basic computation and storage elements in digital systems. Combinational

logic, a flip-flop and rapid carrying logic to save costs can be found in a standard

simple logical element. Some modern FPGAs have memory and processing blocks

with different capabilities in a complex combination that also contain partition blocks,

multipliers and DPS blocks (Trimberger, S. M. (Ed.), 2012).

2.4.1.2. Programmable Interconnect

FPGAs contain configurable routing to connect logic blocks and I/O blocks.

Pass transistors, tri-state buffers and multiplexers are used to create the needed link.

In general, a logical cluster is connected via a multiplexer or pass transistor, while all

three are employed for connecting larger overall routing structures. Many FPGA

routing structures are employed worldwide, including ‘island-style’, ‘cellular’, ‘bus-

based’ and ‘registered’ architectures.

2.4.1.3. Programmable I/O

Internal components of an FPGA are connected via external input/output pads

or programmable I/O interfaces with an FPGA's functional blocks and routing

topologies. I/O pads and their corresponding logic circuitry compose the I/O cell, a

key component of any chip. The specification differences for supply voltage and

reference voltage are making it hard to build I/O programmable blocks. Choosing an

accepted standard is among the most important considerations in the I/O part. In any

design project, if more I/O cells are going to be used (as is customary), then the silicon

cell area must be increased (Trimberger, S. M. (Ed.), 2012).

2.4.1.4. Customizable Functional Blocks

More relevant programmable functional blocks, such as embedded memory,

arithmetic logic (ALUs), multipliers (MUXs), digital signal transformers (DSP48),

and embedded (DSP48) Microprocessors, were added to the FPGA design over time.

As a result, heterogeneous FPGA systems were created.

37

2.4.2. FPGAs Versus Other Hardware Platforms

 FPGA-based systems, which offer the capability to freely programme general

logic blocks, win over conventional systems, which offer limited programmability in

their general logic blocks. FPGAs can be programmed to perform at a high level.

Accelerators are used for extremely particular tasks, resulting in greater processing

speed and efficiency. FPGAs suit mobile device applications better than GPUs. Hence,

they are more effective as a tool. This added complexity comes at the cost of longer

development time as designers must account for using the available hardware and

mapping target algorithms to the FPGA architecture efficiently. The computational

intensity of the DSPs is surpassed by the FPGAs, which break the sequential

executable model and process more per clock cycle. They take full advantage of

hardware parallelism. Hardware-level input and output control (I/O) has improved

performance, and it is specialised, which is what an application needs. Unlike

conventional microprocessors, FPGAs use software that does not have operating

system-induced difficulties in delivering real-time performance and uses deterministic

hardware for every task (Olivito, J., Gran, R., Resano, J., González, C., & Torres, E.,

2015).

2.4.3. FPGAs versus ASICs

 Customised semiconductor devices are ASICs. In contrast to FPGAs, ASICs

have no overhead area or time due to configuration logic and generic interconnections,

thus creating the fastest, most energy-efficient and smallest systems. However, the

sophisticated manufacturing processes for ASICs lead to a very long and complicated

development round and very high repetitive engineering costs, which require a first-

time design methodology and extensive design verification. ASICs are thus mainly

suitable for high volume, cost-sensitive applications. With their reprogrammability

FPGAs are best suited to prototype and short development cycles, in which concepts

can be tested in hardware without the long manufacturing process of custom design.

FPGA chips are upgradable in the field and do not require the time and cost of ASIC

redesign. Interfaces based on ASICs may cause maintenance challenges and future

compatibility, while FPGAs can be reconfigured to comply with future modifications

that may be necessary (Kuon, I., & Rose, J., 2010).

38

CHAPTER THREE

METHODOLOGY

3.1. Overview

Medical data science applications involve using data analysis to diagnose

patients for different diseases. However, the data collection technique is vital to these

processes, and, hence, it needs to be selected with care. Data can be collected from

hospitals using data entry techniques. When a battery of tests is performed, hospitals

usually record the results and store the information in their systems so that it is

available if needed in the future. A specialist doctor is always available to manually

diagnose the case and accurately predict the disease.

Eventually, data is collectively used from different cases and their target (diagnosis)

to be analysed using an NNs approach. Prediction of the disease can be made using

ML and DL tools. This may provide high accuracy and time-efficient mean of disease

diagnosis (Chen, K., Huang, L., Li, M., Zeng, X., & Fan, Y., 2018).

In this chapter, a detailed discussion of ML approaches, more likely DL algorithms, is

discussed. Big data from various cases were referred to for training the algorithms. A

BC disease prediction system was implemented using seven different machine

learning algorithms, namely KNNs, Gaussian naive Bayes, kernel naive Bayes, linear

discriminant, logistic regression, SVM and decision tree algorithms. AlexNet, VGG-

16, LeNet-5, ResNet-18 and ShuffleNet are five deep learning algorithms that have

been implemented for predicting cancer. The approach covers the so-called

performance enhancement of the prediction from the view of the accuracy of disease

prediction, the time required for the prediction and the amount of error presented in

the results after the training process (Abhigna, P., Jerritta, S., Srinivasan, R., &

Rajendran, V., 2017).

The performance metrics were also initiated in order to evaluate the difference in the

prediction performance of the tools. The details of performance measures utilised for

model performance assessment are covered in the following sections of this chapter.

39

3.2. Database

Images in the BreaKHis (Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte,

L. 2015) database of breast tumors, both benign and malignant. A hematoxylin-eosin-

stained breast tissue biopsy slide is used to generate the samples. A surgical biopsy is

used to collect the samples, which are then prepared for histological analysis and

labelled by pathologists in Brazil. If a lesion does not meet any of the criteria for

malignancy, it is considered histologically benign. In most cases, benign tumors are

harmless, slow-growing, and limited in scope. As with cancer, a malignant tumor can

infiltrate and destroy nearby tissues and then spread, resulting in death.

3.3. Preprocessing

In order to predict the disease occurrence using biopsy images, the record from

every patient was studied after the data preprocessing. The overall process can be

summarised as the following:

1) Image data were prepared by labelling each image with the exact class name. Thus,

two classes were made, ‘zero’ (which indicates no infection/cancer occurrence) and

‘one’ (which indicates infection/cancer occurrence).

2) Image size was reduced to mitigate the load on the classifiers and expedite the

training process. Image resizing was vital for accuracy, and a large amount of

irrelevant data were omitted.

3) Image normalisation was made to minimise the variance between the images for

optimising the training performance. Each image was normalised by dividing each

pixel within each image by 225, which is the maximum pixel value for a coloured

image. In order to ensure high performance of disease prediction, a smart classifier

deploying a CNN was used. This model configuration deployed in this thesis is

illustrated in Tables 12 and 13. This model is considered a smart version of the

artificial NN, and it uses the same architecture of recurrent NNs except for some

changes in the weights. It is capable of processing a large number of data values at

once. It differs from the classical feedforward NN model by its large feedback loops

between its layers. The main terminology of the long short-term NN is the word

‘gates’, which is given to the layers. More likely, the input and output gates represent

the input and output layers in a normal (classical) feedforward NN, while the forget

layer represents the hidden layer popular in classical feedforward NNs.

40

3.4. Image Decomposition

Digital images are populated in the science and engineering domains due to

their efficiency in prescribing natural objects. However, the word ‘digital’ refers to

those images that allot a value to each dot. As a result, images consist of a vast number

of dots of varying intensity (value), generating the final value of the image, which

gives it the final appearance that can be perceived by the naked eye.

Images, in general, can be classified into four types: red, blue, green and under

infrared. On the other hand, a binary image represents an image with just black and

white colours and pixels with binary values, most commonly zeros and ones. Figure

23 shows the four bands discussed above, as well as the united colours image, often

known as a colourful image, which incorporates all four channels.

It is noteworthy that in the under infrared images channel, the same image can be used

with special applications, such as remote sensing in satellite image processing, which

can supply the other information that helps recognise the geological objects from

satellite images.

In general, the main point of image processing is understanding what the images equal

in mathematical scale. Images can be represented by a combination of their (three/four)

Figure 23. Coloured and RGB image channels channels

(Mandwi, I., Bhondge, B., Thakre, K., Dhande, G., & Patiye,

I., 2016)

41

channel information that forms the final image colours. The colour image can be

represented with a three-dimensional matrix with dimensions of X, Y and Z.

The final shade of a binary image is formed by a mixture of zeroes and ones based on

the pixel location and intensity. Assuming that image S is a binary image of nine

pixels, the representation can be seen in the following matrix.

𝑠 =
1 0 0
0 0 1
1 1 0

 (5)

Whereas, the colored image is a combination of three channels namely, red, blue and

green. The colour red is represented by the matrix 6, whereas the colors blue and green

are represented by the matrices 7 and 8.

𝑅 =
1.2 0.5 1

1.25 0.98 1.8
1.32 2.1 0.84

 (6)

𝐵 =
1.8 0.89 0.25

0.112 0.285 1.69
1.12 1.1 1.07

 (7)

𝐺 =
1.879 0.213 0.748
0.396 0.203 1.369
1.102 1.279 0.258

 (8)

Therefore, the combination of the three channels can produce the final result of the

image, the representation can be seen in the following matrix 9.

𝐶𝑜𝑙𝑜𝑢𝑟 =
𝑅

𝐵
𝐺

 (9)

3.5. Neural Network Modelling

With the advancement of ML algorithms, new approaches are being

implemented to provide superior learning capability and improved prediction

performance. The NN is inspired by the human neural system and how neuron cells

42

work. It reflects the same fundamentals of the human learning system. The term

artificial is allotted to those algorithms representing the smart generation of ML

technology; basically, the NN works in two stages: the training and testing stages.

During the training stage, the NN analyses the data and the target to arrive at a notion

for linking the input to the correct target (label) (or the expected results). The following

steps can be considered during the training stage.

1. The NN is basically constructed of three parts: input, hidden, and output layers.

The number of hidden layers varies depending on the requirements of the design.

Figure 24 demonstrates the construction of a single hidden layer NN.

Input Hidden

Output

Input layer Hidden layer

Output layer

Each layer in the NN is constructed with several (multiple) nodes. The node

number is decided according to the input length. Generally, large node numbers

might increase the execution time of the network.

2. Nodes are connected by means of weights, and the weights act like neurons in the

human nervous system. These weights are represented by a numerical value,

representing the number that scales the input when the input passes from one layer

to another.

Figure 24. Neural network fundamental structure (Kumar, R. A., 2020)

43

3. At the input layer, x[n] is a single-dimensional array with one column and n rows,

which is passed into the NN model. The output of the hidden layer is expressed by

y[n] and can be epresentated in the Equation 10.

𝑦[𝑛] = ∑ 𝑥[𝑛]. 𝑤𝑖

𝑛=𝑁

𝑛=1
 (10)

whereas z[n] can stand for the output of the hidden layer and can be expressed, as in

the following Equation 11.

𝑧[𝑛] = ∑ 𝑦[𝑛]. 𝑤ℎ

𝑛=𝑁

𝑁=1
 (11)

Three separate weight factors, the input, hidden and output layer weights, must be

presented on the network. However, the final output m[n] of the NN model can be

epresentated in the Equation 12.

𝑚[𝑛] = ∑ 𝑧[𝑛]. 𝑤𝑜

𝑛=𝑁

𝑛=1
 (12)

4. Training stage: an NN is first trained on specific data, and the purpose of the

training stage is to provide a network with all information related to the data

structure and nature; moreover, how data elements are related to each other and

how they relate to the target. This process is an essential task in NN operation. The

aim accuracy of the NN depends on how accurate the weight allotment is accurate.

5. Weight is the main role player in the process of output generation or, in other

words, the process of mapping the input to its particular class. Weight allotment is

performed to satisfy the following Equation 13.

𝑊 =
𝑥[𝑛]

𝑦[𝑛]
 (13)

44

The general weight formula is represented by W, the input is x[n] and the output

is y[n] after passing through the weight.

Knowing that a weight vector can include thousands of pieces and that the number

of weights in the vector is always proportional to the number of dataset elements.

Weight is allotted to the NN model using optimisation algorithms, more likely the

LM algorithm, which acts as the standard weight generation algorithm in the NN

model.

3.6. Model establishment

In order to perform BC diagnosis through biopsy image classification, a model

is established using a DL approach and inspired by CNNs. Hence, the model is made

to diagnose by predicting the case results by analysing each image. The model is first

trained with a large image database that includes many coloured images to supply the

NN with complete knowledge about the object colours to deal with various images.

The training of each layer in the model allows it to get familiar with images so that the

network can recognise the image according to the accumulated information from each

layer. Thus, the model can predict the accurate diagnosis during the training stage

accordingly, as shown in Figure 25.

The training process controls how well the model performs. Therefore, a training

algorithm integrated with the NN model might monitor the network's performance by

evaluating the accuracy of the results. Accordingly, the optimisation algorithm might

regenerate the weight in order to minimise the error in the results until reaching the

minimal error in the output.

The training process is started by generating random weight coefficients and allotting

those numbers to the NN weight values. Hence, after evaluating the model's

performance using the fitness function, final weight coefficients can be decided.

Therefore, the training process is repeated periodically during the training stages until

reaching the weight values that minimise the fitness function. The fitness function, in

this case, is the mean square error. The entire procedure of the mentioned training

model is depicted in Figure 26.

45

Start

Classify the images depending of their objects in two (2) class

Establish CNN with N hidden layers

Train each layer individually

End

Image from database

46

Start

Define Global best (GP) >>100

Train CNN

Evaluate the performance p

CNN with N layers

if P < GP

make GP=P

End

No

Yes

Figure 25. CNN training model procedure

47

The testing stage will begin by applying test data at the input of the NN model in order

to obtain the diagnosis, i.e. zero or one. The NN will study the input data and

accordingly will predict image class. However, this model is designed to intake the

coloured biopsy images and provide the diagnosis report.

3.7. Performance Metrics

In order to evaluate the performance of the system during the testing,

performance metrics were being studied in order to evaluate each algorithm

deployed in this thesis. The following performance metrics were used for testing

the system performance. If the input image is 10 × 10 pixels x[n], the following

representation can be written in matrix form, as shownin the following matrix 14.

𝑥[𝑛, 𝑚] = [
1.2 ⋯ 2.14

⋮ ⋱ ⋮
5.13 ⋯ 7.12

] (14)

and x[n,m] is the target image that is to be predicted by the NN. However, the actual

prediction of the NN seems to be p[n,m] which is represented by the following matrix

15.

𝑝[𝑛, 𝑚] = [
1.2 ⋯ 2.58

⋮ ⋱ ⋮
5.74 ⋯ 7.12

] (15)

The error matrix, which may be calculated using the formula actual minus real, is

directly dependent on the performance matrices. However, performance matrices are

directly dependent on the error matrix, which is E[n,m], represented by the actual

minus real formula, as shown in the following formula 16 .

𝐸[𝑛, 𝑚] = 𝑥[𝑛, 𝑚] − 𝑝[𝑛, 𝑚] = [
0 ⋯ 0.44
⋮ ⋱ ⋮

0.61 ⋯ 0
] (16)

Performance measures were evaluated using the following formulas given in the

subsections below.

48

3.7.1. Mean Square Error

Mean square error (MSE) is calculated by applying the equation below,

knowing that N represents the total number of errors in the error matrix. That number

is recognised by calculating non-zero elements in the error matrix, represented by

Equation 17.

𝑀𝑆𝐸 = ∑ (
𝐸[𝑛]

𝑁
)

2𝑁

𝑛=1

 (17)

3.7.2. Mean Absolute Error

Mean absolute error (MAE) is another metric that is calculated; the full form

of this metric is the MAE, which is given by Equation 18.

𝑀𝐴𝐸 = ∑ |𝐸[𝑛]/𝑁|

𝑁

𝑛=1

 (18)

3.7.3. Root Mean Square Error

The root mean square error (RMSE) can be evaluated using the square root of

the MAE function, as shown in Equation 19.

𝑅𝑀𝑆𝐸 = √∑(
𝐸[𝑛]

𝑁

𝑁

𝑛=1

)^2
2

 (19)

3.7.4. Accuracy

The accuracy is defined as the number of correct predictions divided by the

total number of predictions multiplied by 100% and can be represented in Equation

20.

 𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
∗ 100% (20)

49

3.7.5. Confusion matrix

A confusion matrix is a special form of table design used in ML and associated

disciplines. It aids in demonstrating prediction and recall in a system where the test

data values are known.

In order to calculate the confusion matrix, the following points are to be fulfilled:

 The true positive rate (TPR) is the number of correct positive predictions divided

by the total number of positives. It is also called recall or sensitivity (SN). The

worst possible true positive rate is (0.0), and the best possible true positive rate is

(1.0).

 The true negative rate (TNR) is the number of correct negative predictions divided

by the total number of negatives. It is also called specificity (SP). The worst

possible true negative rate is (0.0), and the best possible true negative rate is (1.0).

 The false positive rate (FPR) is the number of incorrect positive predictions

divided by the total number of negatives. It can also be calculated as 1– specificity.

The worst possible false positive rate is (1.0), and the best possible false positive

rate is (0.0).

 The false negative rate (FNR) is the number of incorrect positive predictions

divided by the total number of positives. The worst possible false negative rate is

(1.0), and the best possible false negative rate is (0.0).

In order to calculate the confusion matrix, the following calculations are required.

The formulas for calculating each of the above values are given in Table 1.

Table 1. Confusion matrix candidates’ formula

Name Formula

True Positive Rate (TPR) TPR = TP/(TP+FP)

True Negative Rate (TNR) TNR = TN/(TN+FN)

False positive rate (FPR) FPR = FP/(FP+TP)

False Negative rate (FNR) FNR = FN/(FN+TN)

50

CHAPTER FOUR

HARDWARE MODEL

4.1. Overview

Wide advancement in DL technology is motivating a variety of applications for

adopting this technology in many fields of life. Thanks to open-source software,

existing DL libraries can be modified and improved on a regular basis. As a result,

current research focuses on improving a library's performance. Because of open-

source software, existing DL libraries may be modified and enhanced on a regular

basis to maintain the stability of DL systems used in important human-related sectors

like health care. BC photos are collected from a large BC database and processed using

a DL model known as a CNN on Mac and Windows platforms using the Python

programming language (PyCharm simulator). CNN works with the structure

mentioned in the previous chapters in order to perform cancer image classification.

Two classes are used, cancerous and non-cancerous. Several preprocessing steps are

preceded to the said classification, where each image is downsampled into (50 rows)

and (50 columns) dimensions.

Changing the number of iterations, batch size, the number of filters within the layers

and the impact of those configuration variations is measured and recorded. In this

section, FPGAs were used to implement the proposed CNN, as well as to implement

AlexNet and LeNet-5 DL networks. The performance results of networking

implemented on FPGAs were compared with the CPU. FPGA is designed to provide

flexible programmable environments that meet the needs of designers in various

applications.

This chapter discusses image preprocessing and classification using the Lasagne

model over the PYNQ FPGA development board. Two smart models were used by

changing the layer’s structure, and each model was attempted for the same problem

where cancerous images are classified. The same performance metrics (i.e. accuracy,

MSE and time) were used for evaluating the classification performance for both

proposed models. They are referred to in this chapter.

51

4.2. PYNQ Development Board

Two development boards, PYNQ-Z1 and PYNQ-Z2, are produced by Xilinx

for supporting the so-called system on chip (SoC). These development boards benefit

from the power of the processer integrated into ZYNQ boards and the programming

flexibility of Python in order to perform powerful system designs. These boards are

enabled with only programming features without needing to adopt any circuit diagrams

or implementation or a system-level programming language, such as hardware

description language (HDL). Table 2 represents the features of the PYNQ

development board.

API technology allows applications in hardware to interact with each other through

software. API technology adaptation on PYNQ development boards makes it possible

to configure the logic gates of the FPGA chip using Python codes. Other features are

adopted in the PYNQ development board, such as input and output devices, including

HDMI, USB, microphone input, Arduino ports, Pmod headers and Raspberry Pi

interface. It is equipped using LED as an indications mean and sliding switches as

control support means.

Most importantly, this board is integrated with network connectivity using an Ethernet

chip with RJ-45 interfacing. The following features in Table 2 are integrated with the

PYNQ-Z2 development board. Figure 27 represents the PYNQ development board

structure.

Table 2. PYNQ-Z2 development board features

Chip

o 650 MHz Arm® Cortex®-A9 Dual-core Processor

o Programmable logic

 13,300 logic slices, each with four 6-input LUTs and 8 flip-flops

 630KB block RAM

 220 DSP slices

52

 On-chip Xilinx analog-to-digital converter (XADC)

o Programmable from JTAG, Quad-SPI flash, and MicroSD card

 Memory and storage

o 512 MB DDR3 with 16-bit bus @ 1050Mbps

o 16 MB Quad-SPI Flash with factory programmed 48-bit globally unique EUI-

48/64™ compatible identifier

o MicroSD slot

 Power

o USB or 7V to 15V external power regulator

 USB and Ethernet

o Gigabit Ethernet PHY

o Micro USB-JTAG programming circuitry

o Micro USB-UART bridge

o USB 2.0 OTG PHY (supports host only)

 Audio and Video

o 2x HDMI ports (input and output)

o 24-bit I2S DAC with 3.5mm TRRS jack

o Line-in with 3.5mm jack

 Switches, Push-Buttons and LEDs

o 4x push-buttons

o 2x slide switches

53

o 4x LEDs

o 2x RGB LEDs

 Expansion Connectors

o 2x Pmod ports

 16 Total FPGA I/O (8 pins on Pmod A are shared with Raspberry Pi

connector)

o Arduino Shield compatible connector

 24 Total FPGA I/O

 6 Single-ended 0V to 3.3V Analog inputs to XADC

o Raspberry Pi connector

 28 Total FPGA I/O (8 pins are shared with Pmod A)

 Board dimensions: 87 mm x 140 mm (3.43" x 5.51")

Figure 26. PYNQ-Z2 FPGA development board structure (Daniel, E., 31 January

2020)

54

4.3. Image Flashing

Technically, the PYNQ-Z2 board is equipped with an SD card slot to upload

the same board's operating system (OS). Xilinx is providing all OS(s) officially

through their web portal; it can be downloaded and burned onto a sufficient-sized SD

card in order to begin the process of PYNQ. There are several third-party software’s

that can help in burning the OS (termed hereinafter as Image) onto SD cards.

balenaEtcher software, as shown in Figure 28, is one of the top software programs

used in this project. The SD card must first be prepped by formatting it in order to

delete any files that may be stored on it before using the balenaEtcher software.

The image (OS) of PYNQ-Z2 can be downloaded first from the Xilinx web portal and

stored on the computer. balenaEtcher can be used to access/clone the location where

the image is stored and flash it onto the SD card. This flashing operation might take

up to five minutes. The flashing operation is followed by the verification operation,

which may last for one minute. At the end of verification, the SD card will be

automatically ejected from the computer.

4.4. Image Configuration

It is noteworthy that the image that was flashed onto the SD card provided

Linux-based development environments where Python can be installed. Moreover, the

DL libraries needed to accomplish this project will be installed through this platform.

Figure 27. Software to flash the image OS into the PYNQ

development board

55

Table 3 represents the list of libraries installed on the PYNQ board. One of the most

insistent challenges the developers face using the PYNQ-Z2 board is the installation

of DL libraries. In most cases, error messages appear, revealing something like ‘source

cannot be found’; in order to tackle most similar errors, the PYNQ-Z2 development

board is linked through terminal emulator software, such as Putty.

Table 3. Required libraries to be installed on the PYNQ development board

SN. Source name Installation

1 Update
Pip install update

Pip install upgrade

2 NumPy Pip install numpy

3 SCI kit

pip install -U scikit-learn

(virtual environment

installation is

recommended)

4 Cython Pip install cython

5 SciPy Pip install scipy

6 pandas Pip install pandas

7 Pillow Pip install Pillow

8 Theano Pip install Theano

4.5. Prediction Models on FPGA

Dealing with the PYNQ-Z2 development board is quite different from the CPU

case in regular computers. Many challenges might be encountered in the software

installation stage or during the code implementation.

4.6. Deep Learning on FPGA

Two DL models are mainly implemented on FPGA for cancer image diagnosis.

Each model consists of a set of layers detailed in the following. The first model,

‘MODEL 1’, is considered to have a light structure, where the prediction process is

56

expected to take place in lesser time, whereas the second model, ‘MODEL 2’, is

structured using larger payloads to enhance the prediction performance.

4.6.1. Model 1

After uploading the database file into the notebook, all photos must be read

and placed on a separate array; the same approach as in the simulation stage was

followed here unless the image dimensions were resampled to match the DL model

(50 x 50). A new dimension was created, equivalent to (1x 50 x 50). The structures

and layers listed in Table 4 were used to create a DL model.

Table 4. The first proposed model of FPGA-based breast cancer detection

Layer Configurations

InputLayer Shape = (None, 1,50,50)

Conv2DLayer

num_filters = 32

filter_size = (3, 3)

Gain layer ReLU

MaxPool2DLayer Size = (2, 2)

Conv2DLayer

num_filters = 64

filter_siz e= (3, 3)

Gain layer ReLU

MaxPool2DLayer pool_size = (2, 2)

DenseLayer num_units = 128

Gain layer ReLU

DropoutLayer Probability = 0.5

DenseLayer num_units = 3

57

Gain Layer Softmax

This model was trained using the Adam algorithm with 20 epochs and a batch size of

20 samples.

Following that, the model was trained for error minimisation based on the detection

results shown in Table 5.

Table 5. Epoch-wise results (MSE and time computation) for the first proposed

model

Epoch 1/20 Train error: 0.404127 Time 39.87

Epoch 2/20 train error: 0.396219 Time 39.84

Epoch 3/20 train error: 0.393183 Time 39.73

Epoch 4/20 train error: 0.390402 Time 39.81

Epoch 5/20 train error: 0.387714 Time 39.85

Epoch 6/20 train error: 0.385068 Time 39.87

Epoch 7/20 train error: 0.382966 Time 39.76

Epoch 8/20 train error: 0.383447 Time 39.83

Epoch 9/20 train error: 0.377513 Time 39.87

Epoch 10/20 train error: 0.374564 Time 39.9

Epoch 11/20 train error: 0.371899 Time 39.74

Epoch 12/20 train error: 0.369401 Time 39.87

Epoch 13/20 train error: 0.366815 Time 39.88

Epoch 14/20 train error: 0.364147 Time 39.76

Epoch 15/20 train error: 0.361642 Time 39.86

58

Epoch 16/20 train error: 0.359146 Time 39.87

Epoch 17/20 train error: 0.357675 Time 39.87

Epoch 18/20 train error: 0.354271 Time 39.73

Epoch 19/20 train error: 0.351365 Time 39.87

Epoch 20/20 train error: 0.348738 Time 39.84

4.6.2. Model 2

With the intention of reducing error at the prediction results and minimising

the processing time, Model 2 was created with three convolutional layers. The

structure of this model is quite similar to that proposed in the CPU (CNN) model. The

detailed configurations of Model 2 are given in Table 6.

Table 6. The second proposed model of FPGA environments (Model 2)

Layer Configurations

InputLayer Shape = (None, 1,50,50)

Conv2DLayer

num_filters = 5

filter_size = (2, 2)

Gain layer ReLU

MaxPool2DLayer Size = (2, 2)

Conv2DLayer

num_filters = 5

filter_size = (2, 2)

Gain layer ReLU

MaxPool2DLayer pool_size = (2, 2)

Conv2DLayer

num_filters = 5

filter_size=(2, 2)

59

Gain layer ReLU

MaxPool2DLayer pool_size = (2, 2)

Flatten layer ---

Gain layer ReLU

DenseLayer num_units=5

Gain Layer ReLU

DenseLayer num_units=5

Gain layer Softmax

Results obtained from Model 2 are detailed in Table 7. This model was trained using

the Adam algorithm with 15 epochs and a batch size of 15 samples.

Table 7. Epoch-wise results (MSE and time computation) for the second proposed

CNN model

Epoch 1/15 Train error: 0.868096. time: 16 seconds

Epoch 2/15 Train error: 0.594069. time: 16.33 seconds

Epoch 3/15 Train error: 0.558680. time: 15.87 seconds

Epoch 4/15 Train error: 0.528674. time: 15.93 seconds

Epoch 5/15 Train error: 0.499050. time: 16.65 seconds

Epoch 6/15 Train error: 0.453302. time: 16.01 seconds

Epoch 7/15 Train error: 0.433587. time: 15.87 seconds

Epoch 8/15 Train error: 0.423658. time: 16.04 seconds

Epoch 9/15 Train error: 0.417319. time: 16.29 seconds

Epoch 10/15 Train error: 0.411838. time: 15.87 seconds

60

Epoch 11/15 Train error: 0.406916. time: 15.91 seconds

Epoch 12/15 Train error: 0.402118. time: 16.38 seconds

Epoch 13/15 Train error: 0.397430. time: 15.89 seconds

Epoch 14/15 Train error: 0.393335. time: 15.88 seconds

Epoch 15/15 Train error: 0.389542. time: 16.07 seconds

4.6.3. Implementation LeNet-5 - ARM Linux OS

Theano was the framework used to implement the LeNet-5 and AlexNet

networks. Apt-get was used to install Theano on PYNQ with a line of command (pip

install Lasagne = 0.1). To further improve the CNN deployment's user interface,

Lasagne was added on top of Theano. Lasagne is a lightweight Theano library for

building and training NNs, with a more concise and understandable code presentation

than Theano. A LeNet-5 CNN was implemented using the Lasagne syntax, as shown

in Table 8.

In conclusion, CNNs can be declared using simple, legible Python codes, resulting in

user design interfaces. Layers may easily be used with Lasagne because it supports

user-designed customisable layers. As a high-level framework interface, Lasagne

customised CNN layers. These layers can be created the same way as Theano's built-

in layer functions, giving them similar speed. The framework's functionality was tested

using a testbench project. It was made up of a Python notebook script and a modified

Lasagne CNN layer with API.

Table 8. Lasagne LeNet Configuration

Layer Configurations

InputLayer Shape = (None, 1,32,32)

Conv2DLayer

num_filters = 6

filter_size = (5, 5)

61

Gain layer tanh

AveragePooling2dLayer Size = (2, 2)

Conv2DLayer

num_filters = 16

filter_size = (5, 5)

Gain layer tanh

AveragePooling2dLayer

num_filters = 120

filter_size = (2, 2)

Conv2DLayer

num_filters = 120

filter_size = (5, 5)

Gain layer tanh

DenseLayer num_units = 2

Gain Layer ReLU

DenseLayer num_units = 2

Gain layer Softmax

Results obtained from LeNet-5 are detailed in Table 9. This model is trained using the

Adam algorithm with 20 epochs and a batch size of 20 samples.

Table 9. Epoch-wise results (MSE and time computation) for the LeNet-5 model

Epoch 1/20 train error: 0.731353 Time 53.88 seconds

Epoch 2/20 train error: 0.701256 Time 53.87 seconds

Epoch 3/20 train error: 0.586131 Time 53.85 seconds

Epoch 4/20 train error: 0.524314 Time 53.88 seconds

Epoch 5/20 train error: 0.510745 Time 53.78 seconds

62

Epoch 6/20 train error: 0.475931 Time 53.85 seconds

Epoch 7/20 train error: 0.451468 Time 53.89 seconds

Epoch 8/20 train error: 0.437517 Time 53.77 seconds

Epoch 9/20 train error: 0.425106 Time 53.87 seconds

Epoch 10/20 train error: 0.416713 Time 53.75 seconds

Epoch 11/20 train error: 0.413156 Time 53.88 seconds

Epoch 12/20 train error: 0.401532 Time 53.87 seconds

Epoch 13/20 train error: 0.401135 Time 53.83 seconds

Epoch 14/20 train error: 0.385213 Time 53.81 seconds

Epoch 15/20 train error: 0.374721 Time 53.78 seconds

Epoch 16/20 train error: 0.364182 Time 53.87 seconds

Epoch 17/20 train error: 0.356233 Time 53.88 seconds

Epoch 18/20 train error: 0.354361 Time 53.78 seconds

Epoch 19/20 train error: 0.341521 Time 53.83 seconds

Epoch 20/20 train error: 0.33583 Time 53.77 seconds

4.6.4. Implementation AlexNet – ARM Linux OS

As indicated in Table 10, an AlexNet CNN was created using Lasagne syntax.

Finally, CNNs can be declared with simple, readable Python code, resulting in user-

friendly interfaces. Lasagne makes it simple to use layers because it allows users to

create their own unique layers. Lasagne adapts CNN layers as a framework for a high-

level interface. These layers can be constructed the same way as Theano's built-in layer

functions, which means they will be just as quick. A testbench project was created to

test the framework's functioning. It consisted of a Python notebook script and a

modified Lasagne CNN layer with API.

63

Table 10. Lasagne AlexNet Configuration

Layer Configurations

InputLayer shape=(None, 3, 227, 227)

Conv2DLayer

num_filters = 96

filter_size = (11, 11)

Gain layer relu

MaxPool2DLayer Size = (2, 2)

Conv2DLayer

num_filters=256

filter_size = (11, 11)

Gain layer relu

MaxPool2DLayer Size = (2, 2)

Conv2DLayer

num_filters = 384

filter_size = (3, 3)

Gain layer relu

Conv2DLayer

num_filters = 384

filter_size = (3, 3)

Gain layer relu

Conv2DLayer

num_filters = 256

filter_size = (3, 3)

Gain layer relu

MaxPool2DLayer Size = (2, 2)

DenseLayer num_units = 2

Gain Layer ReLU

DenseLayer num_units = 2

64

Gain layer Softmax

Results obtained from AlexNet are detailed in Table 11. This model was trained using

the Adam algorithm with 20 epochs and a batch size of 20 samples.

Table 11. Epoch-wise results (MSE and time computation) for the AlexNet model

Epoch 1/20 train error: 0.872133 Time 240.33 seconds

Epoch 2/20 train error: 0.832314 Time 240.92 seconds

Epoch 3/20 train error: 0.721052 Time 240.21 seconds

Epoch 4/20 train error: 0.715296 Time 240.01 seconds

Epoch 5/20 train error: 0.635122 Time 240.35 seconds

Epoch 6/20 train error: 0.622754 Time 240.87 seconds

Epoch 7/20 train error: 0.574103 Time 240.89 seconds

Epoch 8/20 train error: 0.564352 Time 240.31 seconds

Epoch 9/20 train error: 0.551213 Time 240.89 seconds

Epoch 10/20 train error: 0.536389 Time 240.88 seconds

Epoch 11/20 train error: 0.526521 Time 240.32 seconds

Epoch 12/20 train error: 0.513386 Time 240.08 seconds

Epoch 13/20 train error: 0.485241 Time 240.87 seconds

Epoch 14/20 train error: 0.463533 Time 240.81 seconds

Epoch 15/20 train error: 0.435174 Time 240.91 seconds

Epoch 16/20 train error: 0.410176 Time 240.87 seconds

Epoch 17/20 train error: 0.384265 Time 240.05 seconds

65

Epoch 18/20 train error: 0.383412 Time 240.71 seconds

Epoch 19/20 train error: 0.374821 Time 240.01 seconds

Epoch 20/20 train error: 0.371483 Time 240.38 seconds

4.6.5. Implementation Prototypes: Test Phase

 Following the training phase, the proposed model was tested using a set of

photos in the testing phase. The accuracy of these photos was computed for each of

the classes, and the overall accuracy was calculated. The most interesting part of the

proposed CNN algorithm was that the proposed CNN structure extracted the features

of an image locally, which means that the network learned specific patterns within the

image and could recognise them anywhere in the image. The steps were repeated until

the image was scanned. During the testing phase, 20% of the database photos were

used to evaluate CNN's performance, and the performance was then quantified by the

number of images accurately predicted. Applications that perform can be created to

demonstrate the possibilities of my framework by showing the visual result that the

user will get. By saving the training weights in layers after the network result reached

a high accuracy, the network performance could be tested by entering an image into

the network, and the expected result was tested by classifying the image as cancerous

or non-cancerous, then the accuracy of this classification appeared, as shown in Figure

29.

Figure 28. Sample application for breast cancer image

66

CHAPTER FIVE

RESULTS AND DISCUSSION

5.1. Overview

A CNN is mainly used with different hyperparameters (configurations) to predict

cancer in the database. A total of 2,215 coloured biopsy images were used to train the

FPGA-based DL models. The process was performed in the SKLearn model over

Python environments. Images were first resized to new dimensions of 50 x 50 pixels.

After that, the following steps were applied to the images before they were fed into

CNN:

a> Images resized to new dimensions, i.e. 50 x 50 pixels, in order to reduce the payload

on the proposed classifier by removing the unwanted parts from the images.

b> New reshaping was performed to convert the images (each) into three-dimensional

arrays properly to supply them into CNN. The new shape of each image became 50 x

50 x 1.

c> Image pixel normalisation, so that the value of each pixel would be a crack of one,

and the peak value of the images’ pixels would have one (e.g. 1). This process was for

variance reduction in order to improve the classification results. The steps performed

on the images before the training are demonstrated in Figure 30.

The model training was configured by employing only 20% of the images used for

testing, while the other 80% are used for training. The CNN structure used in the

configurations is listed in Table 12, and the training coefficients are shown in Table

13.

67

Figure 29. Preprocessing model flow diagram

Dimensions reduction into 50 by 50 pixel

Set N as counter; initially N=1

Database Select N=1 image

Reshape image into 50 by 50 by 1

Image Pixels/255

(normalization)

If

N=2215

End

Start

No

Yes

68

Table 12. The configuration of the proposed CNN structure used in CPU-based

learning

Layer Information

Sequential CNN Main model type

Conv2D
First layer with 32 filters and (3,3)

kernel size and “linear” activation

LeakyReLU
Second layer with alpha transfer

function

MaxPooling2D Third layer with (2, 2) kernel size

Conv2D
Fourth layer with 64 filters and (3,3)

kernel size and “linear” activation

LeakyReLU Fifth layer with alpha transfer function

MaxPooling2D Sixth layer with a pool size of (2, 2)

Conv2D
Seventh layer with 128 filters, (3,3)

kernel size and “linear” activation

LeakyReLU
Eighth layer with alpha transfer

function

MaxPooling2D Ninth layer with a pool size of (2, 2)

Flatten Tenth layer

Dense Eleventh layer with 128 filters

LeakyReLU
Twelfth layer with alpha transfer

function

Dense Last layer with three filters

69

Table 13. CNN model training coefficients

Parameter Value

Training method Adam

Batch size 64

Epochs 10

Verbose 1

5.2. Results and Discussion of Proposed CNNs

Different iterations were performed for the CNN model to determine the

optimum configurations. That is, the varying kernel size, layers and filter numbers of

the main prementioned model were conducted. The results of each model, along with

their description, are mentioned in Tables 14 to 17.

Table 14. Results of the first and second iterations of the CNN model

Case

Con2D (1) layer parameter Pooling layer parameter

Accuracy

% Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

1

3*3 32 1 1 2*2 MAX 1 1 88.55

5*5 32 1 1 2*2 MAX 1 1 86.21

7*7 32 1 1 2*2 MAX 1 1 86.04

9*9 32 1 1 2*2 MAX 1 1 85.11

11*11 32 1 1 2*2 MAX 1 1 81.03

13*13 32 1 1 2*2 MAX 1 1 81.00

Case Con2D (1) layer parameter Pooling layer parameter Accuracy

70

Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

%

2

3*3 2 1 1 2*2 MAX 1 1 79.13

3*3 4 1 1 2*2 MAX 1 1 83.33

3*3 8 1 1 2*2 MAX 1 1 85.76

3*3 16 1 1 2*2 MAX 1 1 80.41

3*3 20 1 1 2*2 MAX 1 1 82.37

3*3 32 1 1 2*2 MAX 1 1 88.55

Table 14 illustrates the accuracy results of the proposed CNN, such as when the

number of filters of each layer was set to (32), and the filter size was iterated from 3 x

3 through 13 x 13 with a step size of 2, the maximum prediction accuracy was reported

while the filters were (32) and each filter size was 3 x 3. It was observed that the more

the size of the filters degrades the prediction accuracy. In other words, when the

number of filters was iterated among (2, 4, 8, 16, 20 and 32), the prediction accuracy

improved with a higher number of filters when the filter size was fixed at 3 x 3. That

was manifested when 32 filters were used with a 3 x 3 filter size.

Table 15. Results of the third and fourth iterations of the CNN model

Case

Con2D (1) layer parameter Pooling layer parameter

Accuracy

% Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

3

3*3 32 1 1 2*2 MAX 1 1 88.55

3*3 32 1 1 4*4 MAX 1 1 85.25

3*3 32 1 1 6*6 MAX 1 1 81.01

71

3*3 32 1 1 8*8 MAX 1 1 80.48

3*3 32 1 1 10*10 MAX 1 1 84

3*3 32 1 1 12*12 MAX 1 1 84.21

Case

Con2D (2) layer parameter Pooling2 layer parameter

Accuracy

% Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

4

3*3 64 1 1 2*2 MAX 1 1 90.54

5*5 64 1 1 2*2 MAX 1 1 89.37

7*7 64 1 1 2*2 MAX 1 1 89.21

9*9 64 1 1 2*2 MAX 1 1 85.77

11*11 64 1 1 2*2 MAX 1 1 84.32

13*13 64 1 1 2*2 MAX 1 1 80.11

Table 15 illustrates the occurrence when two experiments were conducted. In the first

case, the number of filters of the convolutional layer, as well as the filters’ size, was

fixed to 32 and 33, consequently iterating the filters’ size in the pooling layer. In this

case, the best accuracy was obtained when the filter size of the pooling layer was

minimum, i.e., 2 x 2; that led to the prediction accuracy of 88.55%. The other case

involved iterating the filters’ size of the convolutional layer and uplifting the number

of filters in it to 64; however, the filter size of the pooling layer was fixed to 2 x 2,

which enhances the prediction accuracy to 90.54%.

72

Table 16. Results of the fifth and sixth iterations of the CNN model

Case

Con2D (2) layer parameter Pooling layer parameter

Accuracy

%
Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

5

3*3 16 1 1 2*2 MAX 1 1 80.16

3*3 26 1 1 2*2 MAX 1 1 79.33

3*3 32 1 1 2*2 MAX 1 1 84

3*3 44 1 1 2*2 MAX 1 1 86.11

3*3 54 1 1 2*2 MAX 1 1 85.21

3*3 64 1 1 2*2 MAX 1 1 90.54

Case

Con2D (2) layer parameter Pooling2 layer parameter

Accuracy

%
Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

6

3*3 64 1 1 2*2 MAX 1 1 90.54

3*3 64 1 1 4*4 MAX 1 1 86.32

3*3 64 1 1 6*6 MAX 1 1 85.11

3*3 64 1 1 8*8 MAX 1 1 87.57

3*3 64 1 1 10*10 MAX 1 1 80.11

73

3*3 64 1 1 12*12 MAX 1 1 80.00

In Table 16, the convolutional and pooling layer filter sizes were set to 3 x 3 and 2 x

2, respectively, and the number of convolutional layer filters repeated. The findings of

this experiment have shown that 64 filters with a size of 3 x 3 at the convolutional

layer and a pooling layer with a 2 x 2 filter size preserved the best prediction accuracy,

i.e. 90.54%.

The other event, shown in the same Table, included iterating the filters’ size of the

pooling layer while preserving the similar configuration, leading to the same

prediction accuracy of 90.54%.

Table 17. Results of the seventh and eighth iterations of the CNN model

Case

Con2D (3) layer parameter Pooling layer parameter Accuracy %

Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

7

3*3 128 1 1 2*2 MAX 1 1 95.12

5*5 128 1 1 2*2 MAX 1 1 92.43

7*7 128 1 1 2*2 MAX 1 1 92.21

9*9 128 1 1 2*2 MAX 1 1 89.41

11*11 128 1 1 2*2 MAX 1 1 90

13*13 128 1 1 2*2 MAX 1 1 91.88

74

Case

Con2D (3) layer parameter Pooling2 layer parameter

Accuracy

%

Filter

size

No

of

filter

Stride Padding
Filter

size
Type Stride Padding

8

3*3 32 1 1 2*2 MAX 1 1 79.54

3*3 42 1 1 2*2 MAX 1 1 86.32

3*3 62 1 1 2*2 MAX 1 1 85.11

3*3 82 1 1 2*2 MAX 1 1 87.57

3*3 100 1 1 2*2 MAX 1 1 91.01

3*3 128 1 1 2*2 MAX 1 1 96.87

Table 17 shows how to set the number of filters in the convolutional layer to 128 and

the pooling layer filter size to 2 x 2 while iterating the convolutional layer filter size.

The accuracy of the prediction degraded as the filter size increased; the best accuracy

was obtained with the smallest filter size, 3 x 3. The maximum accuracy that was

reported from the aforementioned configuration was 96.87%.

The other scenario demonstrated in the same Table is when the number of

convolutional layer filters increased to 128, and the filter size of both the convolutional

and pooling layers was fixed to 3 x 3 and 2 x 2. Consequently, the model with these

configurations was outperformed by a scoring accuracy of 96.87%.

Observation: It may be deduced that having a larger number of filters in the

convolutional layer can enhance accuracy unless the filter size is too enormous. The

number of filters in the convolutional layer directly influences prediction accuracy.

The prediction accuracy could be improved by increasing the number of filters. On the

75

other hand, using a large filter size has a detrimental influence on performance; the

same principle applies to increasing the pooling layer's filter size.

The proposed CNN confusion matrix shows that the number of negative cases

predicted as positive was 1.7% of the total, while the number of positive cases

predicted as negative was 1.4%. Figure 31 shows the proposed CNN confusion matrix.

5.3. Pre-trained Models

DL pre-trained models, such as VGG-16, AlexNet, LeNet, ResNet-18 and

ShuffleNet, were used in order to predict BC in the given database. The analysis result

of the mentioned models is shown in Tables 18 to 21.

Figure 30. Confusion matrix of proposed

CNN

76

Table 18. VGG-16 neural network structure.

77

Table 19. AlexNet neural network structure.

78

Table 20. LeNet neural network structure.

79

Table 21. Proposed network structure.

Table 22 shows the classification performance report for pre-trained deep learning

networks. According to that, it can be understood that ResNet-18 was reported as the

best pre-trained algorithm that outperformed for prediction accuracy; 99% of

prediction accuracy could be obtained from the ResNet-18 model. The ResNet-18

sensitivity measure was calculated, and it was found to be as high as 99%, implying

that all true (positive cancer cases) were accurately predicted in the model. Similarly,

a specificity measure of 98% was obtained, meaning that only 98% of the negative

cancer cases were successfully detected. In order to understand how well the classifier

was predicting the positive cancer cases with respect to the total number of cases

80

(positives and negatives), precession was calculated; 99% of the precession was

reported for the ResNet-18 model. The percentage of positive examples calculated

with respect to actually anticipated positives and mistakenly predicted positives might

provide a different view of the model's performance; this is known as recall, and it was

reported with a 99% accuracy. The F1 score represents the inter-relationship between

both precision and recall. The ResNet-18 produced 99% of recall performance

measures. The geometric mean was calculated to understand how well the classifier

performance could measure the classification for both positive and negative cases in

terms of the majority and minority; it was reported as 99%. The final misclassification

rate was calculated, which was only 1% for the ResNet-18; this measure was the

opposite of accuracy, 99%. The same metrics were calculated for the VGG-16,

ShuffleNet, AlexNet and LenNet; those metrics for the mentioned algorithms were

less than those of the AlexNet.

Table 22. Pre-trained deep learning classification performance measures

Classifier Report

Measure
Proposed

Network

AlexNet

VGG-16

LeNet-5

ResNet-18 ShuffleNet

Accuracy 97% 93% 91% 85% 99% 98%

Sensitivity 98% 97% 95% 94% 99% 98%

Specificity 93% 80% 79% 52% 98% 98%

Precision 98% 95% 94% 88% 99% 99%

Recall 98% 97% 95% 94% 99% 98%

F1 Score 98 96 95 91 99 99

G Mean 95% 88% 87% 70% 98% 98%

Misclassification

Rate
3% 7% 9% 15% 1% 2%

81

Figure 32 represents a graphic of the pre-trained DL classification performance metrics

for the tested DNNs, represented by the parameters of the classifier.

5.4. Confusion Matrix

The confusion matrix shows the number of positive cancer cases that are

correctly predicted as positive by the respected classifier and the number of negative

cases that are predicted as negatives. Also, the number of negative cases predicted as

positive and the number of positive cases predicted as negative. The confusion

matrixes of the above pre-trained algorithms are illustrated below, and the green

highlighted areas in the confusion matrix plot present the correctly predicted cases (i.e.

positives as positives and negatives as negatives). In order to calculate the confusion

matrix, the following calculations are required.

Confusion matrix of VGG-16

For VGG-16, the number of negative cases that were predicted as positives was

4.1%, while the number of positive cases that were predicted as negative was 4.4%,

as shown in Figure 33.

Figure 31. Pre-trained deep learning classifier results (graphical representation)

82

 Confusion matrix of AlexNet

 For AlexNet, the number of negative cases that were predicted as positives was 2.5%,

while the number of positive cases that were predicted as negative was 4.1%, as shown

in Figure 34.

.

Figure 32. Confusion matrix of VGG-16

Figure 33. Confusion matrix of AlexNet

83

 Confusion matrix of LeNet-5

For LeNet, the number of negative cases that were predicted as positives was 4.8%,

while the number of positive cases that were predicted as negative was 10%, as shown

in Figure 35.

 Confusion matrix of ResNet-18

For ResNet-18, the number of negative cases that were predicted as positives was

0.6%, while the number of positive cases that were predicted as negative was 0.5%,

as shown in Figure 36.

Figure 34. Confusion matrix of LeNet-5

84

 Confusion matrix of ShufflenNet

For ShuffleNet, the number of negative cases that were predicted as positives was

1.1%, while the number of positive cases that were predicted as negative was 0.2%, as

shown in Figure 37.

It can be seen that ResNet-18 made the minimum erroneous predictions, according to

the percentage of positive as negative predictions and negative as positive predictions.

Figure 35. Confusion matrix of ResNet-18

Figure 36. Confusion matrix of ShuffleNet

85

5.5. Machine Learning Models

Following the examination of the CNN models, each image was converted to a

signal row array (single-dimensional array) and fed into algorithms similar to those

described in Table 23 of all algorithms in disease prediction, with performance metrics

recorded and tabulated.

Table 23. Accuracy of prediction measure for all the algorithms

By comparing the suggested network to the basic evaluation measures that define the

efficiency of NNs, it was discovered that the proposed network beats all networks. The

networks were trained on the same collected data, where the values were calculated

through the MATLAB software. According to Table 23, both SVM and linear

discrimination algorithms were scored with 90% accuracy. Actually, none of them

outperformed the other, and as we can see, if the sensitivity was slightly higher on one,

the specificity might be higher on the other. Hence, it can be said that both algorithms

Measure
Proposed

Network

Gaussian

Naive

Bayes

kernel

Naive

Bayes

KNN

Linear

Discriminant

Logistic

Regression
SVM

Decision

Tree

Accuracy 97% 80% 83% 86% 90% 86% 90% 85%

Sensitivity 98% 94% 94% 92% 94% 92% 93% 91%

Specificity 93% 51% 57% 67% 77% 64% 80% 65%

Precision 98% 79% 84% 91% 94% 89% 95% 91%

Recall 98% 94% 94% 92% 94% 92% 93% 91%

F1 Score 98% 86% 89% 91% 94% 91% 94% 91%

G Mean 95% 70% 73% 79% 85% 77% 86% 77%

Misclassific

ation Rate
3% 20% 17% 14% 10% 14% 10% 15%

86

have a similar performance. Figure 38 shows a graphic of the results of the ML

classification performance metrics for the tested ML algorithm, represented by the

parameters of the classification report.

 Confusion Matrix of Logistic Regression

For logistic regression, the number of negative cases that were predicted as positives

was 27%, while the number of positive cases that were predicted as negative was 11%,

as shown in Figure 39.

Figure 37. Graphical representation of the results of machine learning approaches

showing prediction measures for all the algorithms

Figure 38. Confusion matrix of Logistic Regression

87

 Confusion Matrix of Kernel Naïve Bayes

For kernel naive Bayes, the number of negative cases that were predicted as positives

was 19%, while the number of positive cases that were predicted as negative was 16%,

as shown in Figure 40.

 Confusion Matrix of Linear Discriminant

For linear discriminant, the number of negative cases that were predicted as positives

was 24%, while the number of positive cases that were predicted as negative was 6%,

as shown in Figure 41.

Figure 39. Confusion matrix of Kernel Naïve Bayes

Figure 40. Confusion matrix of Linear Discriminant

88

 Confusion Matrix of Fine KNN

For fine KNN, the number of negative cases predicted as positives was 31%, while the

number of positive cases predicted as negative was 9%, as shown in Figure 42.

 Confusion Matrix of Gaussian Naïve Bayes

For Gaussian naïve Bayes, the number of negative cases that were predicted as

positives was 17%, while the number of positive cases that were predicted as

negative was 21%, as shown in Figure 43.

.

Figure 41. Confusion matrix of KNN

Figure 42. Confusion matrix of Gaussian Naïve Bayes

89

 Confusion Matrix of Fine Tree

For fine tree, the number of negative cases that were predicted as positives was 36%,

while the number of positive cases that were predicted as negative was 9%, as shown

in Figure 44.

 Confusion Matrix of Linear SVM

For linear SVM, the number of negative cases that were predicted as positives was

27%, while the number of positive cases that were predicted as negative was 5%, as

shown in Figure 45.

Figure 43. Confusion matrix of Fine Tree

Figure 44. Confusion matrix of linear SVM

90

For SVM, the number of negative cases predicted as positives was 27%, while positive

cases predicted as negative was 5%. As a result, the SVM and linear discrimination

had the fewest error predictions.

5.6. Regression Model

Other metrics, such as MSE, MAE and RMSE, were measured for all the ML

algorithm approaches. Table 24 illustrates the above metrics of all the ML algorithms.

MSE gives the distance between the regression line and the classification model

output. This number is always a positive, as it takes the square of the errors. MSE

holds a bigger value than the other regression model metrics, such as MAE and RMSE.

On the other hand, MAE is another metric for determining the distance of the

prediction output from the regression line. MAE is lesser than the MSE in value but

gives a similar interpretation.

.

Table 24. Regression model perfomacne metrics for the machine learning algorithms

as compared with proposed CNN

MODEL MSE RMSE MAE

CNN 0.0726 0.269393 0.0726

SVM 0.082864 0.287861 0.144866

Linear Discriminant 0.083817 0.289513 0.1666842

Logistic Regression 0.09212 0.26134 0.23642

KNN 0.103295 0.3213958 0.103295

Decision Tree 0.152328 0.390293 0.161808

kernel Naive bayes 0.31450 0.52115 0.30461

Gaussian Naive

Bayes
0.60400 0.757535 0.64400

91

Observations: The outperformed algorithms, according to the previous performance

metrics, i.e. the accuracy measure, F1 score, etc., are SVM and linear discrimination

algorithms. However, according to regression model metrics, i.e. MAE, MSE and

RMSE, both SVM and linear discrimination algorithms had the lowest MAE

(0.144866), MSE (0.082864) and RMSE (0.082864). (0.287861). Compared with the

results of the performance measures of the proposed CNN regression model, MAE =

0.0726, MSE = 0.0726 and RMS = 0.269393, the proposed CNN outperformed the

ML techniques.

5.7. ROC and AUC Measures

The receiver operating characteristic curve (ROC) and the area under the curve

(AUC) are other classification performance measures. These measures are meant for

detecting how well the model is classifying (predicting) the zero class as zero and one

class as one. The higher value of AUC corresponds to the high capability of the

classification model to distinguish between the classes. Both measures were calculated

for the models made in this thesis hereafter.

5.7.1. Proposed Model (CNN)

As shown in Figure 46, the proposed CNN's AUC was 0.9906, representing a

number close to one among all classifier algorithms.

 Figure 45. Demonstration of ROC and AUC region for

proposed CNN

92

5.7.2. Machine Learning Models

The ROC and AUC values for the ML algorithms used in this thesis were

measured. The AUC values for the ML methods are shown in Table 25 and Figures 47

to 53.

Table 25. AUC values for the machine learning algorithms

Measure
Decision

Tree

Gaussian

Naïve

Bayes

kernel

Naive

Bayes

KNN

Linear

Discrimin

ant

Logistic

Regressio

n

SVM

AUC 0.73 0.83 0.84 0.80 0.94 0.83 0.95

Figure 47. ROC and AUC

demonstration for the Logistoc

Regression agorithm

Figure 46. ROC and AUC

demonstration for the Kernal Naïve

Bayes algorithm

93

Figure 52. ROC and

AUC demonstration

for the Gaussian Naïve

Bayes algorithm

Figure 48. ROC and AUC

demonstration for Fine Tree

algorithm

Figure 50. ROC and AUC demonstration

for KNN alorithm

Figure 51. ROC and AUC

demonstration for the Linear

Discrimant algorithm

Figure 49. ROC and AUC

demonstration for the Gaussian

Naïve Bayes algorithm

94

Observations: From the results above, both the SVM and linear discrimination

algorithms outperformed by scoring the biggest AUC values, i.e. 0.95 and 0.94. That

is consistent with previous scoring results, such as accuracy, recall, etc. However,

when these scores were compared to the proposed CNN, it was clear that CNN could

ingest images and provide the best classification performance, as measured by the

AUC value of 0.99 and the other classification performance metrics mentioned in the

previous sections. The AUC values for the ML methods and the proposed CNN are

shown in Figure 54.

0,99
0,83 0,84 0,8

0,94
0,83

0,95

0,73

0

0,2

0,4

0,6

0,8

1

AUC

Figure 53. ROC and AUC

demonstration

for the Linear SVM algorithm

Figure 52. ROC and AUC

demonstration for the Linear SVM

algorithm

Figure 53. Graphical comparison of AUC values between the proposed

CNN and machine learning algorithms

95

5.8. Comparisons Between Implementation (CPU and PYNQ)

On the implementation side of the thesis, a comparison was made in

implementing the suggested CNN models on both the CPU and the PYNQ board using

the identical CNN model training settings. The execution time on the PYNQ board

was noticeably faster than that of the CPU. Table 26 and Figure 55 show the results.

In terms of precision, however, the proposed FPGA Model 2 outperformed the CPU.

As shown in Figure 56, the precision value of the first model converged between the

CPU and the PYNQ board.

Table 26. Performance Comparison of the proposed models

 (CPU and FPGA)

Model Name Accuracy Time (seconds)

CPU-CNN model 96.87 58.2

FPGA-Model 2 97.776 16.07

FPGA-Model 1 96.576 39.73

58,2

16,07

39,73

0

10

20

30

40

50

60

70

CPU-CNN model FPGA-Model 2 FPGA-Model 1

Time (seconds)

Figure 54. Graphical representation of the training time

comparison of the proposed models (CPU and FPGA)

96

5.9. Comparisons Between the Implementation of AlexNet and LeNet (CPU and

PYNQ)

A comparison was made in implementing the AlexNet and LeNet models on

both the CPU and the PYNQ board using the identical CNN model training settings.

The PYNQ board's execution time was noticeably faster than the CPU's. Table 27

shows the results. In terms of accuracy, the AlexNet and LeNet models outperformed

the FPGA over the CPU.

Table 27. Performance Comparison of the AlexNet and LeNet models

(CPU and FPGA)

Model Name Accuracy Time (seconds)

CPU-AlexNet 93.32 5566.11

CPU- LeNet 85.13 245

FPGA- AlexNet 94.56 240.87

FPGA- LeNet 85.73 53.75

96,87

97,776

96,576

95,8

96

96,2

96,4

96,6

96,8

97

97,2

97,4

97,6

97,8

98

CPU-CNN model FPGA-Model 2 FPGA-Model 1

Accuracy

Figure 55. Graphical representation of the accuracy comparison of

the proposed models (CPU and FPGA)

97

CHAPTER SIX

CONCLUSION AND DISCUSSION

5.1. Conclusion

DL approaches are acquired increasingly important in today's life technology. DL

techniques have been used for a wide range of scientific and engineering applications.

ML and AI are being used in medical applications as well. Both are used for disease

or sickness diagnostic prediction using historical data ranging from raw values

(numbers or characters), images or even videos.

In this work, a proposed reliable model for BC diagnosis was generated using a CNN

architecture, and the performance of the proposed CNN was compared across two

types of education. The first learning was performed via the CPU using a set of ML

algorithms, such as random forest, KNN, etc. Moreover, pre-trained classifiers of DL

algorithms on CPU were also used, AlexNet, VGG-16, ResNet, etc. The second

learning was performed via the FPGA development board using the proposed CNN as

well as DL algorithms, AlexNet and LeNet-5, focusing on improving BC diagnosis,

preventing overfitting and obtaining the highest possible prediction accuracy.

CNNs can be used to analyse big data with high efficiency and less training error due

to their flexible and functional structure. Performance metrics such as accuracy, MSE,

MAE and RMSE were deployed for the model's quality assessment.

In order to evaluate each algorithm's performance for the required task, the following

results were obtained using the indicated algorithms (cancer diagnosis). The proposed

CNN outperformed ML algorithms, according to CPU-based results. Methods, as well

as DL algorithms. A prediction accuracy equal to 95.12% was observed in the results

while using CNN over the other algorithms.

The random forest algorithm also achieved a good prediction accuracy, but its process

took a long time, which is considered the main drawback of its performance. The other

algorithms also achieved different accuracy measures, and all were less than the

proposed CNN.

Moreover, pre-trained DL models, such as VGG-16, AlexNet, ResNet-18, ShuffleNet

and LeNet, were used for the same goal. The ResNet-18 algorithm also achieved a

98

high prediction accuracy, but the process took longer, which was the main source of

performance loss. Despite this, the prediction accuracy of the proposed algorithm was

very high with a shorter time compared with other algorithms.

5.2. Discussion

The CNN model outperformed the other deployed models because it did not

require an extra step to convert a multi-dimensional image into a single-dimensional

array, and it also included extraction, which is often overlooked when employing deep

learning paradigms. The results of the proposed CNN method were more dependable

than those of other access methods.

Discussions.

 1. While changing the filter size (window) and fixing the number of filters to 32 and

the pooling layer window, the accuracy results were observed changing randomly

within the 85–88% range.

2. By fixing the window size, increasing the number of filters of the Con2D layer and

fixing the window size of the pooling layer, a gradual increase was observed in the

accuracy results.

3. While fixing the filter size (window) of Con2D, fixing the number of filters in the

same layer and changing the pooling layer window, the performance accuracy results

were observed changing randomly within the 84–88% range.

4. While changing the filter size (window) of the second Con2D layer and fixing the

number of filters to 64, as well as the pooling layer window, the performance of the

accuracy results were observed changing randomly within the 80–90% range.

5. By changing the number of the filter of the second Con2D layer from 16 to 54 and

fixing the window size of both the pooling and Con2D layers, the accuracy results

changed randomly within the 80–85% range.

6. Fixing the number of filters to 64 on the second Con2D layer, as well as its window

to 3 x 3, and varying the second pooling layer window from 2 x 2 to 12 x 12, results

dropped from 90 to 80% randomly within the intermediate stages.

99

7. Varying the window size of the third Con2D layer from 3 x 3 to 13 x 13 and fixing

the number of filters of the same layer to 128 with a constant pooling window of 2 x

2, the accuracy results dropped randomly from 95% to 91%.

8. Varying the number of filters of the third Con2D from 32 to 128 and fixing the

pooling window to 2 x 2, results enhanced from 95–97% randomly. The biggest

number of filter deployments on the Con2D layers within the CNN model was the key

factor for accuracy increments. However, the size of the filter must be chosen

appropriately, so that model overfitting is prevented.

Comparison with pre-trained neural networks: Irrespective of the wide structure

(complexity) of the pre-trained NNs, such as ResNet-18, ShuffleNet, VGG-16,

AlexNet and LeNet, the proposed CNN yielded the best prediction accuracy over the

other NNs. ResNet-18 outperformed ShuffleNet, VGG-16, AlexNet and LeNet by

scoring 99% of BC prediction accuracy.

Comparison with machine learning tools: The linear discrimination algorithm

recorded 90% of BC prediction accuracy. However, the kernel naive Bayes algorithm

had the lowest recorded accuracy. The proposed CNN also outperformed over all the

ML algorithms.

5.3. Proposed CNN Over FPGA Development Board

According to Table 26 and Figures 55 and 56, the proposed FPGA-based DL

model outperformed the other two models in terms of accuracy of cancer detection and

the time of training. The implemented model on FPGA was similar to the CPU–CNN

model from the structural point of view. On the other hand, the CPU model had a

higher layer budget, such as a higher number of filters in each layer and higher filter

dimensions, to meet an accuracy of 96.87%. The same impacted the classifier's

performance, as training time crossed 86 seconds. The FPGA-based proposed CNN

model provided higher accuracy and less computational costs for a similar CPU

structure-proposed model. From that, it can be concluded that FPGA (PYNQ-Z2) can

ensure a good alternative for those applications demanding less processing delay and

higher accuracy, so it has a good scope on replacing the traditional CPUs and on paving

100

the road for task-oriented boards, which is set to perform a particular task with higher

accuracy and less time.

101

REFERENCES

 Abhigna, P., Jerritta, S., Srinivasan, R., & Rajendran, V. (2017, April). Analysis of

feed forward and recurrent neural networks in predicting the significant wave

height at the moored buoys in Bay of Bengal. In 2017 International Conference

on Communication and Signal Processing (ICCSP) (pp. 1856-1860). IEEE.

Akbar, S., Peikari, M., Salama, S., Nofech-Mozes, S., & Martel, A. (2017).

Transitioning between convolutional and fully connected layers in neural

networks. In Deep Learning in Medical Image Analysis and Multimodal

Learning for Clinical Decision Support (pp. 143-150). Springer, Cham.

Akhtar, N., & Ragavendran, U. (2020). Interpretation of intelligence in CNN-pooling

processes: a methodological survey. Neural computing and applications, 32(3),

879-898.

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... &

Asari, V. K. (2018). The history began from alexnet: A comprehensive survey

on deep learning approaches. arXiv preprint arXiv:1803.01164.

Aly, G. H., Marey, M., El-Sayed, S. A., & Tolba, M. F. (2021). YOLO Based Breast

Masses Detection and Classification in Full-Field Digital

Mammograms. Computer Methods and Programs in Biomedicine, 200,

105823.

Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., ... & Campilho, A.

(2017). Classification of breast cancer histology images using convolutional

neural networks. PloS one, 12(6), e0177544.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.

Chan, A., & Tuszynski, J. A. (2016). Automatic prediction of tumour malignancy in

breast cancer with fractal dimension. Royal Society open science, 3(12),

160558.

102

Chandra, A. L., Desai, S. V., Guo, W., & Balasubramanian, V. N. (2020). Computer

vision with deep learning for plant phenotyping in agriculture: A survey. arXiv

preprint arXiv:2006.11391.

Chen, K., Huang, L., Li, M., Zeng, X., & Fan, Y. (2018, October). A compact and

configurable long short-term memory neural network hardware architecture.

In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp.

4168-4172). IEEE.

Dixon, J. M. (Ed.). (2012). ABC of breast diseases (Vol. 226). John Wiley & Sons.

Dureja, A., & Pahwa, P. (2019). Analysis of non-linear activation functions for

classification tasks using convolutional neural networks. Recent Patents on

Computer Science, 12(3), 156-161.

Ellis, H., & Mahadevan, V. (2013). Anatomy and physiology of the breast. Surgery

(Oxford), 31(1), 11-14.

Fellbaum, C. (1998). Towards a representation of idioms in WordNet. In Usage of

WordNet in Natural Language Processing Systems.

Filipczuk, P., Fevens, T., Krzyżak, A., & Monczak, R. (2013). Computer-aided breast

cancer diagnosis based on the analysis of cytological images of fine needle

biopsies. IEEE transactions on medical imaging, 32(12), 2169-2178.

Fitzmaurice, C., Allen, C., Barber, R. M., Barregard, L., Bhutta, Z. A., Brenner, H., &

Dicker, D. J. (2017). A systematic analysis for the global burden of disease

study. JAMA Oncol, 3(4), 524-548.

Fletcher, C. D., Unni, K., & Mertens, F. (2002). World Health Organization

classification of tumours. Pathology and genetics of tumours of soft tissue and

bone. IARC press.

George, Y. M., Zayed, H. H., Roushdy, M. I., & Elbagoury, B. M. (2013). Remote

computer-aided breast cancer detection and diagnosis system based on

cytological images. IEEE Systems Journal, 8(3), 949-964.

103

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol.

1, No. 2). Cambridge: MIT press.

Gour, M., Jain, S., & Sunil Kumar, T. (2020). Residual learning based CNN for breast

cancer histopathological image classification. International Journal of Imaging

Systems and Technology, 30(3), 621-635.

Gschwend, D. (2020). Zynqnet: An fpga-accelerated embedded convolutional neural

network. arXiv preprint arXiv:2005.06892.

Gupta, V., & Bhavsar, A. (2017). Breast cancer histopathological image classification:

is magnification important?. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (pp. 17-24).

Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., & Yener,

B. (2009). Histopathological image analysis: A review. IEEE reviews in

biomedical engineering, 2, 147-171.

Hamdan, M. K., & Rover, D. T. (2017, December). VHDL generator for a high

performance convolutional neural network FPGA-based accelerator. In 2017

International Conference on ReConFigurable Computing and FPGAs

(ReConFig) (pp. 1-6). IEEE.

Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., & Li, S. (2017). Breast cancer multi-

classification from histopathological images with structured deep learning

model. Scientific reports, 7(1), 1-10.

Irshad, H., Veillard, A., Roux, L., & Racoceanu, D. (2013). Methods for nuclei

detection, segmentation, and classification in digital histopathology: a

review—current status and future potential. IEEE reviews in biomedical

engineering, 7, 97-114.

Ismail, N. S., & Sovuthy, C. (2019, August). Breast cancer detection based on deep

learning technique. In 2019 International UNIMAS STEM 12th Engineering

Conference (EnCon) (pp. 89-92). IEEE.

104

Jiang, Z. (2019, December). A novel crop weed recognition method based on transfer

learning from VGG16 implemented by keras. In IOP Conference Series:

Materials Science and Engineering (Vol. 677, No. 3, p. 032073). IOP

Publishing.

Jørgensen, H. (2017). Automatic license plate recognition using deep learning

techniques (Master's thesis, NTNU).

Kahya, M. A., Al-Hayani, W., & Algamal, Z. Y. (2017). Classification of breast cancer

histopathology images based on adaptive sparse support vector

machine. Journal of Applied Mathematics and Bioinformatics, 7(1), 49.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information

processing systems, 25, 1097-1105.

Kumar, R. A (2020). Survey on Memetic Algorithm and Machine learning Approach

to Traveling Salesman Problem.

Kuon, I., & Rose, J. (2010). Quantifying and exploring the gap between FPGAs and

ASICs. Springer Science & Business Media.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A. Y. (2011,

January). On optimization methods for deep learning. In ICML.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Mandwi, I., Bhondge, B., Thakre, K., Dhande, G., & Patiye, I. (2016). Cancer

Identification by Analysis of WBC.

Mitchell, T. M. (1997). Does machine learning really work?. AI magazine, 18(3), 11-

11.

105

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine

learning. MIT press.

Motlagh, M. H., Jannesari, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi,

M., & Hajirasouliha, I. (2018). Breast cancer histopathological image

classification: A deep learning approach. BioRxiv, 242818.

Olivito, J., Gran, R., Resano, J., González, C., & Torres, E. (2015). Performance and

energy efficiency analysis of a Reversi player for FPGAs and General Purpose

Processors. Microprocessors and Microsystems, 39(2), 64-73.

Omonigho, E. L., David, M., Adejo, A., & Aliyu, S. (2020, March). Breast Cancer:

Tumor Detection in Mammogram Images Using Modified AlexNet Deep

Convolution Neural Network. In 2020 International Conference in

Mathematics, Computer Engineering and Computer Science (ICMCECS) (pp.

1-6). IEEE.

Rahman, A. S. A., Belhaouari, S. B., Bouzerdoum, A., Baali, H., Alam, T., & Eldaraa,

A. M. (2020, February). Breast Mass Tumor Classification using Deep

Learning. In 2020 IEEE International Conference on Informatics, IoT, and

Enabling Technologies (ICIoT) (pp. 271-276). IEEE.

Rahman, A., Lee, J., & Choi, K. (2016, March). Efficient FPGA acceleration of

convolutional neural networks using logical-3D compute array. In 2016

Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp.

1393-1398). IEEE.

Rørmann Olsen, I. (2018). Dealing with word ambiguity in NLP. Building appropriate

sense representations for Danish sense tagging by combining word embeddings

with wordnet senses.

S. E. Wahlstrom, “Programmable logic arrays cheaper by the millions,” Electronics,

vol. 40, pp. 90–95, December 1967.

Salem, M. A. M. (2018, December). Mammogram-Based cancer detection using deep

convolutional neural networks. In 2018 13th International Conference on

Computer Engineering and Systems (ICCES) (pp. 694-699). IEEE.

106

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

networks, 61, 85-117.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Sinha, T., Verma, B., & Haidar, A. (2017). Optimization of convolutional neural

network parameters for image classification. In 2017 IEEE Symposium Series

on Computational Intelligence (SSCI) (pp. 1-7). IEEE.

Spanhall, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016, July). Breast cancer

histopathological image classification using convolutional neural networks.

In 2016 international joint conference on neural networks (IJCNN) (pp. 2560-

2567). IEEE.

Spanhol, F. A., Oliveira, L. S., Cavalin, P. R., Petitjean, C., & Heutte, L. (2017,

October). Deep features for breast cancer histopathological image

classification. In 2017 IEEE International Conference on Systems, Man, and

Cybernetics (SMC) (pp. 1868-1873). IEEE.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast

cancer histopathological image classification. Ieee transactions on biomedical

engineering, 63(7), 1455-1462.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast

cancer histopathological image classification. Ieee transactions on biomedical

engineering, 63(7), 1455-1462.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich,

A. (2015). Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1-9).

Trimberger, S. M. (Ed.). (2012). Field-programmable gate array technology. Springer

Science & Business Media.

Tsochatzidis, L., Koutla, P., Costaridou, L., & Pratikakis, I. (2021). Integrating

segmentation information into CNN for breast cancer diagnosis of

107

mammographic masses. Computer Methods and Programs in

Biomedicine, 200, 105913.

Wei, B., Han, Z., He, X., & Yin, Y. (2017, April). Deep learning model based breast

cancer histopathological image classification. In 2017 IEEE 2nd international

conference on cloud computing and big data analysis (ICCCBDA) (pp. 348-

353). IEEE.

Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y., ... & Zhang, F. (2020). Breast

cancer histopathological image classification using a hybrid deep neural

network. Methods, 173, 52-60.

Zhang, H. (2015). Microwave imaging for ultra-wideband antenna based cancer

detection.

Zhang, Z., Wang, Y., Zhang, J., & Mu, X. (2019, October). Comparison of multiple

feature extractors on Faster RCNN for breast tumor detection. In 2019 8th

International Symposium on Next Generation Electronics (ISNE) (pp. 1-4).

IEEE.

108

ANNEXES

ANNEXES A. Three main requirements are to be fulfilled upon reaching to

this step:

1. insertion SD care to the development board, connecting the development board

with both micro-USB cable and ethernet cable with the computer. Development board

is to be empowered through micro-USB cable with +5v DC from computer itself,

while the other connection (ethernet connection) is to be used for data exchanging

between the FPGA network card and the computer network card. Using of ON-OFF

sliding switch, board can be started, it is important to keep the bin connector (on the

board itself) to the position of SD card boot where FPGA can understand to boot the

system flashed on the SD card.

2. before any further steps, FPGA need to get linked with internet, this can be availed

using internet sharing from PC network card. Simply by opening “network and sharing

center” adaptor settings selection of main network card (local area network) and

from there sharing of internet can be set. It is important to realize that no IP addressing

is made so far and after sharing of the internet by local area network card, computer

will automatically assign IP address to FPGA board i.e. 192.168.132.1.

109

3. Putty configuration in order to get access to the OS of FPGA (empowered with

internet) where the python configurations can be made. Two important things to be

taken care in order to successfully access the terminal of PYNQ.

 a. Hostname and Clock size: in order to find the host name, accessing to the

“Device Manager” where all USB ports are appearing. From that, name of USB port

can be identified. Transfer the setting of Putty into Telnet.

 b. Clock size must be set into 115200 Hz. is demonstrating Putty software

front end.

110

ANNEXES B. Deep Learning Libraries

Shell of PYNQ-Z2 which has been accessed using Putty is providing Linux

environments for establishing Python related tools used in this project. Such process

can be initiated by fulfilling of the following steps:

1. since Linux environments is already installed in the flashed image (on SD card)

and boot of PYNQ-Z2 board is set to be from SD card; system is ready now for

implementation of further process. First important action is to install the Python; at the

time this thesis is made, Python 3.8 is available so-to-say, same version can be installed

on the board. The following command can be typed on the terminal in order to

download and install the required source.

command: $ sudo apt-get install python

2. most of the required python libraries can be installed using PIP tool; however,

Python3.8 is providing PIP3. Get-pip.py is installed by running the following

command:$ curl -sSL https://bootstrap.pypa.io/get-pip.py -o get-pip.py

3. many of Python sources cannot be installed even when the prementioned two steps

are accomplished. Thus, the so called virtual environments can be used for safe

installing. For that, firstly virtual environment tool need to be installed as hereinafter:

command: $sudo pip install virtualenv

The term SUDO is used for giving the authenticity of root user for this installation

which acts good in many installations so, it is highly recommended to finish the

installation easily. In order to use the virtual environments, following commands can

be typed in the terminal:

Creation of new virtual environments:

command:$virtualenv venv

Changing the directory is must; here in order to use the being created virtual

environment, it is necessary to access the location of this virtual environment by using

CD command; thereafter; virtual environment can be used by typing the following:

Code function: $source venv/bin/activate

https://bootstrap.pypa.io/get-pip.py%20-o%20get-pip.py

111

Soon after the required task gets over, the virtual environments can be stopped using

the command: $ deactivate

All the required libraries that are needed for accomplishing the project are given below

ANNEXES C. Caffe Project

Caffe (Convolutional Architecture for Fast Feature Embedding) provides multimedia

scientists and practitioners with a clean and modifiable framework for state-of-the-art

deep learning algorithms and a collection of reference models. The framework is a

BSD-licensed C++ library with Python and MATLAB bindings for training and

deploying generalpurpose convolutional neural networks and other deep models

efficiently on commodity architectures. Caffe fits industry and internet-scale media

needs by CUDA GPU computation, processing over 40 million images a day on a

single K40 or Titan GPU (≈ 2.5 ms per image). By separating model representation

from actual implementation, Caffe allows experimentation and seamless switching

among platforms for ease of development and deployment from prototyping machines

to cloud environments. Caffe is maintained and developed by the Berkeley Vision and

Learning Center (BVLC) with the help of an active community of contributors on

GitHub. It powers ongoing research projects, large-scale industrial applications, and

startup prototypes in vision, speech, and multimedia.

1. Install dependencies:

Commands:

$sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev

libhdf5-serial-dev protobuf-compiler

$sudo apt-get install --no-install-recommends libboost-all-dev

$sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

2. Install Protobuf 3

112

Commands:

 $pip3 install protobuf

3. Install Caffe

Commands:

 $cd /home/xilinx

$git clone https://github.com/BVLC/caffe.git

Next is accessing into the Caffe directory and into “make”folder and the following can

be run:

Commands:

$make all

$make test

$make runtest

After completing that, CD command can be used in order to exit from Caffe directory

to the main directory. Next is to install Pycaffe:

Commands:

$Install pycaffe with Python

$cd python

$for req in $(cat requirements.txt); do sudo pip install $req; done

echo "export PYTHONPATH=$(pwd):$PYTHONPATH " >> ~/.bash_profile # to be

able to call "import caffe" from Python after reboot

$source ~/.bash_profile # Update shell

$cd .

$export PYTHONPATH=/home/xilinx/caffe/python

4. Install Theano with Lasagne on PYNQ

113

Commands:

$pip=install-r

https://raw.githubusercontent.com/Lasagne/Lasagne/v0.1/requirements.txt

$pip install Lasagne==0.1

1. PUNQ-Z2 is providing Jupyter notebook where python programming can be

conducted; firstly, all the database images (around 2156 image) must be uploaded to

the notebook directory on the PYNQ-Z2 FPGA development board. Firstly, accessing

the Jupyter notebook over the PYNQ-Z2 need to be performed after IP assignment.

Static IP addressing to be given to the PYNQ-Z2 network card. The default IP address

for PYNQ-Z2 development board is 192.168.2.99, however computer network card

and this card to be linked together by assigning IP such as 192.168.2.14 to the PYNQ-

Z2 development board, Figure below is demonstrating the IP addressing procedure.

114

After assignment of the static IP to the development board, the last can be accessed by

typing the same IP on any internet explorer application such as Google Chrome.

Password of the PYNQ-Z2 will be the first thing that must enter into in order to open

the jupyter notebook.

ANNEXES D. Uploading database file

Loading large number of images in jupyter notebook using method (upload file one by

one) which takes unnecessary time and efforts, However, there are more efficient

methods that can be employed, such as the following:

1. compressing all the images into one archive file (.zip);

2. uploading this archive file into the jupyter notebook;

3. running of the following commands in the jupyter notebook itself in order to

unarchive the uploaded file:

115

116

RESUME

Personal Information

Surname, name : Omar Mhmood ABDULHADI

Nationality : Iraq

Birth date and place : 20.05.1985 Mosul-Iraq

Telephone : 00905364983441

Fax :

e-mail : omarmah1985@gmail.com

Education

Degree Education Unit Graduation Date

Master Electrical-electronic engineering 2021

Bachelor Electronic engineering 2006/2007

High School Al-motamezin school 2004

Work Experience

Year Place Title

2012-2013 Mosul-Iraq engineering

Foreign Language

Arabic - English

Publications

