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SUMMARY 

Brain Computer Interface enables individuals to communicate with devices 

through Electroencephalography (EEG) signals in many applications that use 

brainwave controlled units.  New algorithms using EEG waves for controlling the 

movements of a drone by eye-blinking and attention level signals are presented. 

Optimization of the signal recognition obtained is carried out by classifying the eye-

blinking with a Support Vector Machine algorithm and converting it into 4-bit codes 

via an artificial neural network. Linear Regression Method is used to categorize the 

attention level to low or high level with a dynamic threshold, yielding a 1-bit code. 

The control of the motions in the algorithm is structured with two control layers. The 

first layer provides control with eye-blink signals, the second layer with both eye-blink 

and sensed attention levels. EEG signals are extracted and processed using a single 

channel NeuroSky mindwave 2 device. The proposed algorithms have been validated 

by experimental testing of five individuals of different ages. The results show its high 

performance compared to existing algorithms with accuracies of 91.85% and 90.37% 

for 9 control commands. With a capability of up to 16 commands and its high accuracy, 

the algorithms can be suitable for many applications.  

Keywords : Electroencephalography (EEG), Brain computer interface (BCI), 

Drone, NeuroSky mind wave. 
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ÖZET 

Beyin Bilgisayar Arayüzü, beyin dalgası kontrollü birimleri kullanan birçok 

uygulamada bireylerin Elektroensefalografi (EEG) sinyalleri aracılığıyla cihazlarla 

iletişim kurmasını sağlar. Bir dronun hareketlerini göz kırpma ve dikkat seviyesi 

sinyalleri ile kontrol etmek için EEG dalgalarını kullanan yeni algoritmalar 

sunulmuştur. Elde edilen sinyal tanımanın optimizasyonu, göz kırpmanın bir Destek 

Vektör Makinesi algoritması ile sınıflandırılması ve yapay sinir ağı üzerinden 4 bitlik 

kodlara dönüştürülmesi ile gerçekleştirilir. Lineer Regresyon Yöntemi, dikkat 

seviyesini dinamik bir eşikle düşük veya yüksek seviyeye kategorilere ayırmak için 

kullanılır ve 1 bitlik bir kod üretir. Algoritmadaki hareketlerin kontrolü iki kontrol 

katmanı ile yapılandırılmıştır. İlk katman, göz kırpma sinyalleri ile kontrol sağlarken, 

ikinci katman hem göz kırpma hem de algılanan dikkat seviyeleri ile kontrol 

sağlamaktadır. EEG sinyalleri, tek kanallı NeuroSky mindwave 2 cihazı kullanılarak 

çıkarılır ve işlenir. Önerilen algoritmalar, farklı yaşlardaki beş kişinin deneysel olarak 

test edilmesiyle doğrulanmıştır. Sonuçlar, 9 kontrol komutu için% 91.85 ve% 90.37 

doğrulukla mevcut algoritmalara kıyasla yüksek performansını göstermektedir. 16 

komuta kadar kapasitesi ve yüksek doğruluğu ile algoritmalar birçok uygulama için 

uygun olabilir. 

Anahtar Kelimeler 

 
: Elektroensefalografi (EEG), Beyin bilgisayar arayüz (BCI), 

Dron, NeuroSky zihin dalgası. 
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INTRODUCTION 

 

The brain neurons are responsible of activating the human movement, and 

generating the electrical bio-signal inside the brain. These neurons features are 

invested in several technologies, which are used the mind waves in controlling the 

applications (Namdev and Mohd, 2015). Usually, control stick is used to control the 

appliances such as the wheelchair system (WCS), drone and arm robot. Nowadays, 

there is a huge demand for Brain Computer Interference (BCI) that can be used in 

situations where typical control interfaces are not an option. The concept of BCI based 

system has been developed to provide alternate control methods for handicap people, 

gamming and for special purpose applications (Guger, Werner, Carin and Gert, 1999). 

BCI is an interfacing technology between the mind and a processor by sensing brain 

signal and employing it to perform different tasks. By using the right tools and recent 

developments in brain imaging technologies, reading, recording, and analyzing these 

signals becomes possible, where every action generated by the brain can be used as 

input data to control devices. Thus, deployment of BCI system is rapidly increased and 

exploited as part of systems helping individuals suffering from spinal injury or 

reductions of motor skills to perform tasks daily. The individuals need only to think in 

the movement for controlling desired applications (Bates, 2002). There are several 

neuro-imaging processes capable to scan the brain waves which investing in 

developing and designing the sensor devices based on BCI system conception. 

Electroencephalography (EEG) is the most used technique to perform the control 

various applications. The present study utilizes the EEG technique in controlling a 

drone, by creating an interface between the human brain and the computer based on 

BCI system where the sensing device is employed to capture different frequency bands 

according to EEG rhythm signals. A single channel dry electrode installed in 

NeuroSky device is used to extract and collect the mind wave from the users’ scalp.  

NeuroSky mindwave 2 device provides many features, such as amplifying the EEG 

signal in order to boost the weakness amplitude of the captured signals, filtering the 

signals from muscles movement and noise distortion, processing and digitizing the 

signals before transmitting over Bluetooth, as well it has high resistance against the 

external influences (Lim, Chee-Keong, Wai Chong and Siew , 2014). 
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CHAPTER ONE 

PURPOSE OF THE THESIS 

 

1.1.Literature Survey  

 A lot of researches adopt the BCI system in their works by using the mind waves 

(EEG signals), muscle movements (Electromyography - EMG), and 

(Electrooculogram - EOG) in controlling the applications, and the study of nervous 

activity features.  

Shen, Hui-Min, Liang, Kok-Meng and Xin. (2015) present multi-motion robot 

system to help disable people in controlling an accessory appliance based on 

bioelectrical signal. The dry electrode single channel NeuroSky module is used to 

acquire the EEG signal, and invested both frequency and time feature of the device in 

processing the signals.  Six motions are derived by the processed signals for the 

attention and eye-blink. The system shows an accuracy eye-blink classification 95% 

with an average time 2.4 sec for implementing the mean attention level. 

 Stephygraph, L. Ramya, N. Arunkumar and V. Venkatraman. (2015) propose a 

wireless-mobile robot control by using EEG signal to assist the people who suffers 

from reduction of motor skills in performing daily tasks. NeuroSky mindwave is 

invested to capture the mind wave, and eye-blink signal is adopted to develop the 

controlling algorithm. The discrete wavelet transform is applied to improve the signal 

resolution in order to increase the accuracy of the classification of the eye-blink in 

different controlling classes.  

Shinde and George. (2016) design a system to control a WCS using EEG headset 

NeuroSky based on BCI system.  The attention and eye-blink signals are adopted in 

controlling the WCS, where the circumferential sensors are added to the WCS to 

provide safety control for the users in order to avoid the obstacles during movement. 

The controlling system presents an average successful detection of the eye-blink 85% 

to change the WCS direction.  

Bright, Dany, Amrita, Devashish and Swati. (2016) develop an algorithm to 

control a prosthetic-arm using NeuroSky mindwave based on EEG signals, so as to 

realize two motions of arm fingers (flexion and extension). The arm system is 
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composed of an Arduino connected with servo-motor to perform the flexion and 

extinction motions, and shows 80% accuracy.  

Zhang, Lu, Qingsong  and Yishen. (2017) propose the designing of a controlling 

system by using dry electrode single channel sensor to control a robotic car based on 

BCI system. The attention level is classified into three different periods (0 – 30, 31 – 

50, 51 – 100) depending on the average attention value for each period. For the first 

period the car moves backward slowly, and remains in same state through the second 

period. In third period car changes direction to forward in same speed. The robot-car 

system gets success rate of 85%.  

Nafea, Marwan, Nurul and Fauzan. (2018) propose a smart house system 

controlled by using EEG signals based on BCI system. The system uses   NeuroSky 

device to capture the EEG waves, and pairs with an Arduino to control four appliances 

via Bluetooth.  

Liu, Chang, Songyun, Xinzhou, Xu, Wei and Klaus. (2018) suggest a video-

feedback to control a car system based on the Steady State Visual Evoked Potential 

(SSVEP)-BCI system. Music method is used to improve the performance of the 

frequency domain analysis by classifying the signals into four directions. The system 

provides an average control accuracy equal to 87.5%.  

 Hassan, Mohammad, Hasin and Fariba. (2019) present a control system to help 

people who lost controlling on their limbs for home appliances. The system performs 

tasks daily using mind waves. The EEG Headset NeuroSky module is used to collect 

the EEG signal and detect the eye-blink. The eye-blink detection accuracy of the 

system is equal to 92%.  

Jameel, Huda, Salim and Sadik. (2019) design a WCS to help the disabled 

individuals using brain waves based on BCI system. The system adopts an Emotive – 

Insight EEG headset module to capture the mind waves and a DC motor driver to 

control the velocity of the chair. Moreover, a microwave radar is added to the WCS to 

provide a safe navigation for the patient in avoiding obstacles during the motion.  

Permana, Wijaya and Prajitno. (2019) propose a WCS control using brain waves 

based on BCI system. NeuroSky headset is used to capture and collect the EEG signals. 

The attention level, meditation level, and high alpha signal are employed to derive four 
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directions movement of the WCS. The WCS shows an average accuracy performance 

to the four direction; 82.22%, 73.33%, 46.76% and 17.78%, respectively.  

 NeuroSky EEG headset is used to collect brain signals as part of IoT technology 

with cloud server aimed for health care applications in (Mansour & Ouda, 2019).  So 

that, the mental and physical mind activities are used to control a robotic car for three 

movements (left, right, and forward), achieving the average error percentages as 10%, 

20%, and 25%, respectively 

Jeong, Ji-Hoon, Dae-Hyeok, Hyung-Ju and Seong-Whan. (2020) develop a 

prototype of brain-swarm interface controlling a swarm of a drone using Steady State 

Visually Evoked Potentials (SSVEP). An experimental environment is designed to 

extract and collect the EEG signals which are classified using machine learning for 

various flight scenarios: hovering, splitting, dispersing, and aggregation. 

Avudaiammal , Jasmine, Ashton and Bagavathy. (2020) provide a robot-car and 

home appliances controlled with brain signals using NeuroSky mobile 2.  A micro-

controller is employed to distribute and recognize the controlling signals. The attention 

and meditation signal levels are used to control the movement and the direction change 

of the robot-car, while the eye-blink is used for switching on /off of home appliances. 

Salih and Abdal.  (2020) design a system control of a virtual keyboard using 

brain waves based on BCI system. The NeuroSky mindwave 2 is used to capture the 

EEG signals and detect the eye-blink to control two designed keyboards (ABC and 

QWERTT). The attention signal used to scan and initialize the virtual keyboard, and 

the eye-blink for selecting character and moving the cursor to next row. The system 

shows an error rate equal to 5%, 5.25%, respectively.  

Morshad, Sarwar, Md Rabiuzzaman and Fahad. (2020) Present a classification 

of the brain waves into different frequency bands and the attention / meditation 

detection accuracy obtained through the distribution of users into four groups 

according to the age and sex. The NeuroSky mindwave 2 is used to capture the EEG 

signals and a Graphical User Interface (GUI) is implemented to collect, process, and 

analyze their features. The study achieves attention, meditation, and eye-blink average 

detection accuracies of 47.5%, 54.25%, and 48.25%, respectively.  

Tiwari, Prashant, Abhishek, Saurabh, Joydip and Prasenjit. (2020) present a BCI 

system implemented by Arduino micro-controller to help the users to maneuver a 
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miniature of WCS by non-invasive NeuroSky technique. The attention, meditation and 

eye-blink are used to develop three various controlling algorithms to execute the 

maneuvering commands.  

 

1.2.Problem Statement 

BCI enables individuals to communicate with devices through 

Electroencephalography (EEG) signals in many applications using brainwave 

controlled units. Thus, this lets us concentrate on developing an algorithm to control 

many devices here; a drone, by using EEG signals. This BCI system provides alternate 

control methods for handicap people, gamming and for special purpose applications 

characteristics.  

 

1.3.Aims and Objective 

The objective of the present work is developing two algorithms based on 

attention and eye-blink signals to control a drone. The algorithms include two possible 

control procedures, the one-layer control which is based on eye-blink only, and the 

two-layer control based on both attention level and eye-blinking. Also, a dynamic 

thresholding for attention level classification is used to improve the accuracy of the 

algorithm. The EEG headset NeuroSky module device is used in this work to capture 

and collect the mind signal, and then classify according to the users' intention into nine 

movements which are; Takeoff, Land, Forward, Backward, Up, Down, Left, Right, 

Stop. Also, the presented work aims to use an instrument with economically cost to 

acquire the mind signal which classifying to be suitable in maneuvering a drone by 

various users.  The scope of this work is formulated as: 

 Using Think Gear Connector Driver (TGCD) for Communicating wirelessly 

with NeuroSky Mindwave via Bluetooth. 

 Design Graphical User Interface “GUI” using processing IDE to collect and 

record the acquired EEG signal  

 Analyzing and classifying the collected data offline using Neural network 

methods (Linear Regression Method (LRM), Support Vector Machine 

(SVM), Artificial Neural Network (ANN)). 
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 Testing and evaluating the system in order to obtain a best implementation 

for the BCI system. 

 

1.4.Thesis Organization 

The thesis is composed of five chapters.  

 Chapter One presents simple introduction for the proposed system, includes 

general information, related work, the problem statement, and the objective of the 

thesis. 

 

- Chapter Two provides a theoretical background of the BCI system, the 

work’s methods of the BCI system, the general structure of the proposal 

system, and types of EEG headset. 

 

- Chapter Three presents the adopted methodology for the development of 

the algorithms with the details. 

 

- Chapter Four presents the evaluation of developed algorithms with 

experimental results. 

 

- Chapter Five presents the conclusions and future work.  
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CHAPTER TWO 

THEORETICAL BACKGROUND 

 

2.1. Brain Activity Patterns 

Human brain consists of three main parts which are Forebrain, Midbrain, and 

Hindbrain as presented in the Figure 1. The Forebrain includes cerebrum and the 

limbic system, while the Midbrain consists of tectum and tegmentum. Finally, the 

Hindbrain composes of cerebellum, pons and medulla. The cerebrum represents the 

most significant part of the brain because of it is responsible of thinking, problem-

solving and controlling muscular activates from limbs to the eye blinking for the 

individual. The human movements and thoughts are activated by nervous nudge 

sending by the neuron’s activity (Koslow  and  Subramanian, 2005). 

 

 

Figure 1. Human Brain parts (Koslow  and  Subramanian, 2005) 

 

The Hans Berger finds that the electrical activity produced by neurons known as 

EEG signals can be recorded using electrodes placed on scalp (Berger, 1929).  Since 

Hans Berger discovering, the researchers have worked on developing a system to 

exploit these brain signals in several fields. The first research is released presenting a 

system with an alternative transmission channel independent from the normal 

incidental nerve and muscle output pathways of mind, and knows as the BCI system 

(Vidal, 1973). 
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2.2. Brain Computer Interface (BCI) 

The BCI system is an interfacing technology between Human Mind (HM) and a 

processor to control the external devices by using thoughts in the controlling 

mechanism (Blankertz , Guido, Christin, Roman, Jens, K-R. Muller, Volker, Florian 

and Gabriel, 2003). The BCI system aims to translate the patterns of human cognizance 

depending on mind activities by recording the electrical signals in order to create a 

link course for controlling the devices or outside environments according to human 

intentions as shown in Figure 2 (Lotte, Fabien, Laurent and Maureen, 1999). The BCI 

system contains two primitively types which are active-reactive, and passive. The 

active BCI adopts the mind activities in determining the pattern of the user conscious, 

yielding to a direct devices control. In an analogous method, the reactive BCI derives 

the pattern from the mind activities changing according to the reaction that causing by 

external stimulation, driving applications control (Fetz, 1999). The passive BCI 

recognizes the perception and awareness of human without needs for the voluntary 

control to enrich the interfacing between the brain-computer with implicit information 

(Zander & Kothe, 2011). For the BCI system, there are two types of mind-sensing 

techniques which are; invasive and non-invasive (Girouard, Audrey, Erin Treacy, 

Hirshfield, Krysta, Angelo, Sergio and Robert, 2009).  In Table 1, several kinds of BCI 

neuro-imaging processes are listed.  

 

 

Figure 2. BCI system framework (Gu, Xiaotong, Zehong , Alireza, Peng Xu, 

Dongrui, Tzyy-Ping Jung and Chin-Teng Lin, 2020). 
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2.2.1. Invasive and / or partially invasive sensing technique  

It requires surgical intervention for implanting the electrodes under the scalp to 

communicate with the human brain. Although this invasive sensing technique provides 

high sensing accuracy and good signal-to-noise ratio, some scar tissues can be formed 

after surgery causing weakness in the acquisition of the brain signal and a severe 

medical state (Abdulkader., Atia and Mostafa, 2015). 

2.2.2. The non- invasive sensing technique  

It works by installing the electrodes in external headset placed on scalp to capture 

the brain signal. It is a reliable and efficient method for ordinary users and severely/ 

partially paralyzed patients to get back forms of communication and control of external 

devices (Muller-Putz and Pfurtscheller, 2007). In Figure 3, the main monitored brain 

activity for both invasive-partially invasive and non-invasive methods is presented. 

 

   Table 1.various neuroimaging methods (Anil, Praveen and Gauttam , 2018) 

Neuro-imaging 

Process 

Measured 

Movement 

Measurement 

Method 

Possibility 

Measures 

Portability 

Measures 

ECoG Electrical Direct Invasive Portable 

INR Electrical Direct Invasive Portable 

EEG Electrical Direct Non- Invasive Portable 

MEG Magnetic Direct Non- Invasive Non- Portable 

fMRI Magnetic Direct Non- Invasive Non- Portable 

NIRS Magnetic Direct Non- Invasive Portable 
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BCI system

Invasive and 

partially invasive 

Non-Invasive 

Single Neuron

Response To 

A Stimulus

Spontaneous 

Activity 

Event Related 

potentials

Evoked Potential 

Delta, Alpha, Beta 

Theta, Gamma 

Mu - waves

Sensori-motor 

rhythm (SMR) 
 

Figure 3. BCI system sensing methods 

 

2.3.ELECTROCOCHLEOGRAM (EEG)  

EEG is an observation technique to read and record the mind waves. The mind 

activities produce some of currents known as neurological ionic currents generating 

an electrical potential signal, which are sensed by the EEG.  The brain signals are 

classified based on their electrical activity into three types; spontaneous activity, 

Evoked Potentials (EP), and the bioelectric events produced by a single neuron 

(Malmivuo and Plonsey, 1995). The spontaneous activity knows as EEG signals, is 

measured from the individuals scalp in different mindwaves states as done in the 

NeuroSky device. The EP represents a combination of EEG patterns, and responses to 

a specified stimulus (electric, auditory, visual, etc.). These signals have low noise 

level, so it requires several stimuli and signal averaging for improving the SNR. 

Finally, the bioelectric events are produced from single neurons, and recorded directly 

by implanting microelectrodes brain. BCI system adopting the non-invasive technique, 

which is considered as the most common method to capture spontaneous EEG signals, 

and provides many features such as fast response, simplicity, low cost, and their ability 

for implementation in many applications, is used in the implementation of the 

NeuroSky mobile-2 device (Cincotti, , Donatella, Fabio, Simona, Gerwin, Giuseppe, 
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Andrea, Maria and Fabio, 2008) (Gu, Xiaotong, Zehong, Alireza, Peng, Dongrui, 

Tzyy-Ping and Chin-Teng, 2020). The EEG headset extracts and collects the brain 

waves in different frequency bands from the scalp with various channel according to 

the electrodes map. The EEG signals have low quality resolution because of the skull 

and scalp layers objecting the acquisition path. Moreover, the EEG signals are affected 

by the noise during the acquisition and other environmentally effects causing signal 

distortion and weakening the signal power driving a decrease in the Signal-to-noise 

ratio (SNR) (Zhang et al, 2017). 

 

2.4.The Spontaneous Activity: Brain Waves Rhythms 

The thoughts, behaviors and emotions are the result of the communication 

between the brain’s neurons. The brain waves are produced through the 

synchronization of electrical impulses from the neuron’s masses because of 

intercommunication. The brain waves are divided into five basic waves according to 

the frequency bands based on the mental state as listed in Table 2. The brain waves 

change according to the doings and feelings. The slower waves dominate during tired, 

slow movements, and dreams, while the higher waves dominate during feeling weird 

and hyper alerted. Figure 4 shows the comparison between the five types of the 

brainwaves.  

 

Figure 4. Comparison of EEG bands (Kent, 2010). 
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2.5.BCI System Structure 

The typical BCI system consists of four components which are: signal 

acquisition, feature extraction, feature translation, device output blocks as shown in 

Figure 5 (Tiwari et al, 2020).  

Table 2. EEG Signal frequency bands and related mental states 

Brainwave Type Frequency range Mental behavior 

Delta 0 Hz – 4 Hz 

 Deep dreamless sleep 

 Associated with healing 

Theta 4 Hz – 7 Hz 

 Extreme relaxation 

 Meditation and imagination 

 Increase creativity and problem solving 

Alpha 8 Hz – 12 Hz 

 State of relaxed mental awareness 

 Reflection, Contemplation, Visualization 

 Problem   solving 

 Accessing deeper level of creativity 

Beta 12 Hz – 30 Hz 

 Concertation. 

 During increased attentiveness 

 Energy, stable emotion 

Gamma 30 Hz – 100 Hz  High level information processing 
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Signal acquisition and 

processing 

Signal feature extraction 

Translation algorithm Device commands

 

Figure 5. BCI system structure  

 

The brain signals are collected from the scalp of individuals by using sensors, 

which are devices implemented with multi-electrode array to detect and collect the 

brain signal. The signal passes through an amplification unit to be appropriate for 

processing. Moreover, signal is subjected to a filtering unit to eliminate distortion and 

unwanted signals. After amplification and filtering, the signal is then digitized before 

transmission to the processing unit. The standard known as (10-20) is used for the 

correct placement of the electrodes over the scalp as clarified in Figure 6.   

 

 

Figure 6. The standard 10-20 electrode position of EEG (Rojas, Gonzalo., Carolina, 

Carlos E. Montoya, María de la Iglesia-Vayá, Jaime E. Cisternas and Marcelo, 

2018). 

 



 
 

14 
 

The processing and analyzing of the digital signals are accomplished through the 

feature extraction step.  Signal characteristics classification, and conversion into 

commands is implemented with objective of good interconnections with the user’s 

intents. There are several methods are applied to classify the brain signals in the BCI 

system.  Neural Network method is considered one of the popular ways to classify the 

EEG signals. Although the neural network is proved as good technique in solving the 

nonlinearly issues, the EEG signal is generally presupposed to be linear (Blankertz, 

Guido, Christin, Roman, Jens, Muller, Volker, Florian and Gabriel, 2003). The 

processed EEG signal passes to the feature translation algorithm for converting into 

commands based on user’s intention to control the external devices (i.e. commands 

that perform user’s objective), and transmits over the Universal Asynchronous 

Receiver and Transmitter (UART) interface using HC-06 Bluetooth module. The 

external device works by the output commands from the feature translation step of the 

BCI system. These commands provide functions such as control WCS, drone, select 

letter, operate arm robot etc.  
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2.6.Electroencephalography (EEG) Headset 

There are various kinds of EEG headset with a dry electrode, wet electrode, or both to 

extract and collect the brain signals from different area of the scalp. Some EEG headset 

types are listed in the Table 3.   

 

 NeuroSky device is adopted in this work. The NeuroSky headset has two lobes 

to detect and filter the EEG signal as shown in Figure 7 (Cheng, Jeffrey, Griffin and 

Carlos, 2014).  The frontal lobe of the EEG headset is represented by a dry electrode 

placed above the left eye, and the ear contact lobe working as a headset reference and 

ground electrodes (Salih & Abdal, 2020). The NeuroSky headset gives three values 

output which are: 

 EEG Raw data: It is a complex signal composed by mind waves and other 

random waves resulting from the electrical activities of nearby muscle and 

ambient noise.  

 eSense signals: NeuroSky company uses a proprietary algorithm to read user 

mental state based on Think-Gear technology. The eSense algorithm is applied 

on the remaining signals after amplifying and filtering the Raw signals 

(“NeuroSky”, 2014). The eSense meter has two types which are; Attention 

Table 3. EEG headset types (Gu et al, 2020)  

Brand Product Sensors type Channel Location Sampling rage 

NeuroSky Mindwave Dry 1 FP 1 512 Hz 

Emotiv EPOC + Dry 5 – 14 
F-C-T-P-

O 
125-256 Hz 

OpenBCI 
EEG electrode 

Cap Kit 
Wet 8-21 

F-C-T-P-

O 
250 Hz 

Wearable 

Sensing 

DSI 24: 

NeuSenW 
Wet, Dry 7-21 

F-C-T-P-

O 
300/600 Hz 

Muse Muse2 Dry 4-7 F-T 256 Hz 
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eSense meter and Meditation eSense meter. Attention eSense meter is a feature 

to measure the concertation levels of the human’s brain. The attention level 

meter has range between 0 - 100 integer values, and becomes low during the 

(mind wandering, Distractions, anxiety) states for the individuals. Meditation 

eSense meter is a feature to measure the relaxation and calmness levels of the 

mental state and physically for the individuals. The meditation eSense meter 

has range level between 0 -100 integer values, and improves during clearing 

mind, deep breath, closing eye, and imagination states for the users. The 

attention and meditation eSense meters range divide into five classes as 

follows.  

 Strongly Lower (1 – 20).  

 Reduced (20 – 40). 

 Neutral / baselines (40 – 60). 

 Slight Elevated (60 – 80).  

 Elevated (80 – 100). 

 Blink strength: The eye-blink reads with an unsigned single byte with range 

intensity between 1 - 255 integer value. Also, can be measured the eye-blink 

through the sudden change in the amplitude of the EEG signal. 

 

Figure 7. EEG NeuroSky module (ul Islam & Farooq, 2017) 
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CHAPTER THREE 

METHODOLOGY 

 

3.1.System Overview 

The EEG signal is processed by NeuroSky mindwaves-2 device before 

transmission to the PC. The Integrated Development Environment (IDE) processing + 

is used to design a Graphical User Interface (GUI) for projecting and supervising the 

coming signals from the NeuroSky. The GUI is also used to record the attention and 

eye-blink signals in an Excel database.  The collected data of eye-blink is used to 

define the threshold value by machine learning based on Support Vector Machine 

(SVM) classification algorithm. The obtained threshold value is utilized to train an 

Artificial Neural Network (ANN) to sort the applied eye-blink signals as logic “1” or 

logic “0” according to the strength of the signals. Since the attention signal levels are 

related to the concentration of the person under test, and the observation period, the 

Linear Regression Method (LRM) is used for the classification of signals yielding a 

dynamic threshold. Four sequential eye-blinks are used to generate 4-bit eye-blink 

codes that together with the attention level are employed in controlling a drone’s 

motions (takeoff, land, left, right, up, down, forward, backward, and stop). The block 

diagram of the adopted method is shown in Figure 8.   

 

EEG Signal Capturing & 

Treatment  

Signal Quantification 
 

LRM – SVM - ANN  Classification Control Drone 

 

Figure 8. Brain-drone interface block diagram 
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3.2.Capturing EEG Signal and Treatment 

The NeuroSky device uses single channel flexible dry electrode sensor to extract 

and collect the EEG signals from the pre-frontal left position (Fp1) of the scalp. Owing 

to the location with minimum hairs and proximity to the eye, it provides EEG and eye-

blink signals as shown in Figure 9.  

 

 

Figure 9. Neurosky Mindwave Mobile Headset (Matiko, Joseph , Stephen and John, 

2013).  

          Due to EEG signals’ weak amplitude (10μV - 100μV), and noise sensitivity 

during the extraction stage, a pre-treatment block is required to improve the SNR and 

maximize the accuracy of the EEG signals (Zhang et al, 2016). The block diagram of 

pre-treatment circuit is shown in Figure 10.  

 

Preamplifier Filter Postamplifier UARTA/D converter

 

Figure 10. Pretreatment steps for the EEG 

 

           The pre-treatment circuit consists of a preamplifier stage, a filter, a 

postamplifier, an analog-to-digital converter (A/D), and a Receiver / Transmitter 

interface. The preamplifier is used to boost the EEG signals by 8000 times. The EEG 

signals ranging in 0.5 Hz - 100 Hz bandwidth are exposed to distortions due to the 
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muscle movements and environmental effects. Thus, the filtering unit comprised of 

analog and digital low and high pass filters is used to eliminate the 50/60 Hz AC 

powerline interference, and other distortions in order to retain the signals in 0 – 50 Hz 

bandwidth range. The filtered EEG signals are amplified by the postamplifier block 

with gain equal to 2000, before passing to the A/D converter. In A/D converter the 

EEG signals are sampled at 512 Hz and coded with 12 bits and transmitted over a 

Universal Asynchronous Receiver and Transmitter (UART) interface using HC-06 

Bluetooth module (“NeuroSky”, 2014).  The formula for converting raw values to 

voltage is given by: 

   𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =     
𝑟𝑎𝑤 𝑣𝑎𝑙𝑢𝑒  ×    

𝑉𝑖

2𝑁 

𝐺
        (3) 

 

where G is the gain of the post-amplifier, 𝑉𝑖 is the maximum input voltage equal 

to 1.8 V, and N is the resolution in bits of A/D.  Table 4 presents the NeuroSky 

mindwave 2 outputs after pretreatment.  
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3.3.Signals Quantification 

There is a strong correlation between attention and meditation signals because 

they both characterize the concentration and relaxation of an individual. The selection 

of attention level instead of meditation is based on the complexity of meditation 

process which requires more training, and sustainable relaxation-concentration 

process during the experiment. 

 

Table 4. Protocol output of Neurosky mindwave (Mohd, 2015). 

Output data Band range and sampling 

Raw EEG data sampled at 1 Hz 

Delt - power Bandwidth frequency 0.5 – 2.75 Hz 

Theta - power Bandwidth frequency 3.5 – 6.75 Hz 

Low Alpha - power Bandwidth frequency 7.5 – 9.25 Hz 

High Alpha - power Bandwidth frequency   10 – 11.75 Hz 

Low Beta - power Bandwidth frequency   13- 16.75 Hz 

High Beta - power Bandwidth frequency   18 – 29.75 Hz 

Low Gamma - power Bandwidth frequency 31 – 39.75 Hz 

High Gamma - power Bandwidth frequency   41 – 49.75 Hz 

Attention eSense Attention level integer value 0 - 100 

Meditation eSense Meditation level integer value 0 - 100 

Poor signal 0 is good signal / 200 is off-head state. 

Blink strength Eye – blink integer value 0 -255 
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EEG signals known as α, β, δ, θ, and γ are represented using eight waves as 

illustrated in the designed GUI of the Figure 11. However, the most related waves to 

human mind states are those related to α, β, δ, and θ signals (Hasegawa & Oguri, 2006).  

The energy value of each signal can be given by (Liu, Chang, Songyun, Xinzhou, 

Duan, Wei and Klaus, 2013): 

𝐸α =  ∑  𝑃𝑓𝑟𝑒𝑞

13

𝑓𝑟𝑒𝑞=8

                                 (4) 

𝐸β =  ∑  𝑃𝑓𝑟𝑒𝑞

30

𝑓𝑟𝑒𝑞=14

                              (5) 

𝐸δ =  ∑  𝑃𝑓𝑟𝑒𝑞

3

𝑓𝑟𝑒𝑞=0.5

                              (6) 

𝐸θ =  ∑  𝑃𝑓𝑟𝑒𝑞

7

𝑓𝑟𝑒𝑞=4

                                (7) 

         where 𝑃𝑓𝑟𝑒𝑞  is the power of the signal, and 𝑓𝑟𝑒𝑞 is the frequency of the signals 

in a range of 0.5 Hz – 30 Hz  

The correlation between α, and β is exploited to derive the ratio equation as a feature 

to evaluate the mental attentiveness level (Hasegawa & Oguri, 2006), 

𝑅 =  
𝐸α

𝐸β
                             (8) 

 

 

Figure 11. Designed GUI for projecting and recording of NeuroSky outputs 
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3.3.1. Commands based on Eye-blink signals 

The eye-blink signals are used to generate control commands according to the 

blinking intensity strength. For an accurate determination of the blinking threshold, 

five individuals with different ages are required to generate six successive reading for 

each one as shown in the Table 5. Individuals are asked to produce three slight blinks 

and three strong blinks in a random order.  

 

The collected data is analyzed and classified using SVM algorithm. SVM works 

on constructing a hyper-plane or group of hyper-plane in dimensional space, which is 

used to classify the input data into output classes, here into slight or strong blinks. A 

good separation accuracy is achieved through the creation of a large margin zone 

between the hyper planes and any nearest training data for both classes as clarified in 

Figure 12 (Mohd, 2015). 

 

Table 5. Eye-blink experimental reading  

No. Blink S 1 S 2 S 3 S 4 S 5 

1 64 76 80 32 100 

2 95 61 34 55 101 

3 74 57 130 115 60 

4 64 95 82 95 35 

5 45 112 60 95 87 

6 55 46 48 63 58 
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Figure 12. SVM Margin Zones  

 

The SVM algorithm classification for the collected data resulting in an optimal 

threshold of 72 eye-blink intensity. The threshold separates eye-blink into two blink 

classes (strong or slight) as presented in the Figure 13-A. The confusion matrix shown 

in Figure 13-B indicates that one of the predicted strong blinks is considered as slight 

one resulting from an incorrect blinking of the individual S1.  Later, the ANN is trained 

with the obtained threshold and the collected data is sorted as logic “1” or logic “0”. 

ANN including several hidden weighted neurons (Li, and Chin, 2009), and the 

distribution of experimental data are shown in Figure 14 and Figure 15, respectively. 

Four blinking sequence is used to produce a four-bit code according to the selected 

motion as defined in Table 6. Each eye-blink code is generated during a period of 5 

sec, which has been set based on a series of experimental tests for different individuals. 

 

A B  

Figure 13. Eye blink signals classification (A) SVM classification (B) Confusion 

matrix 
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Figure 14. The adopted ANN block diagram    

 

 

Figure 15. Distribution of collected eye-blink signals 

Table 6. Eye-blink code commands 

Motion Eye-blink code 

Takeoff 1111 

Land 0000 

Up 1001 

Down 0110 

Forward 1110 

Backward 0001 

Right 0011 

Left 1100 

Stop 1010 
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3.3.2. eSense attention meter classification 

The attention levels’ data to be collected is determined by performing tests to 

five individuals for three different time intervals as illustrated in Figure 16. From the 

Figure 3.9-a, it can be seen that the best interval for collecting attention levels’ data 

can be defined as 10 sec. After 10 sec time is exceeded irregular fluctuations start 

occurring due to the lack of concentration of the individuals under test.   

b

c

a

 

Figure 16. Attention level of the five individuals (a) 10 sec interval, (b) 20 sec 

interval, (c) 30 sec interval. 

 

After data collection, LRM is applied to locate the threshold value of the 

attention level. The LRM is a statistical method to give the best linear approximation 

of the experimental data through the relationships between two continuous variables 

or factors as presented in Figure 17(Apprey-Hermann, 2020). It is used here to give 

the dynamic threshold value for the attention level according to the collected data in 

Table 7. The general form of the LRM equation is given by: 

𝑦 =  𝑎𝑥 + 𝑏                                    (9) 
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where, y is the dependent variable, x is the independent variable, a is the slop, 

and b is the y intercept.   

 

Figure 17. Linear Regression Method concept (Linear Regression and correlation, 

n.d, Chapter 300). 

 

 

Table 7. Calculation of LRM constants 

𝑥𝑖 𝑦𝑖
I 𝑦𝑖

II 𝑦𝑖
III 𝑦𝑖

IV 𝑦𝑖
V 𝑦�̅� 𝑥𝑖

2 𝑥𝑖𝑦�̅� 

1 34 24 54 29 56 39.4 1 39.4 

2 63 72 56 53 93 67.4 4 134.8 

3 83 91 74 77 100 85 9 255 

4 96 100 96 87 100 95.8 16 383.2 

5 100 100 93 84 100 95.4 25 477 

6 88 97 100 81 91 91.4 36 548.4 

7 91 85 96 96 90 91.6 49 641.2 

8 87 88 94 96 80 89 64 712 

9 90 93 90 90 88 74.2 81 667.8 

10 97 81 90 83 95 89.2 100 892 

11 81 84 97 96 100 93 121 1023 
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The constants a and b are calculated using the collected data as follows 

 

𝑎 =
(∑ 𝑦�̅�

𝑁
𝑖=1 )(∑ 𝑥𝑖

2𝑁
𝑖=1 )−(∑ 𝑥𝑖

𝑁
𝑖=1 )(∑ 𝑥𝑖𝑦�̅�

𝑁
𝑖=1 )

𝑁(∑ 𝑥𝑖
2𝑁

𝑖=1 )−(∑ 𝑥𝑖
𝑁
𝑖=1 )2                  (10) 

𝑏 =
𝑁(∑ 𝑥𝑖𝑦�̅�

𝑁
𝑖=1 )(∑ 𝑥𝑖

𝑁
𝑖=1 )(∑ 𝑦�̅�

𝑁
𝑖=1 )

𝑁(∑ 𝑥𝑖
2𝑁

𝑖=1 )−(∑ 𝑥𝑖
𝑁
𝑖=1 )2                              (11) 

where, 𝑥𝑖 is data collection time, 𝑦�̅� is the average of the experimental attention 

levels of the five individuals and N is the number of reading; here equal to 11.   

 

After the calculation of a and b, the dynamic threshold equation of attention level 

is given by: 

𝑌 =  3.2016 𝑋 + 65                     (12) 

The static attention level threshold is determined to be 85 based on the recorded 

experiment for an observation period of 10 sec, which are shown the attention level of 

the five individuals stabilizes over the 85 value after 3 to 4 sec in critical linearity way. 

The improvement in the attention level identified by the dynamic threshold compared 

to that of the static threshold (y = 85) is shown in The Figure 18, and the comparison 

between the two thresholds is given in Table 8.  The dashed red line in the figure shows 

the pattern of the dynamic threshold whereas the black one represents the static 

threshold. 

 

 

Figure 18. Dynamic and static thresholds of attention levels 
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The left part of the table is for static threshold and the right one is for the dynamic 

threshold. These values demonstrate a clear improvement by using dynamic threshold 

derived from LRM because it gradually adapts to the attention level changes during 

time for all individuals. The working mechanism of the attention level going to be 

adopted for controlling is be as follow; the attention level must be greater than the 

dynamic threshold for three seconds to achieve positive attention level (1-logic). The 

table shows that in the case of static threshold, one individual out of five (y4) fails to 

get this requirement in contrast to the dynamic threshold case accomplishing without 

fails. Also, the dynamic threshold results show higher number, constant, and 

homogeneous distribution for the positive threshold check, which is important for 

algorithm reliability. 

 

 

 

 

Table 8. Comparison of threshold types  

Time Static threshold  Dynamic threshold 

 y1 y2 y3 y4 y5  y1 y2 y3 y4 y5 

1 34 24 54 29 56  34 24 54 29 56 

2 63 72 56 53 93  63 72 56 53 93 

3 83 91 74 77 100  83 91 74 77 100 

4 96 100 96 87 100  96 100 96 87 100 

5 100 100 93 84 100  100 100 93 84 100 

6 88 97 100 81 91  88 97 100 81 91 

7 91 84 96 96 90  91 84 96 96 90 

*cells in red present faulty readings of attention level 
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3.4.Algorithm Development and Implementation 

Binary codes from the attention level (1-bit) and the eye-blink (4-bit) are 

exploited to develop two algorithms based on two controlling layers as depicted in 

Figures 19 and Figure 20.  The first control layer uses eye-blink code, while the second 

control layer uses the attention level code. For the algorithm one, the first control layer 

is adopted to perform the frequent motions (left, right, stop, up, and down) whereas 

both layers are adopted for implementing the important and critical motions (forward, 

backward, and takeoff) in a successive manner. With regard to the algorithm two, the 

first layer is adopted to perform the stop motion whereas both layers are adopted to 

perform the rest of the motions (takeoff, land, up, down, left, right, forward, backward) 

in a successive manner. The first active eye-blink triggers a timer for 5 seconds to 

generate an eye-blink code.  Then, related to the motion to be performed, the attention 

level can be detected during an observation period of 7 seconds. If the attention level 

is greater than the detected dynamic threshold during 3 seconds the second control 

layer is executed otherwise the device proceeds with the current motion.  

The GUI is designed to project video feedback screen with visual stimulators in 

order to provide an information about the location and the status of the drone to the 

user and clarify the work mechanism’ of the layers separately and sequentially as 

shown in the Figure 21.  

The presented algorithms are used to control various motions of a drone 

according to generated codes from mind signals. As soon as the devices are connected, 

the drone is ready to receive the takeoff command using both control layers. After 

takeoff, the drone is on hold to take the next movement commands. After receiving 

0000 eye-blink code for landing, the drone goes down and after a 15-second wait time 

the device turns off.  
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Figure 19. Drone control algorithm-one 
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Figure 20. Drone control algorithm-two 
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Figure 21. Designed GUI for projecting of drone controlled 
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CHAPTER FOUR 

DRONE CONTROL IMPLEMENTATION 

 

4.1.General 

This chapter presents the practical experiments of the adopted algorithms, and 

discusses the obtained results from the experiments. Finally, comparing the obtained 

results with the recent works.   

 

4.2.Experimental Results  

The evaluation of the two algorithms is carried out by including individuals with 

ages between 20-30 in the test experiment. The individuals are placed in a comfortable 

position and in a quiet environment free from negative factors.  The two algorithms 

follow same testing procedure by requiring participants to make three attempts for 

each movement, and the average time for the movement performed is calculated.  

 

4.2.1. First experiment.  

The evaluation performance of the algorithm-one in controlling the drone is 

presented in this section. The participants exhibit different average times for mental 

attentiveness and eye-blinking speed as shown in Table 9. In Figure 22 the average 

elapsed time required to perform each motion is presented. Note that the average times 

of eye-blinking and attention level code generations based on Table 9 and Figure 22 

are determined as 5, and 10 seconds (7 seconds for threshold detection and 3 seconds 

for obtaining the code), respectively. The experimental results for the performance 

accuracy of all motions are shown in Table 10. Also, the table gives the average 

accuracies obtained for each motion and each participant in the test experiment. 
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Figure 22. Average elapsed time for each motion / algorithm-one 

Table 9. Average elapsed time for each individual / algorithm-one 

Motion S1 S2 S3 S4 S5 

Stop 3 3.8 4 3.5 3.7 

Land 3.7 3.63 4.4 3 4 

Up 4 3.31 3 3 4 

Down 3.82 3.8 4 3.45 3.2 

Right 4 3 3.7 4.2 3 

Left 3 4.3 3.6 3.4 4.2 

Takeoff 12.4 12.2 11.6 11.3 13 

Forward 11.87 11.6 12 12.43 12.77 

Backward 12.8 12 11.75 11.5 11.9 
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The total movements under the test are 15 (three per person).  The Takeoff 

motion shows 14 out of 15 success-controlled attempts with 93.33% accuracy.  This 

result is repeated for land, up, right, left, and forward motions. The down motion shows 

13 out of 15 success-controlled attempts with 86.67 % accuracy. This result is repeated 

for backward. The total average control accuracy per participant is between 96.28% 

and 85.18%, and the total average performance of all movements is about 91.85%.  

 

4.2.2. Second Experiment 

In second experiment, the evaluation performance of the algorithm-two is 

presented.  In the Table 11, the different times for attention level and eye-blinking 

speed detection is listed, and the average elapsed time required to perform each motion 

is presented in the Figure 23. Note that the average times of eye-blinking and attention 

level code generations based on Table 11 and Figure 23 are determined as 5, and 10 

Table 10. Drone control algorithm-one accuracy 

motion \ subject S1 S2 S3 S4 S5 accuracy per motion 

Takeoff 2|3 3|3 3|3 3|3 3|3 93.33% 

Land 3|3 2|3 3|3 3|3 3|3 93.33% 

Up 3|3 3|3 2|3 3|3 3|3 93.33% 

Down 3|3 2|3 3|3 3|3 2|3 86.67% 

Right 3|3 3|3 2|3 3|3 3|3 93.33% 

Left 3|3 3|3 3|3 2|3 3|3 93.33% 

Forward 3|3 2|3 3|3 3|3 3|3 93.33% 

Backward 3|3 3|3 3|3 2|3 2|3 86.67% 

Stop 3|3 2|3 3|3 3|3 3|3 93.33% 

 96.29% 85.18% 92.59% 92.59% 92.59% 91.85% 
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seconds (7 seconds for threshold detection and 3 seconds for obtaining the code), 

respectively. The experimental results for the performance accuracy of all motions are 

shown in Table 12. Also, the table gives the average accuracies obtained for each 

motion and each participant in the test experiment. 

 

Figure 23. Average elapsed time for each motion / algorithm-two 

Table 11. Average elapsed time for individual / algorithm-two  

Motion S1 S2 S3 S4 S5 

Takeoff 13.5 11.8 11 12 13.4 

Land 10.43 12.66 13 11.3 12.6 

Up 12 10 11 12.42 11 

Down 11.67 12 14 11.55 11.3 

Right 11 11.5 10.88 11 10.7 

Left 10.67 13 11.7 10.95 11 

Forward 12.33 13 10.3 12.3 10.87 

Backward 11.67 11.23 10 12 10.95 

Stop 3 3.8 4 3.5 3.7 

 

 

 

 

 

 



 
 

37 
 

 

The total movements under the test are 15 (three per person). For example, the 

Takeoff motion shows 14 out of 15 success-controlled attempts with 93.33% accuracy.  

This result is repeated for land, up, right, and stop. The down motion show 13 out of 

15 success-controlled attempts with 86.67 % accuracy. This result is repeated for 

backward, and forward. The total average control accuracy per participant is between 

92.59% and 85.18%, and the total average performance of all movements is about 

90.37%. 

 

 

 

 

 

 

Table 12. Drone control algorithm-two accuracy 

motion \subject S1 S2 S3 S4 S5 accuracy per motion 

Takeoff 3|3 3|3 3|3 2|3 3|3 93.33% 

Land 3|3 3|3 3|3 3|3 2|3 93.33% 

Up 2|3 3|3 3|3 3|3 3|3 93.33% 

Down 3|3 2|3 2|3 3|3 3|3 86.67% 

Right 2|3 3|3 3|3 3|3 3|3 93.33% 

Left 3|3 3|3 3|3 2|3 2|3 86.67% 

Forward 3|3 2|3 2|3 3|3 3|3 86.67% 

Backward 3|3 2|3 3|3 3|3 2|3 86.67% 

Stop 3|3 2|3 3|3 3|3 3|3 93.33% 

 92.59% 92.59% 85.18% 92.59% 88.89% 90.37% 
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4.3.Results Comparison 

The comparison of the developed algorithms with the previous works in terms 

of commands issued, control layer, error rate, and accuracy, is shown in Table 13. 

 

 

 

The results show that the proposed algorithms with 91.85% and 90.37% 

accuracies, have a much higher performance than the others. In additional, the number 

of commands controlling the movements of the drone has been significantly increased.  

 

 

 

 

 

 

 

 

 

 

Table 13. Comparison of performance of different algorithms 

 No. of commands Control layer Error rate Accuracy 

First experiment 15 One -Two 8.15% 91.85% 

Second experiment 15 One -Two 9.63% 90.37% 

(Awais, 2020) 4 Two  17% 83% 

(Permana, 2019) 4 One  45% 55% 

(Rahmania, 2019) 3 One  18.33% 81.67% 

(Mansour & Ouda, 2019) 3 One  33.33% 66.67% 

(Tiwari et al, 2020) 3 One  NA NA 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

The people suffering from spinal injury or reductions of motor skills will have 

the ability to perform tasks and communicate with the society by using BCI system. 

New algorithms using EEG waves collected and transferred by a BCI system are 

presented. The proposed algorithms are developed to control the movements of a drone 

by eye-blinking and attention level signals. NeuroSky device with single channel and 

dry sensitive electrode is used to extract the brain waves signal from scalp and transmit 

to the computer via Bluetooth unit. The algorithms are configured with two control 

layers. The first layer uses eye-blink signals classified by a SVM and generated as 4-

bit code by an ANN. The second layer categorizes the attention levels with 1-bit code 

by specifying a dynamic threshold with LRM. The algorithms are validated by a test 

experiment using single channel NeuroSky module.  The proposed algorithms show a 

high performance with 91.85% and 90.37% accuracies. Moreover, the algorithms offer 

a capability of performing 16 commands making it suitable for various applications. 

 

5.1 Future Works 

The following suggestion can be taken in consider to develop the work presented 

in this study. 

1- In military field by adding radar for the drone in order to avoid the enemy 

attacks.  

2- Employ meditation level as an alert indicator in order to record a report of the 

mental state to provide stable controlling. 

3- In medical field by helping the patients to control the applications such as 

wheelchair, robotic arm, keyboard and printing the characters.  
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ANNEXES 
 

ANNEXES  A. MATLAB Support Vector Machine algorithm  

function [trainedClassifier, validationAccuracy] = 

trainClassifier(trainingData) 

% [trainedClassifier, validationAccuracy] = 

trainClassifier(trainingData) 

% returns a trained classifier and its accuracy. 

This code recreates the 

% classification model trained in Classification 

Learner app. Use the 

% generated code to automate training the same 

model with new data, or to 

% learn how to programmatically train models. 

% 

%  Input: 

%      trainingData: a table containing the same 

predictor and response 

%       columns as imported into the app. 

% 

%  Output: 

%      trainedClassifier: a struct containing the 

trained classifier. The 

%       struct contains various fields with 

information about the trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: a function to 

make predictions on new 

%       data. 

% 

%      validationAccuracy: a double containing the 

accuracy in percent. In 

%       the app, the History list displays this 

overall accuracy score for 

%       each model. 

% 

% Use the code to train the model with new data. 

To retrain your 

% classifier, call the function from the command 

line with your original 

% data or new data as the input argument 

trainingData. 

% 
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% For example, to retrain a classifier trained 

with the original data set 

% T, enter: 

%   [trainedClassifier, validationAccuracy] = 

trainClassifier(T) 

% 

% To make predictions with the returned 

'trainedClassifier' on new data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same 

predictor columns as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

  

% Auto-generated by MATLAB on 21-Dec-2020 14:04:43 

  

  

% Extract predictors and response 

% This code processes the data into the right 

shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Blink'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.type; 

isCategoricalPredictor = [false]; 

  

% Train a classifier 

% This code specifies all the classifier options 

and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', categorical({'Slight'; 

'Strong'})); 

  

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, 

predictorNames); 
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svmPredictFcn = @(x) predict(classificationSVM, 

x); 

trainedClassifier.predictFcn = @(x) 

svmPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'Blink'}; 

trainedClassifier.ClassificationSVM = 

classificationSVM; 

trainedClassifier.About = 'This struct is a 

trained model exported from Classification Learner 

R2019a.'; 

trainedClassifier.HowToPredict = sprintf('To make 

predictions on a new table, T, use: \n  yfit = 

c.predictFcn(T) \nreplacing ''c'' with the name of 

the variable that is this struct, e.g. 

''trainedModel''. \n \nThe table, T, must contain 

the variables returned by: \n  c.RequiredVariables 

\nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. 

\nAdditional variables are ignored. \n \nFor more 

information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', 

''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How 

to predict using an exported model</a>.'); 

  

% Extract predictors and response 

% This code processes the data into the right 

shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'Blink'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.type; 

isCategoricalPredictor = [false]; 

  

% Perform cross-validation 

partitionedModel = 

crossval(trainedClassifier.ClassificationSVM, 

'KFold', 5); 

  

% Compute validation predictions 

[validationPredictions, validationScores] = 

kfoldPredict(partitionedModel); 
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ANNEXES  B. MATLAB Artificial Neural Network (ANN) code 

 

 

 

% Compute validation accuracy 

validationAccuracy = 1 - 

kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

 

function [Y,Xf,Af] = 

myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation 

function. 

% 

% Auto-generated by MATLAB, 21-Dec-2020 19:43:57. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these 

arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 1xQ matrix, input #1 at 

timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at 

timestep ts. 

% 

% where Q is number of samples (or series) and TS 

is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = 32; 

x1_step1.gain = 0.0204081632653061; 

x1_step1.ymin = -1; 
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% Layer 1 

b1 = [16.84999494124037156;13.745122278928688431;-

10.691032556924428221;-

7.6531629601985784461;4.6958033368603464552;-

1.5739335747245091213;2.3407626088064246161;3.9188

406820642418538;-7.5740803098497471169;-

10.7035897466776877;13.662259150088395643;-

16.893687341665025059]; 

IW1_1 = [-16.750005059728543699;-

16.800331831279557093;16.799948533266725548;16.792

949456161959887;-

16.767623312400029789;16.787946688524773009;16.739

247517797114284;17.567313945506885631;-

16.815219774512712547;-

16.786131561316835814;16.859732667190726829;-

16.707465868930828634]; 

  

% Layer 2 

b2 = 0.31840314317402917954; 

LW2_1 = [-0.58102547356635192433 

0.47022438442524200353 0.20041390174049411588 

0.0088254561548415377814 0.0035120749790415253799 

0.0064985425505877519869 -0.095995941324274330908 

1.1001639980151693976 0.012572931627286763195 -

0.0040480726233702319511 -

0.00025866624594574896216 -3.405886399226831882e-

05]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 2; 

y1_step1.xoffset = 0; 

  

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},2); % samples/series 

else 

    Q = 0; 
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end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing 

Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-

Processing Function 
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ANNEXES  C. IDE Processing + algorithm-one: eye-blink code commands 

 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

void commandsFunction() { 

  if (eyeSet(1,1,1,1)) { 

 order = "Takeoff";    /////////// forward Attention_Detect    

  } 

  if (eyeSet(0, 0, 0, 0)) { 

       sendTelloCommand("land"); 

    isLand = true; 

} 

   if (eyeSet(1, 0, 0, 1)) { 

    sendTelloCommand("up "); 

    isUp = true; 

   } 

  if (eyeSet(0, 1, 1, 0)) { 

    sendTelloCommand("down "); 

    isDown = true; 

  } 

   if (eyeSet(1, 1, 0, 0)) {  

    sendTelloCommand("left "); 

    isTurnLeft = true; 

  }   

  if (eyeSet(0, 0, 1, 1)) { 

    sendTelloCommand("right"); 

    isTurnRight = true; 

  }   
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ANNEXES  D. IDE processing + algorithm-two: eye-blink code commands  

        if (eyeSet(1, 0, 1, 0)) { 

    sendTelloCommand("Stop"); 

    isStop = true; 

}   

if (eyeSet (1,1,1,0)){ 

 order = "forward";    /////////// forward Attention_Detect 

} 

if (eyeSet ( 0,0,0,1)){ 

  order = "backward";  /////////// backward Attention_Detect 

} 

} 

 

       void commandsFunction() { 

  if (eyeSet(1, 1, 1, 1)) { 

   order = "takeoff";         /////////// Attention_Detect 

  } 

  if (eyeSet(0, 0, 0, 0)) { 

    order = "land";         /////////// Attention_Detect 

 } 

  if (eyeSet(1, 0, 0, 1)) { 

      order = "up";         /////////// Attention_Detect 

   } 

  if (eyeSet(0, 1, 1, 0)) { 

      order = "down";         /////////// Attention_Detect 

  } 

   if (eyeSet(1, 1, 0, 0)) { 

    order = "left";         ///////////  Attention_Detect 

  }   
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ANNEXES  E. IDE Processing + Attention Detection Code  

 

  if (eyeSet(0, 0, 1, 1)) { 

    order = "right";       /////////// Attention_Detect 

  } 

if (eyeSet (1, 1, 1, 0)){ 

 order = "forward";    ///////////  Attention_Detect 

} 

if (eyeSet ( 0, 0, 0, 1)){ 

  order = "backward";  ///////////  Attention_Detect 

} 

  if (eyeSet(1, 0, 1, 0)) { 

   sendTelloCommand("stop"); 

   isStop = true; 

  print("Stop"); 

  } 

} 

 

 if (order== "involved_motion") {      

firstTimer.countUp();  

isAttention_Detect = true;  

if(time == 6){ 

 order = "time_off"; 

} 

if (attValue > 65 ){ 

 order = "????_start"; 

 isAttention_Detect = false; 

}  

 if (order == "time_off"){ 

      starttimer_off.stop_timer(); 

  firstTimer.reset(); 

} 

  } 
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if (order == " involved_motion _start" ) {  

  secondTimer.countUp();    

  firstTimer.reset(); 

  if ( time == 3){ 

    sendTelloCommand("involved_motion "); 

        //println("involved_motion "); 

     isForward = true; 

              order = " involved_motion _stop";  

} 

 if (attValue < 60 && time < 4) { 

     order = " involved_motion _stop";  

} 

   if (order == " involved_motion _stop"){ 

      starttimer_off.stop_timer(); 

     secondTimer.reset(); 

} 

  } 
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