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In this article, studied the properties of the oscillation of fractional difference equa-
tions, and we obtain some results. The results we obtained are an expansion and 
further development of highly known results. Then we showed them with examples.
Key words: fractional difference equation, oscillatory solutions,  

oscillation theory

Introduction and preliminaries

In the investigations of qualitative properties for differential equations, research on 
time scales of the dynamic equations, oscillation of differential (or difference) equations and 
fractional differential equations have been a very important issue in the science and engineer-
ing. We refer to [1-25] and the references therein.

We first investigated following fractional difference equations: 
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We can rewrite eq. (1):
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and iη  are the division of two odd positive integers. The ( ), ( )t a tψ , and ( )iq t  are positive coef-
ficient sequences, and α∆  demonstrate that the Riemann-Liouville fractional difference opera-
tor of order α  where 0 1α< ≤ . Therefore, in our results we use the following conditions:
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By a solution of eq. (2), we mean a real-valued sequence ( )x t  satisfying eq. (2) for 
0tt∈ . A solution ( )x t  of eq. (2) is called oscillatory if it is neither eventually positive nor 

eventually negative, otherwise it is called non-oscillatory. Equation (2) is called oscillatory if 
all its solutions are oscillaory. 

Definition 1. [26]. We define vth fractional sum f as:
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where we define f for mod(1)s a≡ , v f−∆  for ( ) mod(1)t a v≡ +  and ( ) (1 )/ (1 )vt t t v= Γ + Γ + − . 
The fractional sum v f−∆  maps functions defined on a  to functions defined on a v+ , where 

{ ,  1,  2,...}t t t t= + + .
Definition 2. [26] Let 1m mµ− < <  and 0v > , where m denotes a positive integer, 

m µ=    . Set v m µ= − . Then we define that µ th fractional difference:

( ) ( ) ( )m v m vf t f t f tµ − −∆ = ∆ = ∆ ∆  (6)

Oscillation properties of equation (2)

In this section, we work the oscillation properties of equation (2).
Lemma 1. [22]. Suppose that ( )x t  be a solution of eq. (2) and let: 
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Theorem 1. Assume C1 holds and furthermore, for all suficiently large t:
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Then every solution of eq. (2) is either oscillatory or lim ( ) 0t G t→∞ = .
Proof. Assume that the contrary that ( )x t  is non-oscillatory solution of eq. (2). Then 

without loss of generality, we may assume that there is a solution ( )x t  of eq. (2) such that 
( ) 0x t >  on 1[ , )t ∞ , where 1t  is sufficiently large, so that ( ) 0G t >  on 1[ , )t ∞ . And all of ( )iq t ’s 

are not identically zero on 1[ , )t ∞  for 1,2,...,i n= . From eq. (2), we have:
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In that case 
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is an eventually non-increasing sequence on 1[ , )t ∞ . So, we understand that 1{ ( )[ ( )] }t x tα δψ∆ ∆  
and ( )x tα∆  are ultimately of one sign. For 2 1t t>  is big enough, 1{ ( )[ ( )] }t x tα γψ∆ ∆  and ( )x tα∆  
have a fixed sign on 2[ , )t ∞ . We then consider the following conditions:
 – Case 1. ( ) 0x tα∆ <  and 1{ ( )[ ( )] } 0t x tα δψ∆ ∆ < ;
 – Case 2. 1{ ( )[ ( )] } 0t x tα δψ∆ ∆ <  and 0 ( )x tα< ∆ ;
 – Case 3. 1{ ( )[ ( )] } 0t x tα δψ∆ ∆ >  and 0 ( )x tα> ∆ ;
 – Case 4. 1{ ( )[ ( )] } 0t x tα δψ∆ ∆ >  and ( )0 x tα< ∆ .

For the Case 1, we have:
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Then, by C1, we obtain lim ( )t G t→∞ = −∞ which contradicts with 0 ( )G t< .
For the Case 2, we have from eq. (9):
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Then, by C1, we obtain 1lim ( )[ ( )]t t x tα γψ→∞ ∆ = −∞ which contradicts with 0 ( )x tα< ∆ .
For the Case 3, we have 1lim ( ) 0t G t k→∞ = ≥  and 1

2lim ( )[ ( )] 0t t x t kα δψ→∞ ∆ = ≤ . If 
we suppose that 1 0k > , then 1( )G t k>  for 3 2t t t≤ ≤ . Therefore, if we sum both sides of eq. (2) 
from t to ∞ , we obtain:
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If we sum both sides of the eq. (12) from t  to ∞, we have:
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which means for 2 0k ≤ :
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If we sum both sides of the eq. (13) from 3t  to 1t − , we obtain:
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Therefore, by eq. (9), we obtain lim ( )t G t→∞ = −∞ with contradicts with ( ) 0G t > .
For the Case 4, we have:
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If we sum both sides of the eq. (14) from 3t  to 1t − , we obtain:
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If we take t →∞ , we get a contradiction with eq. (10). Therefore, the proof of the 
Theorem 1 is complete

Theorem 2. Suppose that C2, eqs. (9) and (10) hold. Furthermore, for all sufficiently 
large t: 
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Therefore, each solution of eq. (2) is either lim ( ) 0t G t→∞ =  or oscillatory.
Proof. Let’s the contrary that ( )x t  is non-oscillatory solution of eq. (2). Then with-

out loss of generality, we assume that there is a solution ( )x t  of eq. (2) such that 0 ( )x t<  on 
1[ , )t ∞ , where 1t  is sufficiently large, so that ( ) 0G t >  on 1[ , )t ∞ . It appears that all of ( )iq t ’s 

are not identically zero on 1[ , )t ∞  for 1,2,...,i n= . From eq. (11), we obtained that 
1 2( )( { ( )[ ( )] })a t t x tα δ δψ∆ ∆  is an eventually non-increasing sequence on [ )1,t ∞ . For the Case 1, 

we have:
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Then from the last inequality and eq. (2), we obtain:
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If we sum both sides of the eq. (17) from 2t  to 1t − :
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If we sum both sides of the eq. (18) from 3t  to 1t − :
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If we sum both sides of the the eq. (19) from 4t  to 1t − , we have:
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By eq. (14), we obtain lim ( )t G t→∞ = −∞  due to 1 0K < , which conradicts with 
0 ( )G t< .

For the Case 2: 

 ( )
( ) ( ) ( ){ }

( )
( ) ( ) ( ){ } ( )

11

11

1 1
2 2

1/

1/1 1

1/ 1/

1 11
t t

s t s t

s x s
G t t x t

s s

δδα
δδα

δ δ

α ψ
α ψ

ψ ψ

− −

= =

 Γ − ∆ 
 > > Γ − ∆ ∑ ∑  

and 

 

( ) ( )
( ) ( ) ( ){ }

( )

( ) ( ) ( ){ } ( )

( ) ( ) ( ){ } ( ) ( )

22
1

1

2

22
1

2

22
1

2 2

1/

1/

1/

1/

1/

2 2 2 21/ 1/

1

1 1

s t

s t

s t s t

a s s x s
t x t

a s

a t t x t
a s

a t t x t K
a s a s

δδδα

δα
δ

δδδα
δ

δδδα
δ δ

ψ

ψ

ψ

ψ

∞

=

∞

=

∞ ∞

= =

   ∆ ∆       − ∆ ≤ < 

   < ∆ ∆ <      

   < ∆ ∆ =      

∑

∑

∑ ∑

 

Thereore, we have:

 ( ) ( )
( ) ( )

1

2 1
2

1/
1

2 1/ 1/
1 11

t

s t s t
G t K

a s s

δ

δ δα
ψ

∞ −

= =

 
> −Γ −  

  
∑ ∑  

Thus, from eq. (2), we obtain:

   ( ) ( ) ( ){ } ( ) ( )
( ) ( )

1
2

1

2 1
2

1/
1

2 1/ 1/
1

1 11

i
n t

i
i s t s t

a t t x t q t K
a s s

ηδδδα
δ δψ α

ψ

∞ −

= = =

       ∆ ∆ ∆ = Γ −                
∑ ∑ ∑  (20)

If we sum two sides of the eq. (20) from 3t  to 1t −  , we have:
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letting t →∞ , we obtain:
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which contradicts with eq. (16). The rest of the proof is made similar to the proof of the Theo-
rem 1. Thus the proof of the theorem is completed.

Application

Let as consider the following fractional difference equation as an example:
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Therefore, eqs. (9) and (10) holds, and then we say that eq. (21) is lim ( ) 0t G t→∞ =  or 
oscillatory by Theorem 1.

Conclusion

In this work, we studied the qualitative behavior of solutions of non-linear fractional 
difference equations (FDE) with fractional Riemann-Liouville difference operator. Because there 
was a gap for the oscillatory solutions of FDE under the condition (C2) in the literature, we con-
sidered the equation with the conditions (C1) and (C2). By using some techniques, we obtained 
some oscillation results. The obtained results improved the many criteria in the literature.
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